Noise Contrastive Estimation

Karl Stratos

In prediction problems, we're supposed to predict $y \in \mathcal{Y}$ from $x \in \mathcal{X}$. We do this by assuming a joint population distribution \mathbf{pop}_{XY} from which we can sample correct pairs (x, y) and learning a score function $s^{\theta}(x, y) \in \mathbb{R}$ parameterized by θ such that it assigns a high score to a correct pair and a low score to an incorrect pair. To estimate such a score function, we often use the hinge loss (Appendix A) or the cross-entropy loss (Appendix B)

In noise constrastive estimation (NCE), we choose a "noise" distribution q_Y over \mathcal{Y} and the size of a sample set N and consider the task of distinguishing true samples from fake samples. It underlies many successful methods such as word2vec [7], the generative adversarial networks (GANs) [3], and contrastive predictive coding [8]. It has two popular formulations. 1. **Global**: Infer which of the N samples is true. 2. **Local**: For each individual sample infer if it's true.

Information theory enables a simple and insightful analysis of NCE. Given any distribution p, if q^{θ} is a distribution over the same variables parameterized by θ , q^{θ} is equal to piff it is the minimizer of the cross entropy between p and q^{θ}

$$\theta^* \in \operatorname*{arg\,min}_{\theta} \mathop{\mathbf{E}}_{z \sim p} \left[-\log q^{\theta}(z) \right] \qquad \Longleftrightarrow \qquad q^{\theta^*}(z) = p(z) \qquad \forall z$$

assuming the **universality** of q^{θ} : that is, it is expressive enough to model p so that $p = q^{\theta}$ for some θ . While universality should be assumed with a grain of salt (e.g., it might require an exponentially large parameter space), it seems to hold in practice with neural networks and greatly simplifies analysis.

1 Global NCE

1.1 Model

The global NCE objective assumes a joint distribution

$$\mathbf{pop}_{IXY^N}^{q_Y}(i, x, y_1 \dots y_N) := \frac{1}{N} \mathbf{pop}_{XY}(x, y_i) \prod_{j \neq i} q_Y(y_j)$$

That is, we first draw an index $i \in \{1...N\}$ uniformly at random and for j = 1...N draw $(x, y_j) \sim \mathbf{pop}_{XY}$ if j = i but otherwise draw $y_j \sim q_Y$. This yields a conditional distribution over N indices

$$\mathbf{pop}_{I|XY^{N}}^{q_{Y}}(i|x, y_{1} \dots y_{N}) = \frac{\mathbf{pop}_{Y|X}(y_{i}|x) \prod_{j \neq i} q_{Y}(y_{j})}{\sum_{k=1}^{N} \mathbf{pop}_{Y|X}(y_{k}|x) \prod_{j \neq k} q_{Y}(y_{j})} = \frac{\frac{\mathbf{pop}_{Y|X}(y_{i}|x)}{q_{Y}(y_{i})}}{\sum_{k=1}^{N} \frac{\mathbf{pop}_{Y|X}(y_{k}|x)}{q_{Y}(y_{k})}}$$
(1)

Let $H^{q_Y}(I|XY^N)$ denote the conditional entropy of $\mathbf{pop}_{I|XY^N}^{q_Y}$. The following observation is made in [8].

Lemma 1.1. Let $q_Y = \mathbf{pop}_Y$. Then $H^{\mathbf{pop}_Y}(I|XY^N) \ge \log N - I(X,Y)$ where I(X,Y) is the mutual information between $(x,y) \sim \mathbf{pop}_{XY}$.

Proof. By (1),

$$\begin{split} & \underbrace{\mathbf{E}}_{(i,x,y_1\dots y_N)\sim\mathbf{pop}_{IXYN}} \left[-\log \mathbf{pop}_{I|XYN}^{\mathbf{pop}_Y}(i|x,y_1\dots y_N) \right] \\ & = -\underbrace{\mathbf{E}}_{(x,y)\sim\mathbf{pop}_{XY}} \left[\frac{\mathbf{pop}_{Y|X}(y|x)}{\mathbf{pop}_Y(y)} \right] + \underbrace{\mathbf{E}}_{(i,x,y_1\dots y_N)\sim\mathbf{pop}_{IXYN}} \left[\log \sum_{k=1}^{N} \frac{\mathbf{pop}_{Y|X}(y_k|x)}{\mathbf{pop}_Y(y_k)} \right] \\ & \geq \log N \end{split}$$

We will not prove the claim that the second term is at least log N, but it is intuitive since $\mathbf{pop}_{Y|X}(y|x) \approx \mathbf{pop}_{Y}(y)$ if $y \sim \mathbf{pop}_{Y}$ and $\mathbf{pop}_{Y|X}(y|x) \gtrsim \mathbf{pop}_{Y}(y)$ if $y \sim \mathbf{pop}_{Y|X}(\cdot|x)$. A formal proof can be found in [9].

Corollary 1.2. $B := \log N - H^{pop_Y}(I|XY^N) \le \min \{I(X,Y), \log N\}.$

Proof. The claim that $B \leq I(X, Y)$ follows by rearranging terms in Lemma 1.1. The claim that $B \leq \log N$ follows from the fact that $H^{\mathbf{pop}_Y}(I|XY^N) \geq 0$ (Shannon entropy is nonnegative).

1.2 Estimation

We use a score function $s^{\theta}(x, y)$ through the softmax function to estimate $\mathbf{pop}_{I|XY^N}^{q_Y}$

$$p_{I|XY^N}^{\theta}(i|x, y_1 \dots y_N) := \frac{\exp\left(s^{\theta}(x, y_i)\right)}{\sum_{j=1}^N \exp\left(s^{\theta}(x, y_j)\right)} \qquad \forall i \in \{1 \dots N\}$$

We train the model by minimizing the cross (conditional) entropy between $\mathbf{pop}_{I|XY^N}^{q_Y}$ and $p_{I|XY^N}^{\theta}$:

$$\bar{H}^{q_Y}_{\theta}(I|XY^N) := \underbrace{\mathbf{E}}_{(i,x,y_1\dots y_N)\sim \mathbf{pop}_{IXY^N}} \left[-\log p^{\theta}_{I|XY^N}(i|x,y_1\dots y_N) \right]$$

Note that $\overline{H}_{\theta}^{q_Y}(I|XY^N) \ge H^{q_Y}(I|XY^N)$ for all θ by the usual property of cross entropy. If $q_Y = \mathbf{pop}_Y$, Corollary 1.2 implies that

$$B(\theta) := \log N - \bar{H}_{\theta}^{\mathbf{pop}_{Y}}(I|XY^{N}) = \mathbf{E}_{(i,x,y_{1}...y_{N})\sim\mathbf{pop}_{IXY^{N}}^{\mathbf{pop}_{Y}}} \left[\log \frac{\exp\left(s^{\theta}(x,y_{i})\right)}{\frac{1}{N}\sum_{j=1}^{N}\exp\left(s^{\theta}(x,y_{j})\right)}\right]$$
$$\leq \log N - H^{\mathbf{pop}_{Y}}(I|XY^{N})$$
$$\leq \min\left\{I(X,Y),\log N\right\}$$

Thus minimizing $\bar{H}_{\theta}^{\mathbf{pop}_{Y}}(I|XY^{N})$ over θ corresponds to maximizing a parameterized lower bound $B(\theta)$ on I(X,Y), and for this reason global NCE is sometimes called "InfoNCE". This lower bound cannot be greater than $\log N$, which is consistent with the result in [6]. Let $\theta^{q_Y} \in \arg\min_{\theta} \bar{H}^{q_Y}_{\theta}(I|XY^N)$. By universality we must have $p^{\theta^{q_Y}}_{I|XY^N} = \mathbf{pop}^{q_Y}_{I|XY^N}$. By (1) this means

$$s^{\theta^{q_Y}}(x,y) = \log \frac{\mathbf{pop}_{Y|X}(y|x)}{q_Y(y)} + \log C_x \qquad \forall x \in \mathcal{X}, \ y \in \mathcal{Y}$$

for some constant $C_x > 0$. In particular, we can use the optimal parameter θ^{q_Y} to recover the underlying conditional distribution

$$\mathbf{pop}_{Y|X}(y|x) = \frac{\exp\left(s^{\theta^{q_Y}}(x,y) + \log q_Y(y)\right)}{\sum_{y'} \exp\left(s^{\theta^{q_Y}}(x,y') + \log q_Y(y')\right)}$$
(2)

This is consistent with the "ranking" algorithm in [5]. Note that the additive adjustment is unnecessary if we choose uniformly random q_Y . A small modification of global NCE gives an unbiased gradient estimator of the cross entropy loss [1, 2] (Appendix C).

2 Local NCE

2.1 Model

The local NCE objective assumes a biased coin with head probability 1/N, which we define by $\mathbf{pop}_A(1) = 1/N$ and $\mathbf{pop}_A(0) = (N-1)/N$. Given $x \sim \mathbf{pop}_X$ and $a \sim \mathbf{pop}_A$, it defines

$$\mathbf{pop}_{Y|XA}^{q_Y}(y|x,a) := \begin{cases} \mathbf{pop}_{Y|X}(y|x) & \text{if } a = 1\\ q_Y(y) & \text{if } a = 0 \end{cases}$$

This yields the conditional head probability

$$\mathbf{pop}_{A|XY}^{q_Y}(1|x,y) = \frac{\mathbf{pop}_{Y|X}(y|x)}{\mathbf{pop}_{Y|X}(y|x) + (N-1)q_Y(y)}$$
(3)

Given $x \sim \mathbf{pop}_X$ and N iid samples $a_i \sim \mathbf{pop}_A$ and $y_i \sim \mathbf{pop}_{Y|XA}^{q_Y}(\cdot|x, a_i)$ for $i = 1 \dots N$, the joint conditional probability of the coin flips is given by

$$\mathbf{pop}_{A^{N}|XY^{N}}^{q_{Y}}(a_{1}\dots a_{N}|x, y_{1}\dots y_{N}) = \prod_{i=1:a_{i}=1}^{N} \mathbf{pop}_{A|XY}^{q_{Y}}(1|x, y_{i}) \prod_{j=1:a_{j}=0}^{N} (1 - \mathbf{pop}_{A|XY}^{q_{Y}}(1|x, y_{j}))$$

Let $H^{q_Y}(A^N|XY^N)$ denote the conditional entropy of $\mathbf{pop}_{A^N|XY^N}^{q_Y}$. We write it in the friendlier form (see Appendix D for details)

$$H^{q_Y}(A^N|XY^N) = \frac{\mathbf{E}}{(x,y)\sim\mathbf{pop}_{XY}} \left[-\log\mathbf{pop}_{A|XY}^{q_Y}(1|x,y) \right] \\ + (N-1) \underbrace{\mathbf{E}}_{\substack{x\sim\mathbf{pop}_X\\y\sim q_Y}} \left[-\log(1-\mathbf{pop}_{A|XY}^{q_Y}(1|x,y)) \right]$$
(4)

The following lemma can be easily shown by plugging in (3) into (4) (again see Appendix D for details).

Lemma 2.1. Let KL(p||q) denote the KL divergence between distributions p and q. Then

$$-H^{q_Y}(A^N|XY^N) = \mathrm{KL}\left(\mathbf{pop}_{Y|X} \left|\left|\frac{\mathbf{pop}_{Y|X} + (N-1)q_Y}{N}\right.\right) + (N-1)\mathrm{KL}\left(q_Y \left|\left|\frac{\mathbf{pop}_{Y|X} + (N-1)q_Y}{N}\right.\right) - \log N - (N-1)\log\left(\frac{N}{N-1}\right)\right.$$

Corollary 2.2. Let $JSD(p||q) = \frac{1}{2}KL(p||\frac{p+q}{2}) + \frac{1}{2}KL(q||\frac{p+q}{2})$ denote the Jensen-Shannon divergence. With N = 2 we have from Lemma 2.1

$$-H^{q_Y}(A^2|XY^2) = 2\text{JSD}\left(\mathbf{pop}_{Y|X} \middle| \middle| q_Y\right) - \log 4$$

To make the connection to GANs [3] clear, let $|\mathcal{X}| = 1$ and eliminate the dependence on X. Recall the adversarial objective of GANs and its equilibrium:

$$\begin{aligned} \mathbf{GAN}(D, q_Y) &:= \underbrace{\mathbf{E}}_{y \sim \mathbf{pop}_Y} \left[\log D(1|y) \right] + \underbrace{\mathbf{E}}_{y \sim q_Y} \left[\log(1 - D(1|y)) \right] \\ J_{\text{GAN}} &:= \min_{q_Y} \max_{D} \mathbf{GAN}(D, q_Y) \end{aligned}$$

where $D: \mathcal{Y} \to [0,1]$ is a discriminator and q_Y is viewed as a generator. It can be verified that setting $D(1|y) = \mathbf{pop}_{A|Y}^{q_Y}(1|y) = \mathbf{pop}_Y(y)/(\mathbf{pop}_Y(y) + q_Y(y))$ (3) maximizes $\mathbf{GAN}(D,q_Y)$ for any q_Y . But $\mathbf{GAN}(\mathbf{pop}_{A|Y}^{q_Y},q_Y) = -H^{q_Y}(A^2|Y^2)$, thus by Corollary 2.2

$$J_{\text{GAN}} = \min_{q_Y} \left| \mathbf{GAN}(\mathbf{pop}_{A|Y}^{q_Y}, q_Y) \right| = \min_{q_Y} \left| 2\text{JSD}\left(\mathbf{pop}_Y \right) \right| \left| q_Y \right| - \log 4 = -\log 4$$

where the minimizer is $q_Y = \mathbf{pop}_Y$. At this equilibrium, we see that the best discriminator is uniform $\mathbf{pop}_{A|Y}^{\mathbf{pop}_Y}(1|y) = 1/2$ and the generator "wins".

2.2 Estimation

We use a score function $s^{\theta}(x, y)$ through the sigmoid function to estimate $\mathbf{pop}_{A|XY}^{q_Y}$

$$p^{\theta}_{A|XY}(1|x,y) := \frac{1}{1 + \exp{(-s^{\theta}(x,y))}}$$

This is used to define the joint conditional distribution

$$p_{A^N|XY^N}^{\theta}(a_1\dots a_N|x, y_1\dots y_N) = \prod_{i=1:a_i=1}^N p_{A|XY}^{\theta}(1|x, y_i) \prod_{j=1:a_j=0}^N (1 - p_{A|XY}^{\theta}(1|x, y_j))$$

The model is again estimated by minimizing the cross (conditional) entropy between $\mathbf{pop}_{A^N|XY^N}^{q_Y}$ and $p_{A^N|XY^N}^{\theta}$. Similar to (4) this objective can be written in the friendlier form

$$\theta^{q_Y} \in \underset{\theta}{\arg\max} \; \underset{(x,y)\sim\mathbf{pop}_{XY}}{\mathbf{E}} \left[\log p^{\theta}_{A|XY}(1|x,y) \right] + (N-1) \underset{\substack{x\sim\mathbf{pop}\\y\sim q_Y}}{\mathbf{E}} \left[\log(1-p^{\theta}_{A|XY}(1|x,y)) \right]$$

By universality we must have $p_{A|XY}^{\theta^{q_Y}} = \mathbf{pop}_{A|XY}^{q_Y}$. By (3) this means

$$s^{\theta^{q_Y}}(x,y) = \log \frac{\mathbf{pop}_{Y|X}(y|x)}{q_Y(y)} - \log(N-1) \qquad \forall x \in \mathcal{X}, \ y \in \mathcal{Y}$$

If $q_Y = \mathbf{pop}_Y$, the optimal score of (x, y) is the pointwise mutual information (PMI) minus the log of the number of negative examples: this gives the analysis of the skipgram objective of word2vec in [4]. We can use the optimal parameter θ^{q_Y} to recover the underlying conditional distribution

$$\mathbf{pop}_{Y|X}(y|x) = \exp\left(s^{\theta^{q_Y}}(x,y) + \log q_Y(y) + \log(N-1)\right)$$

This is consistent with the "binary" algorithm in [5]. Note that unlike (2) this calculation doesn't require normalization. This implies that the score function must self-normalized (Assumption 2.2 in [5]), that is we must be able to at least find θ such that

$$\sum_{y} \exp\left(s^{\theta}(x, y) + \log q_Y(y) + \log(N-1)\right) = 1 \qquad \forall x \in \mathcal{X}$$

This is a strong assumption when $|\mathcal{X}|$ is larger than the number of variables in θ , so universality cannot be taken for granted in this case.

A Hinge Loss

We want to find θ that maximizes the probability of the event that $s^{\theta}(x, y) > s^{\theta}(x, y')$ for all $y' \neq y$. This is equivalent to minimizing the **zero-one loss**

$$\underset{\theta}{\operatorname{arg\,min}} \underset{(x,y)\sim\mathbf{pop}_{XY}}{\mathbf{E}} \left[\underbrace{\mathbb{1}\left(\underbrace{s^{\theta}(x,y) - \max_{y' \neq y} s^{\theta}(x,y')}_{\text{margin of } (x,y)} \leq 0\right)}_{\text{margin of } (x,y)} \right]$$

where $\mathbb{1}(\cdot) \in \{0, 1\}$ is the indicator function. The indicator function is difficult to optimize for a number of reasons (e.g., it has zero gradient almost everywhere wrt the margin), so we instead define the **hinge loss**

$$\underset{\theta}{\operatorname{arg\,min}} \underbrace{\mathbf{E}}_{\substack{(x,y)\sim\mathbf{pop}_{XY}}} \left[\underbrace{\max\left\{ 0, 1 - \underbrace{\left(s^{\theta}(x,y) - \max_{y' \neq y} s^{\theta}(x,y')\right)}_{\operatorname{margin of }(x,y)}\right\}}_{\operatorname{margin of }(x,y)} \right]$$

Note that for any fixed (x, y), the hinge loss on (x, y) is a convex upper bound on the zero-one loss on (x, y) where the convexity is wrt the margin of (x, y).

In some applications, it's neither necessary nor useful to exactly maximize over the negative space $\{y' \in \mathcal{Y} : y' \neq y\}$ to compute the margin. This is because the search is intractable and/or exact maximization has some undesirable quality (e.g., it's in fact an alternative viable prediction). In this case, maximization is replaced by sampling [11].

B Cross-Entropy Loss

We frame the problem as conditional density estimation of $\mathbf{pop}_{Y|X}$. To this end, we turn the score function into a proper conditional distribution by using the softmax operation:

$$p_{Y|X}^{\theta}(y|x) := \frac{\exp\left(s^{\theta}(x,y)\right)}{\sum_{y'} \exp\left(s^{\theta}(x,y')\right)} \qquad \quad \forall x \in \mathcal{X}, \ y \in \mathcal{Y}$$

Then we find θ that minimizes the cross (conditional) entropy between $\mathbf{pop}_{Y|X}$ and $p_{Y|X}^{\theta}$:

$$\theta^* \in \underset{\theta}{\operatorname{arg\,min}} \ \underset{(x,y)\sim\mathbf{pop}_{XY}}{\mathbf{E}} \left[-\log p_{Y|X}^{\theta}(y|x) \right]$$
(5)

By universality we must have $p_{Y|X}^{\theta^*} = \mathbf{pop}_{Y|X}$. This means

$$\frac{\exp\left(s^{\theta^*}(x,y)\right)}{\sum_{y'}\exp\left(s^{\theta^*}(x,y')\right)} = \frac{\mathbf{pop}_{XY}(x,y)}{\sum_{y'}\mathbf{pop}_{XY}(x,y')} \qquad \forall x \in \mathcal{X}, \ y \in \mathcal{Y}$$

and it follows that $\exp\left(s^{\theta^*}(x,y)\right) = C_x \mathbf{pop}_{XY}(x,y)$ for some $C_x > 0$. Hence

$$s^{\theta^*}(x,y) = \log \mathbf{pop}_{XY}(x,y) + \log C_x \qquad \forall x \in \mathcal{X}, \ y \in \mathcal{Y}$$

That is, the optimal score of (x, y) is the log probability of (x, y) shifted by some constant dependent on x.

C Gradient Estimation

Without loss of generality we consider the following simplified setting. Fix some target $t \in \mathcal{X}$ and define the loss function of $\theta \in \mathbb{R}^{|\mathcal{X}|}$ by

$$L(\theta) := -\log \frac{\exp(\theta_t)}{\sum_{x \in \mathcal{X}} \exp(\theta_x)} = \log Z(\theta) - \theta_t$$

where $Z(\theta) := \sum_{x \in \mathcal{X}} \exp(\theta_x)$. Now, let q be any full-support distribution over $\mathcal{X} \setminus \{t\}$. For any $\underline{n} = (n_1 \dots n_m) \in (\mathcal{X} \setminus \{t\})^m$ we define

$$\widehat{L}_{q,\underline{n}}(\theta) := -\log \frac{\exp(\theta_t)}{\exp(\theta_t) + \frac{1}{m} \sum_{i=1}^m \frac{\exp(\theta_{n_i})}{q(n_i)}} = \log \widehat{Z}_{q,\underline{n}}(\theta) - \theta_t$$

where $\widehat{Z}_{q,\underline{n}}(\theta) := \exp(\theta_t) + \frac{1}{m} \sum_{i=1}^m \frac{\exp(\theta_{n_i})}{q(n_i)}.$

Lemma C.1.

$$\mathbf{\underline{E}}_{\underline{n}\sim q^m}\left[\widehat{Z}_{q,\underline{n}}(\theta)\right] = Z(\theta)$$

Proof.

$$\begin{split} \mathbf{\underline{E}}_{\underline{n} \sim q^m} \left[\widehat{Z}_{q,\underline{n}}(\theta) \right] &= \exp(\theta_t) + \mathbf{\underline{E}}_{\underline{n} \sim q^m} \left[\frac{1}{m} \sum_{i=1}^m \frac{\exp(\theta_{n_i})}{q(n_i)} \right] \\ &= \exp(\theta_t) + \mathbf{\underline{E}}_{n \sim q} \left[\frac{\exp(\theta_n)}{q(n)} \right] \\ &= \exp(\theta_t) + \sum_{n \in \mathcal{X} \setminus \{t\}} q(n) \frac{\exp(\theta_n)}{q(n)} \\ &= \sum_{x \in \mathcal{X}} \exp(\theta_x) \\ &= Z(\theta) \end{split}$$

It is convenient to define $\phi_{q,\underline{n}}(\theta) \in \mathbb{R}^{m+1}$ where

$$[\phi_{q,\underline{n}}(\theta)]_i = \begin{cases} \theta_{n_i} - \log(mq(n_i)) & \text{if } i < m+1 \\ \theta_t & \text{otherwise} \end{cases}$$

We can now write $\widehat{L}_{q,\underline{n}}(\theta) = -\log p_{\phi_{q,\underline{n}}(\theta)}(m+1)$ where

$$p_{\phi_{q,\underline{n}}(\theta)}(i) := \frac{\exp([\phi_{q,\underline{n}}(\theta)]_i)}{\sum_{j=1}^{m+1} \exp([\phi_{q,\underline{n}}(\theta)]_j)} \qquad \forall i \in \{1 \dots m+1\}$$

Let $p_{\theta}(x) := \exp(\theta_x) / \sum_{x' \in \mathcal{X}} \exp(\theta_{x'})$ denote the full softmax. The following gradient expressions are easy to verify:

$$\nabla L(\theta) = \mathop{\mathbf{E}}_{x \sim p_{\theta}} \left[\mathbbm{1}_x \right] - \mathbbm{1}_t \tag{6}$$

$$\nabla_{\underline{n}\sim q^m} \left[\widehat{L}_{q,\underline{n}}(\theta) \right] = \underbrace{\mathbf{E}}_{\substack{\underline{n}\sim q^n\\i\sim p_{\phi_{q,\underline{n}}}(\theta)}} \left[\nabla [\phi_{q,\underline{n}}(\theta)]_i \right] - \mathbb{1}_t \tag{7}$$

where $\mathbb{1}_x \in \{0,1\}^{|\mathcal{X}|}$ denotes a one-hot vector with 1 at index x.

Lemma C.2. $\nabla L(\theta) = \nabla_{\underline{n} \sim q^m} \left[\widehat{L}_{q,\underline{n}}(\theta) \right]$ iff $q(x) \propto \exp(\theta_x)$ for all $x \in \mathcal{X}$.

Proof. From (6) and (7) it is clear that the statement is equivalent to

$$p_{\theta}(l) = \mathop{\mathbf{E}}_{\substack{\underline{n} \sim q^{n} \\ i \sim p_{\phi_{q,\underline{n}}}(\theta)}} \left[\frac{\partial [\phi_{q,\underline{n}}(\theta)]_{i}}{\partial \theta_{l}} \right] = \mathop{\mathbf{E}}_{\underline{n} \sim q^{n}} \left[\sum_{i=1}^{m+1} \frac{\exp([\phi_{q,\underline{n}}(\theta)]_{i})}{\widehat{Z}_{q,\underline{n}}(\theta)} \frac{\partial [\phi_{q,\underline{n}}(\theta)]_{i}}{\partial \theta_{l}} \right]$$
(8)

for all $l \in \mathcal{X}$, iff $q(x) \propto \exp(\theta_x)$ for all $x \in \mathcal{X}$.

• l = t: In this case we have

$$\frac{\partial [\phi_{q,\underline{n}}(\theta)]_i}{\partial \theta_t} = \begin{cases} 1 & \text{if } i = m+1\\ 0 & \text{otherwise} \end{cases}$$

Therefore the last term of (8) is

$$\mathbf{\underline{E}}_{\underline{n} \sim q^n} \left[\frac{\exp(\theta_t)}{\widehat{Z}_{q,\underline{n}}(\theta)} \right] = \frac{\exp(\theta_t)}{\mathbf{\underline{E}}_{\underline{n} \sim q^n} \left[\widehat{Z}_{q,\underline{n}}(\theta) \right]} = \frac{\exp(\theta_t)}{Z(\theta)} = p_{\theta}(t)$$

Note that this holds for any choice of q.

• $l \neq t$: In this case we have

$$\frac{\partial [\phi_{q,\underline{n}}(\theta)]_i}{\partial \theta_l} = \begin{cases} [[n_i = l]] & \text{if } i < m + 1\\ 0 & \text{otherwise} \end{cases}$$

Therefore the last term of (8) is

$$\underbrace{\mathbf{E}}_{\underline{n}\sim q^{n}}\left[\frac{1}{\widehat{Z}_{q,\underline{n}}(\theta)}\sum_{i=1}^{m}\frac{\exp(\theta_{n_{i}})}{mq(n_{i})}\left[[n_{i}=l\right]\right]\right] \stackrel{*}{=} \frac{\underbrace{\mathbf{E}}_{n\sim q}\left[\frac{\exp(\theta_{n})}{q(n)}\left[[n=l\right]\right]}{\underbrace{\mathbf{E}}_{\underline{n}\sim q^{n}}\left[\widehat{Z}_{q,\underline{n}}(\theta)\right]} = \frac{\exp(\theta_{l})}{Z(\theta)} = p_{\theta}(l)$$

-

where the equality with * holds iff $\widehat{Z}_{q,\underline{n}}(\theta) = \exp(\theta_t) + \frac{1}{m} \sum_{i=1}^m \frac{\exp(\theta_{n_i})}{q(n_i)}$ is constant for all $\underline{n} \in (\mathcal{X} \setminus \{t\})^m$. This implies that $q(x) \propto \exp(\theta_x)$ for all $x \in \mathcal{X}$.

Define a distribution q_{θ}^* over $\mathcal{X} \setminus \{t\}$ by

$$q_{\theta}^{*}(n) = \frac{\exp(\theta_{n})}{\sum_{x \in \mathcal{X} \setminus \{t\}} \exp(\theta_{x})}$$

We see that indeed for any $\underline{n} \in (\mathcal{X} \setminus \{t\})^m$,

$$\widehat{L}_{q_{\theta}^*,\underline{n}}(\theta) = -\log \frac{\exp(\theta_t)}{\exp(\theta_t) + \frac{1}{m} \sum_{i=1}^m \frac{\exp(\theta_{n_i})}{q_{\theta}^*(n_i)}} = -\log \frac{\exp(\theta_t)}{\exp(\theta_t) + \sum_{x \in \mathcal{X} \setminus \{t\}} \exp(\theta_x)} = L(\theta)$$

Getting q_{θ}^* requires computing a normalization term $\sum_{x \in \mathcal{X} \setminus \{t\}} \exp(\theta_x)$ for each target $t \in \mathcal{X}$. As a more efficient alternative in practice, we can approximate this distribution by p_{θ} and exclude sampled targets. The bias of the gradient estimator using an approximate $\hat{q}_{\theta} \neq q_{\theta}^*$ is analyzed in [10].

D Detailed Derivations

To get (4), note that

$$\begin{split} &-H^{q_{Y}}(A^{N}|XY^{N}) \\ &= \underbrace{\mathbf{E}}_{\substack{x \sim \mathbf{pop}_{X} \\ a_{i} \sim \mathbf{pop}_{A}, \ y_{i} \sim \mathbf{pop}_{Y|XA}^{q_{Y}}(\cdot|x,a_{i})}} \left[\log \mathbf{pop}_{A^{N}|XY^{N}}^{q_{Y}}(a_{1} \dots a_{N}|x, y_{1} \dots y_{N}) \right] \\ &= \underbrace{\mathbf{E}}_{\substack{x \sim \mathbf{pop}_{X} \\ a_{i} \sim \mathbf{pop}_{A}, \ y_{i} \sim \mathbf{pop}_{Y|XA}^{q_{Y}}(\cdot|x,a_{i})}} \left[\sum_{i=1}^{N} \left[[a_{i} = 1] \right] \log \mathbf{pop}_{A|XY}^{q_{Y}}(1|x, y_{i}) + \left[[a_{i} = 0] \right] \log (1 - \mathbf{pop}_{A|XY}^{q_{Y}}(1|x, y_{i})) \right] \\ &= N \underbrace{\mathbf{E}}_{\substack{x \sim \mathbf{pop}_{X} \\ a \sim \mathbf{pop}_{A}, \ y \sim \mathbf{pop}_{Y|XA}^{q_{Y}}(\cdot|x,a_{i})}} \left[\left[[a = 1] \right] \log \mathbf{pop}_{A|XY}^{q_{Y}}(1|x, y) + \left[[a = 0] \right] \log (1 - \mathbf{pop}_{A|XY}^{q_{Y}}(1|x, y)) \right] \end{split}$$

Use the tower rule $\mathbf{E}[X] = \mathbf{E}[\mathbf{E}[X|Y]]$ on each term of the expectation. For the first term,

$$N \underset{\substack{x \sim \mathbf{pop}_{X} \\ a \sim \mathbf{pop}_{A}, \ y \sim \mathbf{pop}_{Y|XA}^{q_{Y}}(\cdot|x,a)}{\mathbf{E}} \left[\left[[a=1] \right] \log \mathbf{pop}_{A|XY}^{q_{Y}}(1|x,y) \right] = N \left(\frac{1}{N} \underset{\substack{x \sim \mathbf{pop}_{X} \\ y \sim \mathbf{pop}_{Y|X}(\cdot|x)}{\mathbf{E}} \left[\log \mathbf{pop}_{A|XY}^{q_{Y}}(1|x,y) \right] \right)$$
$$= \frac{\mathbf{E}}{(x,y) \sim \mathbf{pop}_{XY}} \left[\log \mathbf{pop}_{A|XY}^{q_{Y}}(1|x,y) \right]$$

For the second term,

$$N \underset{\substack{x \sim \mathbf{pop}_{X} \\ a \sim \mathbf{pop}_{A}, \ y \sim \mathbf{pop}_{Y|XA}^{q_{Y}}(\cdot|x,a)}{\mathbf{E}} \left[\left[[a=0] \right] \log(1 - \mathbf{pop}_{A|XY}^{q_{Y}}(1|x,y)) \right] = N \left(\frac{N-1}{N} \underset{\substack{x \sim \mathbf{pop}_{X} \\ y \sim q_{Y}}{\mathbf{E}}}{\mathbf{E}} \left[\log(1 - \mathbf{pop}_{A|XY}^{q_{Y}}(1|x,y)) \right] \right) = \left(N - 1 \right) \underset{\substack{x \sim \mathbf{pop}_{X} \\ y \sim q_{Y}}{\mathbf{E}}}{\mathbf{E}} \left[\log(1 - \mathbf{pop}_{A|XY}^{q_{Y}}(1|x,y)) \right]$$

To get Lemma 2.1, first note that $(\mathbf{pop}_{Y|X}(\cdot|x) + (N-1)q_Y)/N$ is a proper conditional distribution over \mathcal{Y} . The first term of $-H^{q_Y}(A^N|XY^N)$ is

$$\begin{split} \mathbf{E}_{(x,y)\sim\mathbf{pop}_{XY}} \left[\log\mathbf{pop}_{A|XY}^{q_Y}(1|x,y)\right] &= \mathbf{E}_{(x,y)\sim\mathbf{pop}_{XY}} \left[\log\frac{\mathbf{pop}_{Y|X}(y|x)}{\mathbf{pop}_{Y|X}(y|x) + (N-1)q_Y(y)}\right] \\ &= \mathbf{E}_{(x,y)\sim\mathbf{pop}_{XY}} \left[\log\frac{\frac{\mathbf{pop}_{Y|X}(y|x)}{N}}{\frac{\mathbf{pop}_{Y|X}(y|x) + (N-1)q_Y(y)}{N}}\right] \\ &= \mathrm{KL} \left(\mathbf{pop}_{Y|X} \left|\left|\frac{\mathbf{pop}_{Y|X} + (N-1)q_Y}{N}\right.\right) - \log N \end{split}$$

The second term of $-H^{q_Y}(A^N|XY^N)$ is similarly

$$\begin{split} (N-1)_{\substack{x \sim \mathbf{pop}_{X} \\ y \sim q_{Y}}} \mathbf{E}_{Y \sim q_{Y}} \left[\log(1 - \mathbf{pop}_{A|XY}^{q_{Y}}(1|x,y)) \right] &= (N-1)_{\substack{x \sim \mathbf{pop}_{X} \\ y \sim q_{Y}}} \mathbf{E}_{Y \sim q_{Y}} \left[\log \frac{(N-1)q_{Y}(y)}{\mathbf{pop}_{Y|X}(y|x) + (N-1)q_{Y}(y)} \right] \\ &= (N-1)\mathrm{KL} \left(q_{Y} \left| \left| \frac{\mathbf{pop}_{Y|X} + (N-1)q_{Y}}{N} \right. \right) - (N-1)\log \frac{N}{N-1} \right\} \end{split}$$

References

- Bengio, Y. and Senécal, J.-S. (2008). Adaptive importance sampling to accelerate training of a neural probabilistic language model. *IEEE Transactions on Neural Net*works, 19(4), 713–722.
- [2] Blanc, G. and Rendle, S. (2018). Adaptive sampled softmax with kernel based sampling. In *International Conference on Machine Learning*, pages 590–599.
- [3] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing systems, pages 2672–2680.
- [4] Levy, O. and Goldberg, Y. (2014). Neural word embedding as implicit matrix factorization. In Advances in neural information processing systems, pages 2177–2185.
- [5] Ma, Z. and Collins, M. (2018). Noise contrastive estimation and negative sampling for conditional models: Consistency and statistical efficiency. arXiv preprint arXiv:1809.01812.
- [6] McAllester, D. and Stratos, K. (2020). Formal limitations on the measurement of mutual information. In *International Conference on Artificial Intelligence and Statistics*, pages 875–884. PMLR.
- [7] Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J. (2013). Distributed representations of words and phrases and their compositionality. In Advances in Neural Information Processing Systems, volume 26.
- [8] Oord, A. v. d., Li, Y., and Vinyals, O. (2018). Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748.

- [9] Poole, B., Ozair, S., Van Den Oord, A., Alemi, A., and Tucker, G. (2019). On variational bounds of mutual information. In *International Conference on Machine Learning*, pages 5171–5180.
- [10] Rawat, A. S., Chen, J., Yu, F. X. X., Suresh, A. T., and Kumar, S. (2019). Sampled softmax with random fourier features. In *Advances in Neural Information Processing Systems*, pages 13857–13867.
- [11] Wieting, J., Bansal, M., Gimpel, K., and Livescu, K. (2015). Towards universal paraphrastic sentence embeddings. arXiv preprint arXiv:1511.08198.