Noise Contrastive Estimation

Karl Stratos

In prediction problems, we’re supposed to predict y € ) from =z € X. We do this by
assuming a joint population distribution pop xy from which we can sample correct pairs
(z,y) and learning a score function s’ (z,y) € R parameterized by @ such that it assigns a
high score to a correct pair and a low score to an incorrect pair. To estimate such a score
function, we often use the hinge loss (Appendix A) or the cross-entropy loss (Appendix B)

In noise constrastive estimation (NCE), we choose a “noise” distribution gy over )
and the size of a sample set N and consider the task of distinguishing true samples from
fake samples. It underlies many successful methods such as word2vec [7], the generative
adversarial networks (GANSs) [3], and contrastive predictive coding [8]. It has two popular
formulations. 1. Global: Infer which of the IV samples is true. 2. Local: For each
individual sample infer if it’s true.

Information theory enables a simple and insightful analysis of NCE. Given any distribu-
tion p, if ¢? is a distribution over the same variables parameterized by 6, ¢’ is equal to p
iff it is the minimizer of the cross entropy between p and ¢’

¢0* € argmin E [—log qe(z)] = ¢ (z) = p(z) vz
0 P

assuming the universality of ¢’: that is, it is expressive enough to model p so that
p = ¢° for some §. While universality should be assumed with a grain of salt (e.g., it
might require an exponentially large parameter space), it seems to hold in practice with
neural networks and greatly simplifies analysis.

1 Global NCE

1.1 Model
The global NCE objective assumes a joint distribution

POPTyn (62, 1. YN) = %POPXY(%%) HCJY(%‘)
J#i
That is, we first draw an index ¢ € {1... N} uniformly at random and for j = 1... N
draw (z,y;) ~ popxy if j = i but otherwise draw y; ~ ¢y. This yields a conditional
distribution over N indices
POPy\X(in)

. POPY\X(yiLT)H- ;1 av (Yj) Yi)
pop?erN (i|lz,y1...yn) = N iz =N Z)};;ymx(yk\ﬂf) (1)
D k=1 pOpY\X(Z/k|$) Hj;ék av (y;) D ket T v



Let H9 (I|XY™) denote the conditional entropy of pop‘}rxy ~- The following observation
is made in [8].
Lemma 1.1. Let ¢y = popy. Then HP°Py (I|XYN) > log N — I(X,Y) where I(X,Y)

is the mutual information between (z,y) ~ popxy-.

Proof. By (1),

_ Popy ;
(6,91 yN])ENpt)ppOpYN [ log POPy xy~ (- yN)}
YL PoP)
N

pop z pop LT

N porrto], 3 PP 0
(z,y)~pPopPxy popy (y) (i7$7y1-~~yN)"‘P0p$;F;YN i PoPy (Y)
I(X,Y) Slog N

We will not prove the claim that the second term is at least log NV, but it is intuitive since

Popy | x (y|r) ~ popy () if y ~ popy and popy|x(y|z) Z popy (y) if y ~ popy | x (-7).
A formal proof can be found in [9]. O

Corollary 1.2. B :=log N — HP°Py ([|XYN) < min {I(X,Y),log N}.

Proof. The claim that B < I(X,Y) follows by rearranging terms in Lemma 1.1. The
claim that B < log N follows from the fact that HP°Py (I|XY®) > 0 (Shannon entropy
is nonnegative). O

1.2 Estimation

We use a score function s?(z,y) through the softmax function to estimate pop‘}“/XYN
exp (s‘9 (z, yz))

>0 exp (7, 5))

We train the model by minimizing the cross (conditional) entropy between popzrxy N

0 .
and Prixyn:

p?\XYN(ilxaylu-yN) = Vie{l...N}

HP (1| XYN) = E [—logp%XYN(ﬂx,yl...yN)}

. ~ qy
(6,@,y1--.yN)~POP | n

Note that HY (I|XYN) > H (I|XYN) for all § by the usual property of cross entropy.
If ¢y = popy, Corollary 1.2 implies that

B(0) :=log N — H " (I|1XYN) = E [log

. pop
(Z»w,ylu-yN)NPOPIXYYN

exp (59 (z, yl)) 1
& Litr exp (s”(2, 7))
<log N — HP°Px (J|XY")
<min{I(X,Y),log N}
Thus minimizing Hj " (I|XY") over 6 corresponds to maximizing a parameterized
lower bound B(¢) on I(X,Y), and for this reason global NCE is sometimes called “In-

foNCE”. This lower bound cannot be greater than log N, which is consistent with the
result in [6].



Let 7 € argmin, H{ (I|XY"). By universality we must have p?T)’;YN = pop?rXYN.
By (1) this means

popy | x (y|z)

av (y)

for some constant C, > 0. In particular, we can use the optimal parameter 9" to recover
the underlying conditional distribution

s (z,y) = log + log C,, Vee X, ye)

exp (s (z,y) +log gy (y))
 exp (7 (2, y') +log gy (y'))

pPopPy | x (ylz) = 5 (2)

This is consistent with the “ranking” algorithm in [5]. Note that the additive adjustment
is unnecessary if we choose uniformly random ¢y. A small modification of global NCE
gives an unbiased gradient estimator of the cross entropy loss [1, 2] (Appendix C).

2 Local NCE

2.1 Model

The local NCE objective assumes a biased coin with head probability 1/N, which we
define by pop4(1) = 1/N and pop4(0) = (N —1)/N. Given z ~ popx and a ~ popy,
it defines
ay ,_ POPY\X(Z‘/‘UU) ifa=1
pOpY\XA(y|x7a) T { qY(y) ifa=0
This yields the conditional head probability

popy x (y/z)
POPY\X(ZU|33) + (N =gy (y)

(3)

Popy vy (Lz,y) =

Given x ~ popy and N iid samples a; ~ pop 4 and y; ~ popg,Y‘XA(-kc, a;)fori=1...N,
the joint conditional probability of the coin flips is given by

N N
pophy yy~ (a1 anlzyi.yn) = [ popdcy(Ulzw) [[ (1-pop%yy (1lz,95))
i=l:a;=1 j=1:a;=0

Let H1 (AN|XY"™) denote the conditional entropy of pop‘i‘;v‘XYN. We write it in the
friendlier form (see Appendix D for details)

H> (AY|XYN) = B [~logpop}yy(1z,1)]
(z,y)~PoPxy
+(N=1), B |~ log(l - pop%yy (1l2.))] (4)
Yy~qy

The following lemma can be easily shown by plugging in (3) into (4) (again see Appendix D
for details).



Lemma 2.1. Let KL(p||g) denote the KL divergence between distributions p and g. Then

popy|x + (N —1)gy

0 (4Y1X7Y) =KL (popy x| )+ v K (ar

N

—log N — (N —1)log <NN1>

Corollary 2.2. Let JSD(p||q) = +KL(p||25%) + 1 KL(q||2E2) denote the Jensen-Shannon
divergence. With N = 2 we have from Lemma 2.1

—H™ (A?|XY?) = 2JSD <popYX’

QY> —log4

To make the connection to GANs [3] clear, let |X| = 1 and eliminate the dependence on
X. Recall the adversarial objective of GANs and its equilibrium:

GAN(D,gy):= E_[logD(lly)]+ E flog(1— D(1]y))]
y~popy y~ay
Jean = min max GAN(D, gy)
ay D
where D : Y — [0,1] is a discriminator and gy is viewed as a generator. It can be

verified that setting D(1|y) = popf{‘"’y(1|y) = popy (y)/(popy (y) +gv (v)) (3) maximizes
GAN(D, gy) for any gy . But GAN(pop%Y7 qy) = —H? (A%|Y?), thus by Corollary 2.2

Jgan = min GAN(popf{‘Y‘wqy) = min 2JSD (popy qy> —log4 = —log4
qy qy

where the minimizer is gy = popy-. At this equilibrium, we see that the best discriminator

is uniform popzcl’yp‘/ (1ly) = 1/2 and the generator “wins”.

2.2 Estimation

We use a score function s?(z,y) through the sigmoid function to estimate pop%XY

Py (U2, 3) = !
ARXYII I 1 fexp (—9(, y))

This is used to define the joint conditional distribution

N N
0 0 0
pAN\XYN(al c.an|ziyn..yn) = H PA|XY(1|$7Z/2') H (1 *PA|XY(1|%yj))
i=1l:a;=1 j=1:a;=0

The model is again estimated by minimizing the cross (conditional) entropy between
pop%leYN and pZN\XYN' Similar to (4) this objective can be written in the friendlier
form

07 € argmax E [logpi‘xy(l\x,y)] +(N-1)

E |log(1—pf%xy(1
0 (z,y)~poP xy ~pop x Og( pA|XY( |$7y))

Yy~qy

T

( HPOPY|X + (N — 1)qy>



By universality we must have pf):l‘;(y = popg“’xy. By (3) this means

pOPY\X(iUW)
av (y)

" (z,y) = log

—log(N —1) Vee X, ye)

If gy = popy, the optimal score of (x,y) is the pointwise mutual information (PMI)
minus the log of the number of negative examples: this gives the analysis of the skip-
gram objective of word2vec in [4]. We can use the optimal parameter 87 to recover the
underlying conditional distribution

Popy x (y]7) = exp (57" (z,9) + logay () + log(N — 1))
This is consistent with the “binary” algorithm in [5]. Note that unlike (2) this calculation

doesn’t require normalization. This implies that the score function must self-normalized
(Assumption 2.2 in [5]), that is we must be able to at least find  such that

Zexp (sg(x, y) + log gy (y) + log(N — 1)) =1 Vee X
y

This is a strong assumption when |X| is larger than the number of variables in 6, so
universality cannot be taken for granted in this case.



A Hinge Loss

We want to find @ that maximizes the probability of the event that s%(x,y) > s%(z,y’)
for all 3’ # y. This is equivalent to minimizing the zero-one loss

zero-one loss on (z,y)

arg min E 1 [ s”(x,y) — maxs’(z,y') <0
0 (z,y)~popxy Y'#Y

margin of (x,y)

where 1(-) € {0, 1} is the indicator function. The indicator function is difficult to optimize
for a number of reasons (e.g., it has zero gradient almost everywhere wrt the margin), so
we instead define the hinge loss

hinge loss on (z,y)

arg min E max ¢ 0,1 — (se(x,y) — IniX s%(x, y’))
y'Fy

0 (z,y)~PoPxy

margin of (x,y)

Note that for any fixed (z,y), the hinge loss on (z,y) is a convex upper bound on the
zero-one loss on (z,y) where the convexity is wrt the margin of (z,y).

In some applications, it’s neither necessary nor useful to exactly maximize over the neg-
ative space {y/ € YV : ¢/ # y} to compute the margin. This is because the search is in-
tractable and/or exact maximization has some undesirable quality (e.g., it’s in fact an
alternative viable prediction). In this case, maximization is replaced by sampling [11].

B Cross-Entropy Loss

We frame the problem as conditional density estimation of popy-y. To this end, we turn
the score function into a proper conditional distribution by using the softmax operation:

. . exp (sa(x,y))
Py x (ylz) := >y exp (s%(z,y))

Vee X, ye)

Then we find 6 that minimizes the cross (conditional) entropy between popy | x and pf,‘ X'

0* € arg min E {* logpff|X(y|x) (5)

0 (z,y)~pPopPxy



By universality we must have pg,*l x = Popy|x. This means

exp (s (#,9)) _ popyy(w,y)
>y exp (s (2,y) X, popxy(7,Y)

Vee X, ye)

and it follows that exp (s (z,y)) = C,popxy (z,y) for some C, > 0. Hence

s"" (z,y) = log pop yy (2, y) + log C, VeeX, ye)

That is, the optimal score of (x,y) is the log probability of (x,y) shifted by some constant
dependent on x.

C Gradient Estimation

Without loss of generality we consider the following simplified setting. Fix some target
t € X and define the loss function of 6 € RI¥I by

exp(6y)

ZmeX exp(0.)

where Z(0) := .y exp(f;). Now, let ¢ be any full-support distribution over X'\ {t}.
For any n = (ny...n.m,) € (X\ {t})™ we define

L) := —log =log Z(0) — 6,

-~ o exp(6:)

= log Zy (6) — 6,
m  exp(On, =
eXp(et) + % E i=1 ;F,LL)L)

where Z\q7ﬂ(9) = exp(et) 4+ 1 Z?n exp(n&L) )

Lemma C.1.

Proof.

I

@

[}
=
)
~

3

2

_
—

epl) + 3 g(n) SR

neX\{t}

Z exp(#

zeX
= 7(6)



It is convenient to define ¢, ,(0) € R™™! where

| On, —log(mg(n;)) ifi<m+1
(040 (0)]i = { 0:  otherwise

We can now write Zw(o) = —logpy, ,(6)(m + 1) where

exp([%,g(@)li)
S exp ([, (0)]))

P n(6) (1) = Vie{l..m+1}

Let pg(z) := exp(6s)/ > . ca exp(far) denote the full softmax. The following gradient

expressions are easy to verify:

VL) = E [1,] -1,

T~Ppo
VE [Fa@®]= B, [Viou@))] -1
- i"‘;qbq,ﬂ(e)

where 1, € {0, 1}‘){‘ denotes a one-hot vector with 1 at index x.

Lemma C.2. VL(#)=V E {Eq,ﬂ(ﬁ)} iff q(z) x exp(f,) for all z € X.

n~qm™

Proof. From (6) and (7) it is clear that the statement is equivalent to

3 Odgn(0)]:] T exp([Pgn(0)]i) O[Dg.n ()]
p@(l) - ‘ ﬂEn |: 801 :| - ﬂ,\}%n ; Z\q,n(e) 69[
1NPoq,n(0) -

for all I € X, iff ¢(z) < exp(f,) for all z € X.

e [ = ¢: In this case we have

OPgn@)i _ [ 1 ifi=m+1
00, ] 0 otherwise

Therefore the last term of (8) is

exp(6:)

_ exp(fy) _exp(fy)
Zanl®)] e

E [Za0)] 20

n~q

n~qr

Note that this holds for any choice of q.

e [ = t: In this case we have

0[pq.n(0)]: :{ ni=1] ifi<m+1

0 otherwise

00,
Therefore the last term of (8) is

E : i 2p(tn,) [[n; = 1| = ©2 [ex‘ﬁ(’?;) (I = ”} _ exp(6y)
nar Zq,ﬂ(e) i=1 mg(n;) - ngn [Z\q,ﬂ(e)} -2

(6)
(7)

= po(l)



where the equality with x holds iff 2472(0) =exp(fy) + L3, eX(II)((T?f")’i) is constant

for all n € (X\ {¢t})™. This implies that ¢(x) x exp(f,) for all x € X.

O
Define a distribution ¢; over X'\ {t} by
] exp(6)
qy(n) =
’ ZzeX\{t} exp(6:)
We see that indeed for any n € (X\ {¢t})™,
~ exp(6:) exp(6:)
Ly ,(0) = —log = —log = L(6)
o exp(0y) + L SO, SR exp(6:) + Xoe (1) XD (0)

Getting g requires computing a normalization term X\ {1} exp(f,) for each target
t € X. As a more efficient alternative in practice, we can approximate this distribution by
py and exclude sampled targets. The bias of the gradient estimator using an approximate
do # q; is analyzed in [10].

D Detailed Derivations
To get (4), note that
— H (AN xYN)

= O log PO’y xyw (a1 - anl,y1 - yn)

a;~poPp 4, yiNPOPz)‘/XA('\%M)

N
- 1"\’1::!%13)( Z [[a; = 1]] log pop%xy(l\x, yi) + [[a; = 0]] log(1 — pop%XY(l\m, yl))l
ai~PoP 4, Yi~PoPyY 4 (|z,a;) Li=1
=N p [[a = 1]Jlog popy) ¢y (1|7, y) + [[a = 0] log(1 — popy| (1], y))}

a~pop 4, y~popy x4 (-]z,a)

Use the tower rule E[X] = E[E[X|Y]] on each term of the expectation. For the first term,

1
N E [lla =1 log pop% ¢y (Ur,y)| =N [+ B [logpopyyy (1la.y)]
a~pop 4, prOpQY)TXA(-\z,a) yNPOPY|X("$)

= E [log Pop xy (1], y)}

(z,y)~PopPxy

For the second term,

N -1
N E [lla = 0]} 10g(1 — pop (12, )| = N (ngpx [log(1 — pop -y (1], y>>}>
Yy~qy

a~pop 4, y~popy ¢ , (z,a)

= (N1, B [los(1 —popyy (11.1))]

r~pop
Yy~aqy



To get Lemma 2.1, first note that (popy|x(-[z) + (N —1)gy)/N is a proper conditional
distribution over Y. The first term of —H (AN|XY?) is

PoPy | x (y|)
E log pop® (1], y ] = E g
(2.4)~PoPxy Alxy (9) (,y)~Popxy PopPy | x (ylz) + (N — 1)gy (y)
Popy\x(ylz)
_ N
B (m,y)NIEOPXY llog pOPYX(ylw)HN_l)qY(y)]
N

Hpopy|x + (N - 1)QY>

=KL <popy|X —log N

The second term of —H (AN|XY™N) is similarly

_ oe(1 — DopY - N o (N —1)q ( )
(N l)ng%gx [1 g(l p pA|XY(1| 7y)):| (N 1)30;'1\)]%5)( 1 g poleX<y‘x + — 1)qy(y)]
o N -1
:(N—l)KL(qYHp py|x+]\/§ ) >_(N—1)1ogN1
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