
Descent Methods

Karl Stratos

1 Example

We can learn a great deal about descent methods by carefully studying the simple
example in Boyd and Vandenberghe (2004). Here, we wish to minimize a quadratic
function f : R2 → R defined by

f(x) :=
1

2

(
x2

1 + γx2
2

)
where we assume γ ≥ 1 for simplicty. It’s a special instantiation of the general
quadratic program (1/2)x>Qx − b>x where Q = diag(1, γ) and b = (0, 0). The
gradient is ∇f(x) = Qx and the Hessian is ∇2f(x) = Q � 0. Thus f(x) is strongly
convex and minimized as f(x∗) = 0 at the unique minimum x∗ := (0, 0). This allows
us to evaluate the suboptimality of x by simply checking how large f(x) is.

The (always symmetric) Hessian ∇2f(x) reveals the shape of the function at point
x. It has positive eigenvalues when it’s positive definite (like here), and its condition
number

κ
(
∇2f(x)

)
:=

λmax

(
∇2f(x)

)
λmin (∇2f(x))

≥ 1

upper bounds the “assymmetry” of f(x)’s upward acceleration. The Hessian in this
example is constant Q with κ(Q) = γ.

Gradient descent Let’s consider minimizing f(x) using gradient descent with
exact step sizes. Clearly, the choice of an initial point x(0) affects the number
of iterations t we need until x(t) is close to optimal (i.e., zero). If x(0) = (0, 0)
there’s no work to be done. If x(0) = (1, 0), then ∇f

(
x(0)

)
= (1, 0) so we obtain

x(1) = x(0)− η∇f
(
x(0)

)
= x∗ in a single iteration with step size η = 1. Now consider

x(0) = (γ, 1) with the initial objective value f
(
x(0)

)
= γ(γ + 1)/2. Then it can be

shown that the exact step size is

ηexact
t := arg min

η≥0
f
(
x(t) − η∇f

(
x(t)
))

=
2

1 + γ
∀t ≥ 1

and each update and its objective value are

x(t) =

(
γ − 1

γ + 1

)t
(−1)tx(0) f

(
x(t)
)

=

(
γ − 1

γ + 1

)2t

f
(
x(0)

)
(1)

What we’re observing is the dependence of the convergence rate of gradient descent
on the condition number γ of the Hessian Q. If γ = 1, the algorithm converges in a
single iteration. If γ = 106, then the algorithm crawls down to a halt, progressing by
a factor of (106 − 1)/(106 + 1) ≈ 1 in each iteration.

1

Newton’s method If a small condition number is so important for fast conver-
gence, can achieve it by preprocessing? Let’s apply a change of coordinates y :=
Q1/2x. Then x = Q−1/2y and

f(x) = f(Q−1/2y) =
1

2

(
y>Q−1/2

)
Q
(
Q−1/2y

)
=

1

2
y>y =: f̄(y)

and we can minimize f̄(y) over y using gradient descent. It’s the same setting in
(1) only now we’re optimizing a function whose Hessian has a condition number
κ
(
∇2f̄(y)

)
= 1, so the algorithm immediately converges to y(1) = 0 no matter what

x(0) is. The original solution can be recovered by x(1) = Q−1/2y(1) = 0.

What we’re observing is a property of the Newton update x′ = x−∇2f (x)
−1∇f (x),

namely that it’s equivalent to gradient descent after the change of coordinates y :=

∇2f (x)
1/2

x. See Appendix B for details. The Newton step v = −∇2f (x)
−1∇f (x)

also minimizes a second-order approximation of f(x+ v) around x,

f(x+ v) ≈ f(x) + v>∇f(x) +
1

2
v>∇2f(x)v

which is exact in this example (hence the immediate solution). In contrast, the
gradient step v = −η∇f (x) minimizes a regularized first-order approximation.

Granted, this example is a simple quadratic function so the behavior of gradient
descent and Newton’s method is not completely representative. However, it provides
right intuition about these descent methods, for instance

• Gradient descent is sensitive to the choice of coordinates; Newton isn’t.

• Newton converges really fast if the function looks like quadratic.

2 Descent Algorithm

More generally, let f : Rd → R be a smooth function with a finite minimizer x∗ :=
infx∈Rd f(x). The sublevel set is denoted by S := {x ∈ Rd : f(x) ≤ f(x(0))} and the
optimum is denoted by p∗ := f(x∗). We assume that f is strongly convex; then it
follows that

• There exist m,M > 0 such that mI � ∇2f(x) �MI for all x ∈ S.

• If the gradient is small at x, f(x) is almost optimal (if zero, f(x) = p∗):

f(x)− p∗ ≤ 1

2m
||∇f(x)||22 (2)

All descent methods use the following algorithm.

DESCEND
Input: f , number of iterations T , descent directions {∆x}x∈Rd , step sizes {ηt}T−1

t=0

• Initialize x(0) somehow.

• For t = 0, 1, . . . , T − 1, set x(t+1) ← x(t) + ηt∆x
(t).

• Return x(T).

2

We now discuss some suitable choices of

• Descent directions ∆x defined for all x ∈ Rd

• Step sizes ηt defined for all t = 0 . . . T − 1

2.1 Descent Directions

The rate of change of f at x along a vector v ∈ Rd can be measured by the directional
derivative:

∇vf(x) := lim
ε→0

f(x+ εv)− f(x)

ε
= 〈v, ∇f(x)〉

where the second equality can be verified (Appendix A). Thus we obtain the steepest
descent direction of f at x by

∆||·||x := arg min
v: ||v||≤1

〈v, ∇f(x)〉 (3)

where we constrain the length of v with some norm ||·||. We obtain various directions
depending on the choice of the norm. For a symmetric Q � 0, we define the Q-norm
by ||v||Q :=

√
v>Qv. Note that ||v||Q =

∣∣∣∣Q1/2v
∣∣∣∣

2
.

Proposition 2.1. Assuming ∇f(x) 6= 0, we have

∆||·||2x = − ||∇f(x)||−1
2 ∇f(x) (4)

∆||·||1x = −sign

(
∂f(x)

∂xl

)
el l = arg max

i∈{1,...,d}

∣∣∣∣∂f(x)

∂xi

∣∣∣∣ (5)

∆||·||Qx = − ||∇f(x)||−1
Q−1 Q

−1∇f(x) (6)

(Partial proof in Appendix C.) Since we usually just care about the direction, we
consider the following “unnormalized” definitions obtained by multiplying ||∇f(x)||∗
where ||·||∗ is the dual norm.1

• The 2-norm direction of f at x is given by

∆(2)x := −∇f(x)

Gradient descent is DESCEND using the 2-norm direction.

• The 1-norm direction of f at x is given by

∆(1)x := −∂f(x)

∂xl
el

where l = arg maxi∈{1,...,d}

∣∣∣∂f(x)
∂xi

∣∣∣. Coordinate descent is DESCEND using

the 1-norm direction.

1Equivalently, we can modify the definition of the steepest direction in Eq. (3) with the dual norm
constraint to directly obtain unnormalized directions (e.g., see Appendix C):

min
v: ||v||≤||v||∗

〈v, ∇f(x)〉

3

• The Q-norm direction of f at x is given by

∆(Q)x := −Q−1∇f(x)

Newton’s method is DESCEND using theQ-norm direction whereQ = ∇2f(x).

If x̄ = Q1/2x denotes a new coordinate system, then it can be shown that

∆(Q)x = Q−1/2∆(2)x̄

Thus pursuing the Q-norm direction can be seen as pursuing the 2-norm direction in
the new coordinate system x 7→ Q1/2x (Corollary B.2).

2.2 Step Sizes

Here are some choices of the step size ηt at each iteration t ∈ {0, . . . , T − 1}. A fixed
step size ηfixed

t is simply a constant η > 0:

ηfixed
t = η (7)

The exact step size ηexact
t is the optimum step size for ∆x(t):

ηexact
t = arg min

η∈R
f
(
x(t) + η∆x(t)

)
(8)

A popular choice in practice is the backtracking step size ηback
t :

ηback
t ∈

{
η : f

(
x(t) + η∆x(t)

)
≤ f(x(t)) + α

〈
∇f(x(t)), ∆x(t)

〉
η
}

(9)

where α ∈ (0, 0.5). To derive this, note that the first-order Taylor polynomial of
the objective f(x(t) + η∆x(t)) at η = 0 (when viewed as a function of η) is f(x(t)) +
〈∇f(x(t)), ∆x(t)〉η. Since ∆x(t) is a descent direction, we have 〈∇f(x(t)), ∆x(t)〉 < 0,
so this is a line with negative slope tagent to f(x(t) + η∆x(t)) at η = 0. The line with
a reduced slope f(x(t))+α〈∇f(x(t)), ∆x(t)〉η will intersect the objective first at some
η0 > 0. This means

f(x+ η∆x) ≤ f(x) + α〈∇f(x), ∆x〉η ∀η ∈ [0, η0]

The following is a usual illustration of the backtracking step size:

4

A step size satisfying (9) can be computed by the following algorithm:

Backtrack
Input: f , current location x(t), descent direction ∆x(t), α ∈ (0, 0.5), β ∈ (0, 1)

• ηback
t ← 1

• Until f(x(t) + ηback
t ∆x(t)) ≤ f(x(t)) + α〈∇f(x(t)), ∆x(t)〉ηback

t ,

ηback
t ← βηback

t

• Return ηback
t .

The algorithm eventually terminates since as η → 0,

f(x+ η∆x) ≈ f(x) + 〈∇f(x), ∆x〉η ≤ f(x) + α〈∇f(x), ∆x〉η

3 Gradient Descent

Let’s look at gradient descent in more details, which specifies the update

x′ ← x− η∇f(x)

As we saw, the gradient step v = −η∇f(x) is given by the 2-norm direction ∆(2)x =
−∇f(x) multiplied by a step size η. Alternatively, v minimizes a regularized first-
order approximation of f(x+ v) around x,

f(x+ v) ≈ f(x) + v>∇f(x) +
1

2η
||v||22

3.1 Exact Step Size

Let’s first consider using the exact step size ηexact
t in (8). The line search forces the

algorithm to “go all the way” along the direction until it’s impossible to reduce f
any further, so it yields the minimizer x∗ in a single iteration if the 2-norm direction
points precisely to x∗. An interesting consequence is that the direction at time t+ 1
is orthogonal to the direction at time t.

Lemma 3.1. Given x ∈ Rd, define η∗ := arg minη∈R f (x− η∇f(x)) and x+ :=
x− η∗∇f(x). Then 〈∇f(x+), ∇f(x)〉 = 0.

Proof. Since η∗ is a stationary point of g(η) := f (x− η∇f(x)),

∂g(η∗)

∂η
= 〈∇f (x− η∗∇f(x)) , −∇f(x)〉 = −〈∇f(x+), ∇f(x)〉 = 0

Now we have a result generalizing the phonomenon in our earlier example (1): conver-
gence depends on the condition number of the Hessian. Note that M/m is an upper
bound on the condition number.

Theorem 3.2. If x(t) is the output of DESCEND with exact step sizes, then

f(x(t))− p∗ ≤
(

1− m

M

)t (
f
(
x(0)

)
− p∗

)
5

3.2 Fixed Step Size

Let’s also consider using the fixed step size ηfixed
t in (7). Here is a classical result on

the convergence of gradient descent in this case; see Appendix D for a proof. The
analysis assumes the gradient is Lipschitz; ∇f is L-Lipschitz if ∇f doesn’t “change
too quickly”:

||∇f(x)−∇f(y)||2 ≤ L ||x− y||2 ∀x, y ∈ Rd

It can be verified that this is equivalent to ∇2f(x) � LI for all x ∈ Rd.

Theorem 3.3. Assume that ∇f is L-Lipschitz. Pick η ∈ (0, 1/L]. The output x(T)

of gradient descent with step size η satisfies

f(x(T))− f(x∗) ≤
∣∣∣∣x(0) − x∗

∣∣∣∣2
2

2ηT

3.3 Stochastic Gradient Descent (SGD)

Proposition 3.1. Let pop denote a distribution over X . For x ∈ X , let Jx : Rd → R
be a twice differentiable and strongly convex function. Define J : Rd → R by

J(θ) := E
x∼pop

[Jx(θ)]

and let θ∗ = arg minθ∈Rd J(θ). Let Θ ⊂ Rd denote a sufficiently large closed subset of
Rd and assume θ∗ ∈ Θ. Pick any θ0 ∈ Θ and define a sequence θ1, θ2, . . . by drawing
xt ∼ pop and setting

θt+1 = θt − ηt∇Jxt
(θt) (10)

where ηt ≥ 0. Then limt→∞ θt = θ∗ with probability 1, provided that

∞∑
t=0

ηt =∞
∞∑
t=0

η2
t <∞ (11)

Proof. The update (10) is element-wise, so without loss of generality assume d = 1.
J ′ : R → R is nondecreasing and J ′′(θ∗) > 0 by premise. J ′x(θ) is an unbiased
estimator of J ′(θ), that is J ′(θ) = Ex∼pop[J ′x(θ)]. Furthermore, |J ′x(θ)| ≤ G for all
θ ∈ Θ for some constant G, so it is uniformly bounded. Since θ∗ is the unique solution
to the equation J ′(θ) = 0, by Robbins-Monro θt converges to θ∗ almost surely with
the conditions in (11).

The conditions in (11) are necessary as follows. By a telescoping sum on (10) we have

θ0 − θT =

T∑
t=0

ηt∇Jxt(θt)

Thus if
∑∞
t=0 ηt is finite, then the difference between θ0 and limt→∞ θt is finite. In

this case there is no hope of approaching θ∗ if θ∗ happens to be too far away from θ0.
An extreme case is ηt = 0 which clearly breaks the algorithm, but even with a strictly
positive ηt this can be a problem. For instance, if ηt = 1/2t+1, then

∑∞
t=0 ηt∇Jxt

(θt)

6

https://en.wikipedia.org/wiki/Stochastic_approximation

is the expected value of ∇Jxt(θt) over x1, x2, . . . ∼ pop weighted by probabilities
1/2, 1/4, . . . which is finite since ∇Jxt

is bounded.

On the other hand, for the algorithm to converge at all we must have

(θt+1 − θ∗)2 − (θt − θ∗)2 = η2
t ||∇Jxt(θt)||

2 − 2ηt∇Jxt
(θt)

>(θt − θ∗)

≤ η2
t ||∇Jxt(θt)||

2

converge as t → ∞. (The first equality can be easily checked by using (10), and
∇Jxt(θt)

>(θt − θ∗) ≥ 0 for any finite t since Jxt is convex.) The second condition∑∞
t=0 η

2
t <∞, together with the boundedness of∇Jxt

, ensure that
∑∞
t=0 η

2
t ||∇Jxt

(θt)||2
is finite, and this implies the RHS converges in conditional expectation. We need to
condition on the past otherwise we allow for degenerate scenarios such as using the
same x ∈ X at every step. This involves the Martingale convergence theorem and
details can be found in Bertsekas (2011) and Bottou (1998).

It is also shown that in the ideal setting of Proposition 3.1 in which J is smooth
and strongly convex, the convergence rate of SGD is as good as gradient descent
(e.g., Theorem 3.3) in that the expected suboptimality is inversely proportional to
the number of iterations:

E
x1...xT−1∼pop

[J(θT)− J(θ∗)] = O

(
1

T

)
SGD also has a quite different interpretation under the framework of online convex
optimization. Here, we aim to minimize the “regret” with respect to the best hypoth-
esis in an online setting. It can be shown that SGD optimizes the sum of linearized
past losses with l2 regularization which upper bounds this regret.

3.3.1 General convergence analysis

Let f be smooth function bounded below by f∗. Fix x1 arbitrarily and consider

xt+1 = xt − ηgt

where gt is a stochastic estimator of ∇f(xt) and η > 0. By Taylor’s theorem,

f(xt+1) = f(xt)− η 〈gt,∇f(xt)〉+
η2 ||gt||2

2

∣∣∣∣∇2f(ξ)
∣∣∣∣

where ξ = (1−t)xt+txt+1 for some t ∈ (0, 1). Assume ||gt|| ≤M and
∣∣∣∣∇2f(x)

∣∣∣∣ ≤ L.
Crucially, suppose

E [〈gt,∇f(xt)〉] ≥ C ||∇f(xt)||p (12)

for some C > 0 and p ≥ 1. Then we can take an expectation over gt to have

E [f(xt+1)] ≤ f(xt)− ηC ||∇f(xt)||p +
η2M2L

2

Rearranging and averaging both sides over t = 1 . . . T , we have

1

T

T∑
t=1

||∇f(xt)||p ≤
f(x1)− f∗

ηCT
+
ηML

2C

7

In particular, given any ε > 0, we can choose η = 2Cε
ML to have the asymptotic

convergence

lim
T→∞

1

T

T∑
t=1

||∇f(xt)||p ≤ ε

In classical SGD, we have f(x) = (1/B)
∑B
i=1 fi(x) (e.g., x is the model parameter

and fi is the loss function defined on the i-th batch) and use gt = ∇fit(x) ≈ ∇f(x)
where it ∈ {1 . . . B} is uniformly random. Then (12) holds with C = 1 and p = 2.

More generally, we can consider any stochastic gradient estimator gt such that

E [cos θt] ≥ δ (13)

where θt is the angle between gt and ∇f(xt).
2 If we additionally assume ||gt|| ≥ m,

E [〈gt,∇f(xt)〉] = E [||gt|| cos θt] ||∇f(xt)|| ≥ mδ ||∇f(xt)||

thus (12) holds with C = mδ and p = 1.

4 Newton’s Method

As we saw, Newton’s method is given by choosing the Q-norm direction ∆(Q)x =
−Q−1∇f(x) where

Q = ∇2f(x)

in the DESCEND algorithm. The algorithm can also be interepreted as minimizing
the second-order Taylor polynomial around x:

f(x+ v) ≈ f(x) + v>∇f(x) +
1

2
v>∇2f(x)v

See Boyd and Vandenberghe (2004) for more details. Some main takeaways for New-
ton’s Methods are:

• Its convergence speed is unaffected by any change of coordinates x 7→ Tx (Ap-
pendix B).

• It’s an exact algorithm for quadratic functions. It’s a great algorithm for
quadratic-like functions, which is formalized by the L-Lipschitzness of the Hes-
sian ∣∣∣∣∇2f(x)−∇2f(y)

∣∣∣∣
2
≤ L ||x− y||2 ∀x, y ∈ S

Note that L can be taken zero for quadratic functions. It can be shown that
there is some τ ∈ (0,m2/L] such that once ||∇f(x)||2 < τ then convergence of
Newton’s method is extremely rapid.

2This assumption may not hold in SGD due to the nonlinearity of cosine. Let fi(x) = −x2 for
i = 1 . . . 9 and f10(x) = 19x2. Then f(x) = x2. The gradients are ∇fi(x) = −2x for i = 1 . . . 9,
∇f10(x) = 38x, and ∇f(x) = 2x. At x = 1, ∇fi(1) = −2 for i = 1 . . . 9, ∇f10(1) = 38, and
∇f(1) = 2. The expected gradient is consistent: (−18 + 38)/10 = 2. However, letting θi denote the
angle between ∇fi(1) and ∇f(1),

E
i∼Unif({1...10})

[cos θi] =
1

10
(−9 + 1) = −0.8

8

• In practice, it’s impractical to store and invert the Hessian. A successful ap-
proach known as BFGS/L-BFGS approximates the multiplication of ∇f(x) by
∇2f(x)−1 without explicitly computing ∇2f(x)−1.

9

A Directional Derivative and Gradient

Lemma A.1. Let f : Rd → R be a differentiable function. For any v ∈ Rd,

∇vf(x) = 〈v, ∇f(x)〉

Proof. Define gv : R→ R to be f(x+ εv) viewed as a function of ε:

gv(ε) := f(x+ εv)

Express g′v : R→ R in both the limit and the gradient form:

g′v(ε) = lim
ρ→0

f(x+ (ε+ ρ)v)− f(x+ εv)

ρ

g′v(ε) =
∂f(x+ εv)

∂(x+ εv)

∂(x+ εv)

∂ε
= 〈∇f(x+ εv), v〉

Evaluating g′v at ε = 0 with these forms yields

g′v(0) = ∇vf(x) = 〈∇f(x), v〉

B Affine Invariance

We write ∆
f(τ(x))
x denote a step for variable x when the target function f is viewed a

function of some transformation τ(x) of x.

Definition B.1. A descent method is affine invariant if for all A � 0,

∆f(x)
x = A∆

f(x)
A−1x

Meaning x 7→ A−1x is a (reversible) change of coordinates where y = A−1x ∈
range(A−1) is the new variable to optimize. For instance, given f(x) := x>diag(1, γ)x
where γ is large, we may consider a change of coordinates by A = diag(1, γ)−1/2. This
yields an optimization of a simple function g(y) := f(Ay) = y>y (from which we can
recover x = Ay). If a descent method is affine invariant, it means that there is no
benefit of doing this trick in terms of improving convergence rate. This is because the
updates are exactly the same (up to transformation by A). See Lemma B.1.

Lemma B.1. Let x1, x2, . . . denote the sequence of updates optimizing f(x) from an
initial point x0. Let y1, y2, . . . denote the sequence of updates optimizing g(y) = f(Ay)
from y0 = A−1x0. If the descent method is affine invariant, xt = Ayt for all t ≥ 0.

Proof. Each step on g(y) is

∆g(y)
y = ∆f(Ay)

y = ∆
f(z)
A−1z = A−1∆f(z)

z

The second equality is just renaming variable z = Ay. The last equality is affine
invariance. x0 = Ay0 by premise. Assume xt = Ayt. We have

yt+1 = yt − η∆g(y)
y=yt = yt − ηA−1∆

f(z)
z=Ayt

= A−1xt − ηA−1∆f(z)
z=xt

Thus Ayt+1 = xt − η∆
f(z)
z=xt = xt+1.

10

Proposition B.1. Newton’s method is affine invariant.

Proof. Define g(y) := f(Ay). Then

∇g(y) = A>∇f(Ay) (14)

∇2g(y) = A>∇2f(Ay)A

Thus the Newton step on g(y) is

∆g(y)
y = (A>∇2f(Ay)A)−1A>∇f(Ay)

= A−1∇2f(Ay)−1∇f(Ay)

= A−1∇2f(x)−1∇f(x)

where we simply rename x = Ay. Then

A∆
f(x)
A−1x = A∆f(Ay)

y = A∆g(y)
y = ∇2f(x)−1∇f(x) = ∆f(x)

x

Proposition B.2. Gradient descent is not affine invariant in general.

Proof. Define g(y) := f(Ay). The gradient step on g(y) is Eq. (14),

∆g(y)
y = A>∇f(Ay) = A>∇f(x)

again renaming x = Ay. Then

A∆
f(x)
A−1x = A∆g(y)

y = AA>∇f(x) (15)

is not equal to ∆
f(x)
x = ∇f(x) unless ∇f(x) ∈ range(A).

Thus the convergence rate of gradient descent can change depending on the choice
of coordinates, whereas Newton’s method does not.3 While gradient descent is not
affine invariant itself, it has a precise connection to Newton’s method as the following
statement shows.

Corollary B.2. Let ∆ denote a Newton step and ∆ denote a gradient step. Then

∆f(x)
x = A∆

f(x)

A−1x

for the choice of A = ∇2f(x)−1/2.

Proof. By Eq. (15), the RHS is AA>∇f(x) = ∇2f(x)−1∇f(x) = ∆
f(x)
x .

Therefore, the convergence rate of gradient descent with the change of coordinate
x 7→ ∇2f(x)1/2x is exactly the same as the convergence rate of Newton’s method.

3Newton’s method is still not invariant to general coordinate transformations—only affine.

11

C Proof of Proposition 2.1

We only prove for the Q-norm constraint. The constrained optimization problem is

min
v: ||v||Q≤ε

〈v, ∇f(x)〉

where ε > 0, ∇f(x) 6= 0, and ||v||Q :=
√
v>Qv ≥ 0 is the Q-norm defined with some

Q � 0. If v is any vector with J(v) = 〈v, ∇f(x)〉 < 0 (which exists since ∇f(x) 6= 0),
then we can achieve smaller objective by increasing its Q-norm: pick any C > 1 and
set v′ = Cv, then ||v′||Q = C ||v||Q and J(v′) = CJ(v) < J(v). Thus the solution is
clearly achieved at v with ||v||Q = ε, so without loss of generality we can consider the
following Lagrangian relaxation

L(v, λ) = 〈v, ∇f(x)〉+
λ

2

(
v>Qv − ε2

)
and solve maxλ minv L(v, λ) to calculate v that minimizes 〈v, ∇f(x)〉 while satisfying
||v||Q = ε. As usual the solution is found at a saddle point (v, λ) satisfying

∂

∂λ
L(v, λ) = 0 ⇔ v>Qv = ε2

∂

∂v
L(v, λ) = 0 ⇔ Qv = − 1

λ
∇f(x)

This is a system of two equations with two variables thus solvable. One silly trap
here is that we might be tempted to multiply the second RHS with v to get λ =
−(1/ε2)v>∇f(x), but this doesn’t eliminate v so we run in circles. Instead, we have
to write it as Q1/2v = − 1

λQ
−1/2∇f(x) and use the fact that both sides have same

squared norm, yielding

v>Qv =
1

λ2
∇f(x)>Q−1∇f(x) ⇔ λ =

||∇f(x)||Q−1

ε

Thus v = −(ε/ ||∇f(x)||−1
Q−1)Q−1∇f(x).

D Proof of Theorem 3.3

We repeat the theorem:

Theorem Assume that ∇f is L-Lipschitz. Pick η ∈ (0, 1/L]. The output x(T) of
gradient descent with step size η satisfies

f(x(T))− f(x∗) ≤
∣∣∣∣x(0) − x∗

∣∣∣∣2
2

2ηT

We prove this theorem in small pieces. First, we show that each gradient update
will decrease the value of f if the gradient is nonzero. This crucially depends on the
quadratic upper bound provided by the L-Lipschitzness assumption on ∇f , but not
on the convexity of f .

Lemma D.1. Assume that ∇f is L-Lipschitz. If η ≤ 1/L,

f(x(t+1)) ≤ f(x(t))− η

2

∣∣∣∣∣∣∇f(x(t))
∣∣∣∣∣∣2

2
∀t ∈ {0 . . . T − 1} (16)

12

Proof.

f(x(t+1)) = f
(
x(t) − η∇f(x(t))

)
≤ f(x(t))− η

∣∣∣∣∣∣∇f(x(t))
∣∣∣∣∣∣2

2
+
Lη2

2

∣∣∣∣∣∣∇f(x(t))
∣∣∣∣∣∣2

2

≤ f(x(t))− η
(

1− Lη

2

) ∣∣∣∣∣∣∇f(x(t))
∣∣∣∣∣∣2

2

If we choose η ≤ 1/L, we have the desired result.

Next, we show that the suboptimality of x(t) is bounded linearly by the gradient at
x(t). The convexity assumption on f provides exactly such a bound.

Lemma D.2. Assume that f is convex. Then

f(x(t))− f(x∗) ≤ 〈∇f(x(t)), x(t) − x∗〉 ∀t ∈ {0 . . . T} (17)

Proof. This follows by rearranging the definition of convexity at x(t):

f(x∗) ≥ f(x(t)) + 〈∇f(x(t)), x∗ − x(t)〉

The suboptimality bound on x(t) in Eq. (17) depends on the gradient. Somewhat
fortuitously, if we bound the suboptimality of its update x(t+1) using Lemma D.1 and
D.2, we end up removing the dependence on the gradient. The resulting bound is
purely in terms of the distance away from x∗.

Lemma D.3. Assume that f is convex and ∇f is L-Lipschitz. If η ∈ (0, 1/L],

f(x(t+1))− f(x∗) ≤ 1

2η

(∣∣∣∣∣∣x(t) − x∗
∣∣∣∣∣∣2

2
−
∣∣∣∣∣∣x(t+1) − x∗

∣∣∣∣∣∣2
2

)
∀t ∈ {0 . . . T − 1} (18)

Proof. Successively applying Eq. (16) and (17) gives:

f(x(t+1)) ≤ f(x∗) + 〈∇f(x(t)), x(t) − x∗〉 − η

2

∣∣∣∣∣∣∇f(x(t))
∣∣∣∣∣∣2

2

Using the following observation,

1

2η

∣∣∣∣∣∣x(t+1) − x∗
∣∣∣∣∣∣2

2
=

1

2η

∣∣∣∣∣∣x(t) − x∗
∣∣∣∣∣∣2

2
− 〈∇f(x(t)), x(t) − x∗〉+

η

2

∣∣∣∣∣∣∇f(x(t))
∣∣∣∣∣∣2

2

we can further express

f(x(t+1)) ≤ f(x∗) +

(
1

2η

∣∣∣∣∣∣x(t) − x∗
∣∣∣∣∣∣2

2
+
η

2

∣∣∣∣∣∣∇f(x(t))
∣∣∣∣∣∣2

2
− 1

2η

∣∣∣∣∣∣x(t+1) − x∗
∣∣∣∣∣∣2

2

)
− η

2

∣∣∣∣∣∣∇f(x(t))
∣∣∣∣∣∣2

2

= f(x∗) +
1

2η

(∣∣∣∣∣∣x(t) − x∗
∣∣∣∣∣∣2

2
−
∣∣∣∣∣∣x(t+1) − x∗

∣∣∣∣∣∣2
2

)
Note that the gradient terms cancel.

13

Given these lemmas, the proof of the theorem is easy. We bound the suboptimality of
x(T) by the average suboptimality and apply Lemma D.3. The terms telescope and
we get the desired result.

Proof of Theorem 3.3.

f(x(T))− f(x∗) ≤ 1

T

T−1∑
t=0

f(x(t+1))− f(x∗) [by Lemma D.1]

≤ 1

2ηT

T−1∑
t=0

∣∣∣∣∣∣x(t) − x∗
∣∣∣∣∣∣2

2
−
∣∣∣∣∣∣x(t+1) − x∗

∣∣∣∣∣∣2
2

[by Eq. (18)]

≤
∣∣∣∣x(0) − x∗

∣∣∣∣2
2
−
∣∣∣∣x(T) − x∗

∣∣∣∣2
2

2ηT

≤
∣∣∣∣x(0) − x∗

∣∣∣∣2
2

2ηT

References

Bertsekas, D. P. (2011). Incremental gradient, subgradient, and proximal methods for
convex optimization: A survey. Optimization for Machine Learning , 2010(1-38),
3.

Bottou, L. (1998). Online learning and stochastic approximations. On-line learning
in neural networks, 17(9), 142.

14

	Example
	Descent Algorithm
	Descent Directions
	Step Sizes

	Gradient Descent
	Exact Step Size
	Fixed Step Size
	Stochastic Gradient Descent (SGD)
	General convergence analysis

	Newton's Method
	Directional Derivative and Gradient
	Affine Invariance
	Proof of Proposition 2.1
	Proof of Theorem 3.3

