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In prediction problems, we’re supposed to predict y ∈ Y from x ∈ X . We do this by
assuming a joint population distribution popXY from which we can sample correct pairs
(x, y) and learning a score function sθ(x, y) ∈ R parameterized by θ such that it assigns a
high score to a correct pair and a low score to an incorrect pair. To estimate such a score
function, we often use the hinge loss (Appendix A) or the cross-entropy loss (Appendix B)

In noise constrastive estimation (NCE), we choose a “noise” distribution qY over Y
and the size of a sample set N and consider the task of distinguishing true samples from
fake samples. It underlies many successful methods such as word2vec [7], the generative
adversarial networks (GANs) [3], and contrastive predictive coding [8]. It has two popular
formulations. 1. Global: Infer which of the N samples is true. 2. Local: For each
individual sample infer if it’s true.

Information theory enables a simple and insightful analysis of NCE. Given any distribu-
tion p, if qθ is a distribution over the same variables parameterized by θ, qθ is equal to p
iff it is the minimizer of the cross entropy between p and qθ

θ∗ ∈ arg min
θ

E
z∼p

[
− log qθ(z)

]
⇐⇒ qθ

∗
(z) = p(z) ∀z

assuming the universality of qθ: that is, it is expressive enough to model p so that
p = qθ for some θ. While universality should be assumed with a grain of salt (e.g., it
might require an exponentially large parameter space), it seems to hold in practice with
neural networks and greatly simplifies analysis.

1 Global NCE

1.1 Model

The global NCE objective assumes a joint distribution

popqY
IXY N

(i, x, y1 . . . yN ) :=
1

N
popXY (x, yi)

∏
j 6=i

qY (yj)

That is, we first draw an index i ∈ {1 . . . N} uniformly at random and for j = 1 . . . N
draw (x, yj) ∼ popXY if j = i but otherwise draw yj ∼ qY . This yields a conditional
distribution over N indices

popqY
I|XY N (i|x, y1 . . . yN ) =

popY |X(yi|x)
∏
j 6=i qY (yj)∑N

k=1 popY |X(yk|x)
∏
j 6=k qY (yj)

=

popY |X(yi|x)
qY (yi)∑N

k=1

popY |X(yk|x)
qY (yk)

(1)
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Let HqY (I|XY N ) denote the conditional entropy of popqY
I|XY N . The following observation

is made in [8].

Lemma 1.1. Let qY = popY . Then HpopY (I|XY N ) ≥ logN − I(X,Y ) where I(X,Y )
is the mutual information between (x, y) ∼ popXY .

Proof. By (1),

E
(i,x,y1...yN )∼pop

popY
IXYN

[
− logpop

popY
I|XY N (i|x, y1 . . . yN )

]
= − E

(x,y)∼popXY

[
popY |X(y|x)

popY (y)

]
︸ ︷︷ ︸

I(X,Y )

+ E
(i,x,y1...yN )∼pop

popY
IXYN

[
log

N∑
k=1

popY |X(yk|x)

popY (yk)

]
︸ ︷︷ ︸

≥logN

We will not prove the claim that the second term is at least logN , but it is intuitive since
popY |X(y|x) ≈ popY (y) if y ∼ popY and popY |X(y|x) ' popY (y) if y ∼ popY |X(·|x).
A formal proof can be found in [9].

Corollary 1.2. B := logN −HpopY (I|XY N ) ≤ min {I(X,Y ), logN}.

Proof. The claim that B ≤ I(X,Y ) follows by rearranging terms in Lemma 1.1. The
claim that B ≤ logN follows from the fact that HpopY (I|XY N ) ≥ 0 (Shannon entropy
is nonnegative).

1.2 Estimation

We use a score function sθ(x, y) through the softmax function to estimate popqY
I|XY N

pθI|XY N (i|x, y1 . . . yN ) :=
exp

(
sθ(x, yi)

)∑N
j=1 exp (sθ(x, yj))

∀i ∈ {1 . . . N}

We train the model by minimizing the cross (conditional) entropy between popqY
I|XY N

and pθI|XY N :

sHqY
θ (I|XY N ) := E

(i,x,y1...yN )∼pop
qY
IXYN

[
− log pθI|XY N (i|x, y1 . . . yN )

]
Note that sHqY

θ (I|XY N ) ≥ HqY (I|XY N ) for all θ by the usual property of cross entropy.
If qY = popY , Corollary 1.2 implies that

B(θ) := logN − sH
popY
θ (I|XY N ) = E

(i,x,y1...yN )∼pop
popY
IXYN

[
log

exp
(
sθ(x, yi)

)
1
N

∑N
j=1 exp (sθ(x, yj))

]
≤ logN −HpopY (I|XY N )

≤ min {I(X,Y ), logN}

Thus minimizing sH
popY
θ (I|XY N ) over θ corresponds to maximizing a parameterized

lower bound B(θ) on I(X,Y ), and for this reason global NCE is sometimes called “In-
foNCE”. This lower bound cannot be greater than logN , which is consistent with the
result in [6].
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Let θqY ∈ arg minθ sHqY
θ (I|XY N ). By universality we must have pθ

qY

I|XY N = popqY
I|XY N .

By (1) this means

sθ
qY

(x, y) = log
popY |X(y|x)

qY (y)
+ logCx ∀x ∈ X , y ∈ Y

for some constant Cx > 0. In particular, we can use the optimal parameter θqY to recover
the underlying conditional distribution

popY |X(y|x) =
exp

(
sθ
qY (x, y) + log qY (y)

)∑
y′ exp (sθ

qY (x, y′) + log qY (y′))
(2)

This is consistent with the “ranking” algorithm in [5]. Note that the additive adjustment
is unnecessary if we choose uniformly random qY . A small modification of global NCE
gives an unbiased gradient estimator of the cross entropy loss [1, 2] (Appendix C).

2 Local NCE

2.1 Model

The local NCE objective assumes a biased coin with head probability 1/N , which we
define by popA(1) = 1/N and popA(0) = (N − 1)/N . Given x ∼ popX and a ∼ popA,
it defines

popqYY |XA(y|x, a) :=

{
popY |X(y|x) if a = 1

qY (y) if a = 0

This yields the conditional head probability

popqYA|XY (1|x, y) =
popY |X(y|x)

popY |X(y|x) + (N − 1)qY (y)
(3)

Given x ∼ popX and N iid samples ai ∼ popA and yi ∼ popqYY |XA(·|x, ai) for i = 1 . . . N ,

the joint conditional probability of the coin flips is given by

popqY
AN |XY N (a1 . . . aN |x, y1 . . . yN ) =

N∏
i=1:ai=1

popqYA|XY (1|x, yi)
N∏

j=1:aj=0

(1− popqYA|XY (1|x, yj))

Let HqY (AN |XY N ) denote the conditional entropy of popqY
AN |XY N . We write it in the

friendlier form (see Appendix D for details)

HqY (AN |XY N ) = E
(x,y)∼popXY

[
− logpopqYA|XY (1|x, y)

]
+ (N − 1) E

x∼popX
y∼qY

[
− log(1− popqYA|XY (1|x, y))

]
(4)

The following lemma can be easily shown by plugging in (3) into (4) (again see Appendix D
for details).
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Lemma 2.1. Let KL(p||q) denote the KL divergence between distributions p and q. Then

−HqY (AN |XY N ) = KL

(
popY |X

∣∣∣∣∣∣∣∣popY |X + (N − 1)qY

N

)
+ (N − 1)KL

(
qY

∣∣∣∣∣∣∣∣popY |X + (N − 1)qY

N

)
− logN − (N − 1) log

(
N

N − 1

)

Corollary 2.2. Let JSD(p||q) = 1
2KL(p||p+q2 )+ 1

2KL(q||p+q2 ) denote the Jensen-Shannon
divergence. With N = 2 we have from Lemma 2.1

−HqY (A2|XY 2) = 2JSD

(
popY |X

∣∣∣∣∣∣∣∣qY )− log 4

To make the connection to GANs [3] clear, let |X | = 1 and eliminate the dependence on
X. Recall the adversarial objective of GANs and its equilibrium:

GAN(D, qY ) := E
y∼popY

[logD(1|y)] + E
y∼qY

[log(1−D(1|y))]

JGAN := min
qY

max
D

GAN(D, qY )

where D : Y → [0, 1] is a discriminator and qY is viewed as a generator. It can be
verified that setting D(1|y) = popqYA|Y (1|y) = popY (y)/(popY (y)+qY (y)) (3) maximizes

GAN(D, qY ) for any qY . But GAN(popqYA|Y , qY ) = −HqY (A2|Y 2), thus by Corollary 2.2

JGAN = min
qY

GAN(popqYA|Y , qY ) = min
qY

2JSD

(
popY

∣∣∣∣∣∣∣∣qY )− log 4 = − log 4

where the minimizer is qY = popY . At this equilibrium, we see that the best discriminator
is uniform pop

popY
A|Y (1|y) = 1/2 and the generator “wins”.

2.2 Estimation

We use a score function sθ(x, y) through the sigmoid function to estimate popqYA|XY

pθA|XY (1|x, y) :=
1

1 + exp (−sθ(x, y))

This is used to define the joint conditional distribution

pθAN |XY N (a1 . . . aN |x, y1 . . . yN ) =

N∏
i=1:ai=1

pθA|XY (1|x, yi)
N∏

j=1:aj=0

(1− pθA|XY (1|x, yj))

The model is again estimated by minimizing the cross (conditional) entropy between
popqY

AN |XY N and pθAN |XY N . Similar to (4) this objective can be written in the friendlier

form

θqY ∈ arg max
θ

E
(x,y)∼popXY

[
log pθA|XY (1|x, y)

]
+ (N − 1) E

x∼popX
y∼qY

[
log(1− pθA|XY (1|x, y))

]
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By universality we must have pθ
qY

A|XY = popqYA|XY . By (3) this means

sθ
qY

(x, y) = log
popY |X(y|x)

qY (y)
− log(N − 1) ∀x ∈ X , y ∈ Y

If qY = popY , the optimal score of (x, y) is the pointwise mutual information (PMI)
minus the log of the number of negative examples: this gives the analysis of the skip-
gram objective of word2vec in [4]. We can use the optimal parameter θqY to recover the
underlying conditional distribution

popY |X(y|x) = exp
(
sθ
qY

(x, y) + log qY (y) + log(N − 1)
)

This is consistent with the “binary” algorithm in [5]. Note that unlike (2) this calculation
doesn’t require normalization. This implies that the score function must self-normalized
(Assumption 2.2 in [5]), that is we must be able to at least find θ such that∑

y

exp
(
sθ(x, y) + log qY (y) + log(N − 1)

)
= 1 ∀x ∈ X

This is a strong assumption when |X | is larger than the number of variables in θ, so
universality cannot be taken for granted in this case.
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A Hinge Loss

We want to find θ that maximizes the probability of the event that sθ(x, y) > sθ(x, y′)
for all y′ 6= y. This is equivalent to minimizing the zero-one loss

arg min
θ

E
(x,y)∼popXY



zero-one loss on (x, y)︷ ︸︸ ︷
1

sθ(x, y)−max
y′ 6=y

sθ(x, y′)︸ ︷︷ ︸
margin of (x, y)

≤ 0




where 1(·) ∈ {0, 1} is the indicator function. The indicator function is difficult to optimize
for a number of reasons (e.g., it has zero gradient almost everywhere wrt the margin), so
we instead define the hinge loss

arg min
θ

E
(x,y)∼popXY



hinge loss on (x, y)︷ ︸︸ ︷
max

0, 1−
(
sθ(x, y)−max

y′ 6=y
sθ(x, y′)

)
︸ ︷︷ ︸

margin of (x, y)




Note that for any fixed (x, y), the hinge loss on (x, y) is a convex upper bound on the
zero-one loss on (x, y) where the convexity is wrt the margin of (x, y).

In some applications, it’s neither necessary nor useful to exactly maximize over the neg-
ative space {y′ ∈ Y : y′ 6= y} to compute the margin. This is because the search is in-
tractable and/or exact maximization has some undesirable quality (e.g., it’s in fact an
alternative viable prediction). In this case, maximization is replaced by sampling [11].

B Cross-Entropy Loss

We frame the problem as conditional density estimation of popY |X . To this end, we turn
the score function into a proper conditional distribution by using the softmax operation:

pθY |X(y|x) :=
exp

(
sθ(x, y)

)∑
y′ exp (sθ(x, y′))

∀x ∈ X , y ∈ Y

Then we find θ that minimizes the cross (conditional) entropy between popY |X and pθY |X :

θ∗ ∈ arg min
θ

E
(x,y)∼popXY

[
− log pθY |X(y|x)

]
(5)
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By universality we must have pθ
∗

Y |X = popY |X . This means

exp
(
sθ
∗
(x, y)

)∑
y′ exp (sθ∗(x, y′))

=
popXY (x, y)∑
y′ popXY (x, y′)

∀x ∈ X , y ∈ Y

and it follows that exp
(
sθ
∗
(x, y)

)
= CxpopXY (x, y) for some Cx > 0. Hence

sθ
∗
(x, y) = logpopXY (x, y) + logCx ∀x ∈ X , y ∈ Y

That is, the optimal score of (x, y) is the log probability of (x, y) shifted by some constant
dependent on x.

C Gradient Estimation

Without loss of generality we consider the following simplified setting. Fix some target
t ∈ X and define the loss function of θ ∈ R|X | by

L(θ) := − log
exp(θt)∑
x∈X exp(θx)

= logZ(θ)− θt

where Z(θ) :=
∑
x∈X exp(θx). Now, let q be any full-support distribution over X\ {t}.

For any n = (n1 . . . nm) ∈ (X\ {t})m we define

L̂q,n(θ) := − log
exp(θt)

exp(θt) + 1
m

∑m
i=1

exp(θni )

q(ni)

= log Ẑq,n(θ)− θt

where Ẑq,n(θ) := exp(θt) + 1
m

∑m
i=1

exp(θni )

q(ni)
.

Lemma C.1.

E
n∼qm

[
Ẑq,n(θ)

]
= Z(θ)

Proof.

E
n∼qm

[
Ẑq,n(θ)

]
= exp(θt) + E

n∼qm

[
1

m

m∑
i=1

exp(θni)

q(ni)

]

= exp(θt) + E
n∼q

[
exp(θn)

q(n)

]
= exp(θt) +

∑
n∈X\{t}

q(n)
exp(θn)

q(n)

=
∑
x∈X

exp(θx)

= Z(θ)
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It is convenient to define φq,n(θ) ∈ Rm+1 where

[φq,n(θ)]i =

{
θni − log(mq(ni)) if i < m+ 1

θt otherwise

We can now write L̂q,n(θ) = − log pφq,n(θ)(m+ 1) where

pφq,n(θ)(i) :=
exp([φq,n(θ)]i)∑m+1
j=1 exp([φq,n(θ)]j)

∀i ∈ {1 . . .m+ 1}

Let pθ(x) := exp(θx)/
∑
x′∈X exp(θx′) denote the full softmax. The following gradient

expressions are easy to verify:

∇L(θ) = E
x∼pθ

[1x]− 1t (6)

∇ E
n∼qm

[
L̂q,n(θ)

]
= E

n∼qn
i∼pφq,n(θ)

[
∇[φq,n(θ)]i

]
− 1t (7)

where 1x ∈ {0, 1}|X | denotes a one-hot vector with 1 at index x.

Lemma C.2. ∇L(θ) = ∇ E
n∼qm

[
L̂q,n(θ)

]
iff q(x) ∝ exp(θx) for all x ∈ X .

Proof. From (6) and (7) it is clear that the statement is equivalent to

pθ(l) = E
n∼qn

i∼pφq,n(θ)

[
∂[φq,n(θ)]i

∂θl

]
= E
n∼qn

[
m+1∑
i=1

exp([φq,n(θ)]i)

Ẑq,n(θ)

∂[φq,n(θ)]i
∂θl

]
(8)

for all l ∈ X , iff q(x) ∝ exp(θx) for all x ∈ X .

• l = t: In this case we have

∂[φq,n(θ)]i
∂θt

=

{
1 if i = m+ 1
0 otherwise

Therefore the last term of (8) is

E
n∼qn

[
exp(θt)

Ẑq,n(θ)

]
=

exp(θt)

E
n∼qn

[
Ẑq,n(θ)

] =
exp(θt)

Z(θ)
= pθ(t)

Note that this holds for any choice of q.

• l 6= t: In this case we have

∂[φq,n(θ)]i
∂θl

=

{
[[ni = l]] if i < m+ 1

0 otherwise

Therefore the last term of (8) is

E
n∼qn

[
1

Ẑq,n(θ)

m∑
i=1

exp(θni)

mq(ni)
[[ni = l]]

]
∗
=

E
n∼q

[
exp(θn)
q(n) [[n = l]]

]
E

n∼qn

[
Ẑq,n(θ)

] =
exp(θl)

Z(θ)
= pθ(l)
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where the equality with ∗ holds iff Ẑq,n(θ) = exp(θt) + 1
m

∑m
i=1

exp(θni )

q(ni)
is constant

for all n ∈ (X\ {t})m. This implies that q(x) ∝ exp(θx) for all x ∈ X .

Define a distribution q∗θ over X\ {t} by

q∗θ(n) =
exp(θn)∑

x∈X\{t} exp(θx)

We see that indeed for any n ∈ (X\ {t})m,

L̂q∗θ ,n(θ) = − log
exp(θt)

exp(θt) + 1
m

∑m
i=1

exp(θni )

q∗θ (ni)

= − log
exp(θt)

exp(θt) +
∑
x∈X\{t} exp(θx)

= L(θ)

Getting q∗θ requires computing a normalization term
∑
x∈X\{t} exp(θx) for each target

t ∈ X . As a more efficient alternative in practice, we can approximate this distribution by
pθ and exclude sampled targets. The bias of the gradient estimator using an approximate
q̂θ 6= q∗θ is analyzed in [10].

D Detailed Derivations

To get (4), note that

−HqY (AN |XY N )

= E
x∼popX

ai∼popA, yi∼pop
qY
Y |XA(·|x,ai)

[
logpopqY

AN |XY N (a1 . . . aN |x, y1 . . . yN )
]

= E
x∼popX

ai∼popA, yi∼pop
qY
Y |XA(·|x,ai)

[
N∑
i=1

[[ai = 1]] logpopqYA|XY (1|x, yi) + [[ai = 0]] log(1− popqYA|XY (1|x, yi))

]

= N E
x∼popX

a∼popA, y∼pop
qY
Y |XA(·|x,a)

[
[[a = 1]] logpopqYA|XY (1|x, y) + [[a = 0]] log(1− popqYA|XY (1|x, y))

]
Use the tower rule E[X] = E[E[X|Y ]] on each term of the expectation. For the first term,

N E
x∼popX

a∼popA, y∼pop
qY
Y |XA(·|x,a)

[
[[a = 1]] logpopqYA|XY (1|x, y)

]
= N

 1

N
E

x∼popX
y∼popY |X(·|x)

[
logpopqYA|XY (1|x, y)

]
= E

(x,y)∼popXY

[
logpopqYA|XY (1|x, y)

]
For the second term,

N E
x∼popX

a∼popA, y∼pop
qY
Y |XA(·|x,a)

[
[[a = 0]] log(1− popqYA|XY (1|x, y))

]
= N

(
N − 1

N
E

x∼popX
y∼qY

[
log(1− popqYA|XY (1|x, y))

])

= (N − 1) E
x∼popX
y∼qY

[
log(1− popqYA|XY (1|x, y))

]
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To get Lemma 2.1, first note that (popY |X(·|x) + (N − 1)qY )/N is a proper conditional

distribution over Y. The first term of −HqY (AN |XY N ) is

E
(x,y)∼popXY

[
logpopqYA|XY (1|x, y)

]
= E

(x,y)∼popXY

[
log

popY |X(y|x)

popY |X(y|x) + (N − 1)qY (y)

]

= E
(x,y)∼popXY

[
log

popY |X(y|x)
N

popY |X(y|x)+(N−1)qY (y)

N

]

= KL

(
popY |X

∣∣∣∣∣∣∣∣popY |X + (N − 1)qY

N

)
− logN

The second term of −HqY (AN |XY N ) is similarly

(N − 1) E
x∼popX
y∼qY

[
log(1− popqYA|XY (1|x, y))

]
= (N − 1) E

x∼popX
y∼qY

[
log

(N − 1)qY (y)

popY |X(y|x) + (N − 1)qY (y)

]

= (N − 1)KL

(
qY

∣∣∣∣∣∣∣∣popY |X + (N − 1)qY

N

)
− (N − 1) log

N

N − 1
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