skip to main content
10.1145/3603555.3603568acmotherconferencesArticle/Chapter ViewAbstractPublication PagesmundcConference Proceedingsconference-collections
research-article

HapticCollider: Ungrounded Force Feedback for Rigid Collisions during Virtual Tool Use

Published: 03 September 2023 Publication History

Abstract

Controllers are not merely the dominant interface to interact in virtual reality (VR); they also are the main resource for haptically perceiving the virtual world. As standard VR controllers fail in generating realistic haptic feedback, we designed HapticCollider, a kinetic controller rendering force feedback, e.g., to simulate a collision when hammering or hitting against a virtual object. In our user study, we demonstrated that HapticCollider significantly increases realism in tool usage compared with a standard VR controller. As key factors for tool use realism in VR, we identified force feedback, controller weight, and grip shape in combination with software solutions, namely collision prediction, and control-display ratio to render the force timing, as well as, the tool position according to the user’s expectations.

References

[1]
Jonas Auda, Nils Verheyen, Sven Mayer, and Stefan Schneegass. 2021. Flyables: Haptic Input Devices for Virtual Realityusing Quadcopters. In Proceedings of the 27th ACM Symposium on Virtual Reality Software and Technology (Osaka, Japan) (VRST ’21). Association for Computing Machinery, New York, NY, USA, Article 40, 11 pages. https://doi.org/10.1145/3489849.3489855
[2]
Mahdi Azmandian, Mark Hancock, Hrvoje Benko, Eyal Ofek, and Andrew D. Wilson. 2016. Haptic Retargeting: Dynamic Repurposing of Passive Haptics for Enhanced Virtual Reality Experiences. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (San Jose, California, USA) (CHI ’16). Association for Computing Machinery, New York, NY, USA, 1968–1979. https://doi.org/10.1145/2858036.2858226
[3]
Rosa María Baños, Cristina Botella, Azucena Garcia-Palacios, Helena Villa, Concepción Perpiñá, and Mariano Alcaniz. 2000. Presence and reality judgment in virtual environments: a unitary construct?CyberPsychology & Behavior 3, 3 (2000), 327–335.
[4]
Miguel Borges, Andrew Symington, Brian Coltin, Trey Smith, and Rodrigo Ventura. 2018. HTC Vive: Analysis and Accuracy Improvement. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, Madrid, Japan, 2610–2615. https://doi.org/10.1109/IROS.2018.8593707
[5]
Inrak Choi, Eyal Ofek, Hrvoje Benko, Mike Sinclair, and Christian Holz. 2018. CLAW: A Multifunctional Handheld Haptic Controller for Grasping, Touching, and Triggering in Virtual Reality. Association for Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3173574.3174228
[6]
Richard E. Fan, Martin O. Culjat, Chih-Hung King, Miguel L. Franco, Richard Boryk, James W. Bisley, Erik Dutson, and Warren S. Grundfest. 2008. A Haptic Feedback System for Lower-Limb Prostheses. IEEE Transactions on Neural Systems and Rehabilitation Engineering 16, 3 (2008), 270–277. https://doi.org/10.1109/TNSRE.2008.920075
[7]
Cathy Fang, Yang Zhang, Matthew Dworman, and Chris Harrison. 2020. Wireality: Enabling Complex Tangible Geometries in Virtual Reality with Worn Multi-String Haptics. Association for Computing Machinery, New York, NY, USA, 1–10. https://doi.org/10.1145/3313831.3376470
[8]
Ronan Gaugne, Valérie Gouranton, Georges Dumont, Alain Chauffaut, and Bruno Arnaldi. 2014. Immersia, an open immersive infrastructure: doing archaeology in virtual reality. Archeologia e Calcolatori 5, 1 (2014), 1–10. https://hal.science/hal-01003383
[9]
Takashi Goto, Swagata Das, Katrin Wolf, Pedro Lopes, Yuichi Kurita, and Kai Kunze. 2020. Accelerating Skill Acquisition of Two-Handed Drumming Using Pneumatic Artificial Muscles. In Proceedings of the Augmented Humans International Conference (Kaiserslautern, Germany) (AHs ’20). Association for Computing Machinery, New York, NY, USA, Article 12, 9 pages. https://doi.org/10.1145/3384657.3384780
[10]
RM Held and NI Durlach. 1992. Telepresence. Presence: Teleoperatorsand Virtual Environments, 1 (1), 109-112. Hendrix, C, & Barfield, W.(1996). Presence within virtual environments as a function ofvisual display parameters. Presence: Teleoperators and Virtual Environments 5, 2 (1992), 5–39.
[11]
Seongkook Heo, Christina Chung, Geehyuk Lee, and Daniel Wigdor. 2018. Thor’s Hammer: An Ungrounded Force Feedback Device Utilizing Propeller-Induced Propulsive Force. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (Montreal QC, Canada) (CHI ’18). Association for Computing Machinery, New York, NY, USA, 1–11. https://doi.org/10.1145/3173574.3174099
[12]
Caroline Jay, Mashhuda Glencross, and Roger Hubbold. 2007. Modeling the Effects of Delayed Haptic and Visual Feedback in a Collaborative Virtual Environment. ACM Trans. Comput.-Hum. Interact. 14, 2 (aug 2007), 8–es. https://doi.org/10.1145/1275511.1275514
[13]
Seungwoo Je, Myung Jin Kim, Woojin Lee, Byungjoo Lee, Xing-Dong Yang, Pedro Lopes, and Andrea Bianchi. 2019. Aero-Plane: A Handheld Force-Feedback Device That Renders Weight Motion Illusion on a Virtual 2D Plane. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology (New Orleans, LA, USA) (UIST ’19). Association for Computing Machinery, New York, NY, USA, 763–775. https://doi.org/10.1145/3332165.3347926
[14]
Max Kinateder, Enrico Ronchi, Daniel Nilsson, Margrethe Kobes, Mathias Müller, Paul Pauli, and Andreas Mühlberger. 2014. Virtual reality for fire evacuation research. In 2014 Federated Conference on Computer Science and Information Systems. IEEE, Warsaw, Poland, 313–321. https://doi.org/10.15439/2014F94
[15]
Chih-Hung King, Martin O. Culjat, Miguel L. Franco, Catherine E. Lewis, Erik P. Dutson, Warren S. Grundfest, and James W. Bisley. 2009. Tactile Feedback Induces Reduced Grasping Force in Robot-Assisted Surgery. IEEE Transactions on Haptics 2, 2 (2009), 103–110. https://doi.org/10.1109/TOH.2009.4
[16]
Effie Lai-Chong Law, Virpi Roto, Marc Hassenzahl, Arnold P.O.S. Vermeeren, and Joke Kort. 2009. Understanding, Scoping and Defining User Experience: A Survey Approach. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Boston, MA, USA) (CHI ’09). Association for Computing Machinery, New York, NY, USA, 719–728. https://doi.org/10.1145/1518701.1518813
[17]
Susan J Lederman and Roberta L Klatzky. 2009. Haptic perception: A tutorial. Attention, Perception, & Psychophysics 71, 7 (2009), 1439–1459.
[18]
Nianlong Li, Han-Jong Kim, LuYao Shen, Feng Tian, Teng Han, Xing-Dong Yang, and Tek-Jin Nam. 2020. HapLinkage: Prototyping Haptic Proxies for Virtual Hand Tools Using Linkage Mechanism. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology (Virtual Event, USA) (UIST ’20). Association for Computing Machinery, New York, NY, USA, 1261–1274. https://doi.org/10.1145/3379337.3415812
[19]
Pedro Lopes, Alexandra Ion, and Patrick Baudisch. 2015. Impacto: Simulating Physical Impact by Combining Tactile Stimulation with Electrical Muscle Stimulation. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology (Charlotte, NC, USA) (UIST ’15). Association for Computing Machinery, New York, NY, USA, 11–19. https://doi.org/10.1145/2807442.2807443
[20]
Pedro Lopes, Sijing You, Lung-Pan Cheng, Sebastian Marwecki, and Patrick Baudisch. 2017. Providing Haptics to Walls & Heavy Objects in Virtual Reality by Means of Electrical Muscle Stimulation. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (Denver, Colorado, USA) (CHI ’17). Association for Computing Machinery, New York, NY, USA, 1471–1482. https://doi.org/10.1145/3025453.3025600
[21]
Dan Morris, Hong Tan, Federico Barbagli, Timothy Chang, and Kenneth Salisbury. 2007. Haptic Feedback Enhances Force Skill Learning. In Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC’07). IEEE, Tsukuba, Japan, 21–26. https://doi.org/10.1109/WHC.2007.65
[22]
Thomas Muender, Michael Bonfert, Anke Verena Reinschluessel, Rainer Malaka, and Tanja Döring. 2022. Haptic Fidelity Framework: Defining the Factors of Realistic Haptic Feedback for Virtual Reality. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems (New Orleans, LA, USA) (CHI ’22). Association for Computing Machinery, New York, NY, USA, Article 431, 17 pages. https://doi.org/10.1145/3491102.3501953
[23]
Ander Ramos Murguialday, Vikram Aggarwal, Aniruddha Chatterjee, Yoonju Cho, Robert Rasmussen, Brandon O’Rourke, Soumyadipta Acharya, and Nitish V. Thakor. 2007. Brain-Computer Interface for a Prosthetic Hand Using Local Machine Control and Haptic Feedback. In 2007 IEEE 10th International Conference on Rehabilitation Robotics. IEEE, Noordwijk, The Netherlands, 609–613. https://doi.org/10.1109/ICORR.2007.4428487
[24]
Diederick C. Niehorster, Li Li, and Markus Lappe. 2017. The Accuracy and Precision of Position and Orientation Tracking in the HTC Vive Virtual Reality System for Scientific Research. i-Perception 8, 3 (2017), 2041669517708205. https://doi.org/10.1177/2041669517708205 arXiv:https://doi.org/10.1177/2041669517708205PMID: 28567271.
[25]
Allison M Okamura. 2009. Haptic feedback in robot-assisted minimally invasive surgery. Current opinion in urology 19, 1 (2009), 102.
[26]
Karan Rangarajan, Heather Davis, and Philip H. Pucher. 2020. Systematic Review of Virtual Haptics in Surgical Simulation: A Valid Educational Tool?Journal of Surgical Education 77, 2 (2020), 337–347. https://doi.org/10.1016/j.jsurg.2019.09.006
[27]
Michael Rietzler, Florian Geiselhart, Julian Frommel, and Enrico Rukzio. 2018. Conveying the Perception of Kinesthetic Feedback in Virtual Reality Using State-of-the-Art Hardware. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (Montreal QC, Canada) (CHI ’18). Association for Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3173574.3174034
[28]
Michael Rietzler, Gabriel Haas, Thomas Dreja, Florian Geiselhart, and Enrico Rukzio. 2019. Virtual Muscle Force: Communicating Kinesthetic Forces Through Pseudo-Haptic Feedback and Muscle Input. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology (New Orleans, LA, USA) (UIST ’19). Association for Computing Machinery, New York, NY, USA, 913–922. https://doi.org/10.1145/3332165.3347871
[29]
Demolish Games S.A.2018. Demolish & Build. Game [Steam].
[30]
Makoto Sato, Xiangning Liu, Jun Murayama, Katsuhito Akahane, and Masaharu Isshiki. 2008. A Haptic Virtual Environment for Molecular Chemistry Education. Springer-Verlag, Berlin, Heidelberg, 28–39.
[31]
Mel Slater 1999. Measuring presence: A response to the Witmer and Singer presence questionnaire. Presence: teleoperators and virtual environments 8, 5 (1999), 560–565.
[32]
J. Solis, C.A. Avizzano, and M. Bergamasco. 2002. Teaching to write Japanese characters using a haptic interface. In Proceedings 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. HAPTICS 2002. IEEE, Orlando, FL, USA, 255–262. https://doi.org/10.1109/HAPTIC.2002.998966
[33]
Jonathan Steuer. 1992. Defining virtual reality: Dimensions determining telepresence. Journal of communication 42, 4 (1992), 73–93.
[34]
Patrick L. Strandholt, Oana A. Dogaru, Niels C. Nilsson, Rolf Nordahl, and Stefania Serafin. 2020. Knock on Wood: Combining Redirected Touching and Physical Props for Tool-Based Interaction in Virtual Reality. Association for Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3313831.3376303
[35]
Anselm Strauss and Juliet M Corbin. 1997. Grounded theory in practice. Sage, Thousand Oaks, CA, USA.
[36]
Stonebrick Studios. 2018. cyubeVR. Game [SteamVR].
[37]
Pascale Touzalin-Chretien, Solange Ehrler, and André Dufour. 2010. Dominance of vision over proprioception on motor programming: evidence from ERP. Cerebral cortex 20, 8 (2010), 2007–2016.
[38]
Ching-Yi Tsai, I-Lun Tsai, Chao-Jung Lai, Derrek Chow, Lauren Wei, Lung-Pan Cheng, and Mike Y. Chen. 2022. AirRacket: Perceptual Design of Ungrounded, Directional Force Feedback to Improve Virtual Racket Sports Experiences. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems (New Orleans, LA, USA) (CHI ’22). Association for Computing Machinery, New York, NY, USA, Article 185, 15 pages. https://doi.org/10.1145/3491102.3502034
[39]
Hsin-Ruey Tsai, Ching-Wen Hung, Tzu-Chun Wu, and Bing-Yu Chen. 2020. ElastOscillation: 3D Multilevel Force Feedback for Damped Oscillation on VR Controllers. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI ’20). Association for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3313831.3376408
[40]
Yu-Wei Wang, Yu-Hsin Lin, Pin-Sung Ku, Yōko Miyatake, Yi-Hsuan Mao, Po Yu Chen, Chun-Miao Tseng, and Mike Y. Chen. 2021. JetController: High-Speed Ungrounded 3-DoF Force Feedback Controllers Using Air Propulsion Jets. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Association for Computing Machinery, New York, NY, USA, Article 124, 12 pages. https://doi.org/10.1145/3411764.3445549
[41]
Michael White, James Gain, Ulysse Vimont, and Daniel Lochner. 2019. The Case for Haptic Props: Shape, Weight and Vibro-Tactile Feedback. In Proceedings of the 12th ACM SIGGRAPH Conference on Motion, Interaction and Games (Newcastle upon Tyne, United Kingdom) (MIG ’19). Association for Computing Machinery, New York, NY, USA, Article 7, 10 pages. https://doi.org/10.1145/3359566.3360058
[42]
Bob G Witmer and Michael J Singer. 1998. Measuring presence in virtual environments: A presence questionnaire. Presence 7, 3 (1998), 225–240.
[43]
Katrin Wolf, Markus Funk, Rami Khalil, and Pascal Knierim. 2017. Using Virtual Reality for Prototyping Interactive Architecture. In Proceedings of the 16th International Conference on Mobile and Ubiquitous Multimedia (Stuttgart, Germany) (MUM ’17). Association for Computing Machinery, New York, NY, USA, 457–464. https://doi.org/10.1145/3152832.3156625
[44]
Youchan Yim and Fumihide Tanaka. 2021. Development of an Inflatable Haptic Device for Pain Reduction by Social Touch. In Companion of the 2021 ACM/IEEE International Conference on Human-Robot Interaction (Boulder, CO, USA) (HRI ’21 Companion). Association for Computing Machinery, New York, NY, USA, 86–88. https://doi.org/10.1145/3434074.3447134
[45]
André Zenner and Antonio Krüger. 2019. Drag:On: A Virtual Reality Controller Providing Haptic Feedback Based on Drag and Weight Shift. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3290605.3300441
[46]
André Zenner and Antonio Krüger. 2017. Shifty: A Weight-Shifting Dynamic Passive Haptic Proxy to Enhance Object Perception in Virtual Reality. IEEE Transactions on Visualization and Computer Graphics 23, 4 (2017), 1285–1294. https://doi.org/10.1109/TVCG.2017.2656978

Cited By

View all
  • (2024)SpinShot: Optimizing Both Physical and Perceived Force Feedback of Flywheel-Based, Directional Impact Handheld DevicesProceedings of the 37th Annual ACM Symposium on User Interface Software and Technology10.1145/3654777.3676433(1-15)Online publication date: 13-Oct-2024
  • (2024)MobileGravity: Mobile Simulation of a High Range of Weight in Virtual RealityProceedings of the 2024 CHI Conference on Human Factors in Computing Systems10.1145/3613904.3642658(1-13)Online publication date: 11-May-2024

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Other conferences
MuC '23: Proceedings of Mensch und Computer 2023
September 2023
593 pages
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 03 September 2023

Permissions

Request permissions for this article.

Check for updates

Badges

  • Honorable Mention

Author Tags

  1. force feedback
  2. haptic feedback
  3. proprioception
  4. rigid collision
  5. tools
  6. ungrounded
  7. virtual reality

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

MuC '23
MuC '23: Mensch und Computer 2023
September 3 - 6, 2023
Rapperswil, Switzerland

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)126
  • Downloads (Last 6 weeks)20
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)SpinShot: Optimizing Both Physical and Perceived Force Feedback of Flywheel-Based, Directional Impact Handheld DevicesProceedings of the 37th Annual ACM Symposium on User Interface Software and Technology10.1145/3654777.3676433(1-15)Online publication date: 13-Oct-2024
  • (2024)MobileGravity: Mobile Simulation of a High Range of Weight in Virtual RealityProceedings of the 2024 CHI Conference on Human Factors in Computing Systems10.1145/3613904.3642658(1-13)Online publication date: 11-May-2024

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media