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PREFACE

These unforeseen stoppages,
which I own I had no conception of when I first set out;

— but which, I am convinced now, will rather increase than diminish as I advance,
— have struck out a hint which I am resolved to follow;

— and that is, — not to be in a hurry;
— but to go on leisurely, writing and publishing two volumes of my life every year;

— which, if I am suffered to go on quietly, and can make a tolerable bargain
with my bookseller, I shall continue to do as long as I live.

— LAURENCE STERNE, The Life and Opinions of
Tristram Shandy, Gentleman (1759)

This booklet is Fascicle 6 of The Art of Computer Programming, Volume 4:
Combinatorial Algorithms. As explained in the preface to Fascicle 1 of Volume 1,
I’m circulating the material in this preliminary form because I know that the
task of completing Volume 4 will take many years; I can’t wait for people to
begin reading what I’ve written so far and to provide valuable feedback.

To put the material in context, this lengthy fascicle contains Section 7.2.2.2
of a long, long chapter on combinatorial algorithms. Chapter 7 will eventually
fill at least four volumes (namely Volumes 4A, 4B, 4C, and 4D), assuming that
I’m able to remain healthy. It began in Volume 4A with a short review of graph
theory and a longer discussion of “Zeros and Ones” (Section 7.1); that volume
concluded with Section 7.2.1, “Generating Basic Combinatorial Patterns,” which
was the first part of Section 7.2, “Generating All Possibilities.” Volume 4B will
resume the story with Section 7.2.2, about backtracking in general; then Section
7.2.2.1 will discuss a family of methods called “dancing links,” for updating data
structures while backtracking. That sets the scene for the present section, which
applies those ideas to the important problem of Boolean satisfiability, aka ‘SAT’.

Wow — Section 7.2.2.2 has turned out to be the longest section, by far, in
The Art of Computer Programming. The SAT problem is evidently a killer app,
because it is key to the solution of so many other problems. Consequently I can
only hope that my lengthy treatment does not also kill off my faithful readers!
As I wrote this material, one topic always seemed to flow naturally into another,
so there was no neat way to break this section up into separate subsections.
(And anyway the format of TAOCP doesn’t allow for a Section 7.2.2.2.1.)

I’ve tried to ameliorate the reader’s navigation problem by adding sub-
headings at the top of each right-hand page. Furthermore, as in other sections,
the exercises appear in an order that roughly parallels the order in which corre-
sponding topics are taken up in the text. Numerous cross-references are provided

iii



iv PREFACE

between text, exercises, and illustrations, so that you have a fairly good chance of
keeping in sync. I’ve also tried to make the index as comprehensive as possible.

Look, for example, at a “random” page — say page 80, which is part of
the subsection about Monte Carlo algorithms. On that page you’ll see that
exercises 302, 303, 299, and 306 are mentioned. So you can guess that the main
exercises about Monte Carlo algorithms are numbered in the early 300s. (Indeed,
exercise 306 deals with the important special case of “Las Vegas algorithms”; and
the next exercises explore a fascinating concept called “reluctant doubling.”) This
entire section is full of surprises and tie-ins to other aspects of computer science.

Satisfiability is important chiefly because Boolean algebra is so versatile.
Almost any problem can be formulated in terms of basic logical operations,
and the formulation is particularly simple in a great many cases. Section 7.2.2.2
begins with ten typical examples of widely different applications, and closes with
detailed empirical results for a hundred different benchmarks. The great variety
of these problems — all of which are special cases of SAT — is illustrated on pages
116 and 117 (which are my favorite pages in this book).

The story of satisfiability is the tale of a triumph of software engineering,
blended with rich doses of beautiful mathematics. Thanks to elegant new data
structures and other techniques, modern SAT solvers are able to deal routinely
with practical problems that involve many thousands of variables, although such
problems were regarded as hopeless just a few years ago.

Section 7.2.2.2 explains how such a miracle occurred, by presenting com-
plete details of seven SAT solvers, ranging from the small-footprint methods of
Algorithms A and B to the state-of-the-art methods in Algorithms W, L, and C.
(Well I have to hedge a little: New techniques are continually being discovered,
hence SAT technology is ever-growing and the story is ongoing. But I do think
that Algorithms W, L, and C compare reasonably well with the best algorithms
of their class that were known in 2010. They’re no longer at the cutting edge,
but they still are amazingly good.)

Although this fascicle contains more than 300 pages, I constantly had to
“cut, cut, cut,” because a great deal more is known. While writing the material
I found that new and potentially interesting-yet-unexplored topics kept popping
up, more than enough to fill a lifetime. Yet I knew that I must move on. So I
hope that I’ve selected for treatment here a significant fraction of the concepts
that will prove to be the most important as time passes.

I wrote more than three hundred computer programs while preparing this
material, because I find that I don’t understand things unless I try to program
them. Most of those programs were quite short, of course; but several of them
are rather substantial, and possibly of interest to others. Therefore I’ve made a
selection available by listing some of them on the following webpage:

http://www-cs-faculty.stanford.edu/~knuth/programs.html

You can also download SATexamples.tgz from that page; it’s a collection of
programs that generate data for all 100 of the benchmark examples discussed in
the text, and many more.

http://www-cs-faculty.stanford.edu/~knuth/programs.html


PREFACE v

Special thanks are due to Armin Biere, Randy Bryant, Sam Buss, Niklas
Eén, Ian Gent, Marijn Heule, Holger Hoos, Svante Janson, Peter Jeavons, Daniel
Kroening, Oliver Kullmann, Massimo Lauria, Wes Pegden, Will Shortz, Carsten
Sinz, Niklas Sörensson, Udo Wermuth, and Ryan Williams for their detailed
comments on my early attempts at exposition, as well as to dozens and dozens
of other correspondents who have contributed crucial corrections. Thanks also to
Stanford’s Information Systems Laboratory for providing extra computer power
when my laptop machine was inadequate.

I happily offer a “finder’s fee” of $2.56 for each error in this draft when it is
first reported to me, whether that error be typographical, technical, or historical.
The same reward holds for items that I forgot to put in the index. And valuable
suggestions for improvements to the text are worth 32/c each. (Furthermore, if
you find a better solution to an exercise, I’ll actually do my best to give you
immortal glory, by publishing your name in the eventual book:−)

Volume 4B will begin with a special tutorial and review of probability
theory, in an unnumbered section entitled “Mathematical Preliminaries Redux.”
References to its equations and exercises use the abbreviation ‘MPR’. (Think of
the word “improvement.”) A preliminary version of that section can be found
online, via the following compressed PostScript file:

http://www-cs-faculty.stanford.edu/~knuth/fasc5a.ps.gz

The illustrations in this fascicle currently begin with ‘Fig. 33’ and run
through ‘Fig. 56’. Those numbers will change, eventually, but I won’t know
the final numbers until fascicle 5 has been completed.

Cross references to yet-unwritten material sometimes appear as ‘00’; this
impossible value is a placeholder for the actual numbers to be supplied later.

Happy reading!

Stanford, California D. E. K.
23 September 2015

http://www-cs-faculty.stanford.edu/~knuth/fasc5a.ps.gz
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A note on notation. Several formulas in this booklet use the notation ⟨xyz⟩ for
the median function, which is discussed extensively in Section 7.1.1. Other for-
mulas use the notation x .−y for the monus function (aka dot-minus or saturating
subtraction), which was defined in Section 1.3.1́ . Hexadecimal constants are
preceded by a number sign or hash mark: #123 means (123)16.

If you run across other notations that appear strange, please look under the
heading ‘Notational conventions’ in the index to the present fascicle, and/or at
the Index to Notations at the end of Volume 4A (it is Appendix B on pages
822–827). Volume 4B will, of course, have its own Appendix B some day.

A note on references. References to IEEE Transactions include a letter code
for the type of transactions, in boldface preceding the volume number. For
example, ‘IEEE Trans. C-35’ means the IEEE Transactions on Computers,
volume 35. The IEEE no longer uses these convenient letter codes, but the
codes aren’t too hard to decipher: ‘EC’ once stood for “Electronic Computers,”
‘IT’ for “Information Theory,” ‘SE’ for “Software Engineering,” and ‘SP’ for
“Signal Processing,” etc.; ‘CAD’ meant “Computer-Aided Design of Integrated
Circuits and Systems.”

Other common abbreviations used in references appear on page x of Vol-
ume 1, or in the index below.
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An external exercise. Here’s an exercise for Section 7.2.2.1 that I plan to put
eventually into fascicle 5:
00. [20 ] The problem of Langford pairs on {1, 1, . . . , n, n} can be represented as an
exact cover problem using columns {d1, . . . , dn}∪{s1, . . . , s2n}; the rows are di sj sk for
1 ≤ i ≤ n and 1 ≤ j < k ≤ 2n and k = i+j+1, meaning “put digit i into slots j and k.”

However, that construction essentially gives us every solution twice, because the
left-right reversal of any solution is also a solution. Modify it so that we get only half
as many solutions; the others will be the reversals of these.

And here’s its cryptic answer (needed in exercise 7.2.2.2–13):
00. Omit the rows with i = n− [n even] and j > n/2.

(Other solutions are possible. For example, we could omit the rows with i = 1 and
j ≥ n; that would omit n− 1 rows instead of only ⌊n/2⌋. However, the suggested rule
turns out to make the dancing links algorithm run about 10% faster.)

Now I saw, tho’ too late, the Folly of
beginning a Work before we count the Cost,

and before we judge rightly of our own Strength to go through with it.
— DANIEL DEFOE, Robinson Crusoe (1719)
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7.2.2.2 SATISFIABILITY 1

He reaps no satisfaction but from low and sensual objects,
or from the indulgence of malignant passions.

— DAVID HUME, The Sceptic (1742)

I can’t get no . . .

— MICK JAGGER and KEITH RICHARDS, Satisfaction (1965)

7.2.2.2. Satisfiability. We turn now to one of the most fundamental problems
of computer science: Given a Boolean formula F (x1, . . . , xn), expressed in so-
called “conjunctive normal form” as an AND of ORs, can we “satisfy” F by
assigning values to its variables in such a way that F (x1, . . . , xn) = 1? For
example, the formula

F (x1, x2, x3) = (x1 ∨ x̄2) ∧ (x2 ∨ x3) ∧ (x̄1 ∨ x̄3) ∧ (x̄1 ∨ x̄2 ∨ x3) (1)

is satisfied when x1x2x3 = 001. But if we rule that solution out, by defining

G(x1, x2, x3) = F (x1, x2, x3) ∧ (x1 ∨ x2 ∨ x̄3), (2)

then G is unsatisfiable: It has no satisfying assignment.
Section 7.1.1 discussed the embarrassing fact that nobody has ever been

able to come up with an efficient algorithm to solve the general satisfiability
problem, in the sense that the satisfiability of any given formula of size N could
be decided inNO(1) steps. Indeed, the famous unsolved question “does P = NP?”
is equivalent to asking whether such an algorithm exists. We will see in Section
7.9 that satisfiability is a natural progenitor of every NP-complete problem.*

On the other hand enormous technical breakthroughs in recent years have
led to amazingly good ways to approach the satisfiability problem. We now
have algorithms that are much more efficient than anyone had dared to believe
possible before the year 2000. These so-called “SAT solvers” are able to handle
industrial-strength problems, involving millions of variables, with relative ease,
and they’ve had a profound impact on many areas of research such as computer-
aided verification. In this section we shall study the principles that underlie
modern SAT-solving procedures.

* At the present time very few people believe that P = NP [see SIGACT News 43, 2 (June
2012), 53–77]. In other words, almost everybody who has studied the subject thinks that
satisfiability cannot be decided in polynomial time. The author of this book, however, suspects
that NO(1)-step algorithms do exist, yet that they’re unknowable. Almost all polynomial time
algorithms are so complicated that they lie beyond human comprehension, and could never be
programmed for an actual computer in the real world. Existence is different from embodiment.



2 COMBINATORIAL SEARCHING (F6) 7.2.2.2

To begin, let’s define the problem carefully and simplify the notation, so
that our discussion will be as efficient as the algorithms that we’ll be considering.
Throughout this section we shall deal with variables, which are elements of any
convenient set. Variables are often denoted by x1, x2, x3, . . . , as in (1); but any
other symbols can also be used, like a, b, c, or even d′′′

74. We will in fact often use
the numerals 1, 2, 3, . . . to stand for variables; and in many cases we’ll find it
convenient to write just j instead of xj , because it takes less time and less space
if we don’t have to write so many x’s. Thus ‘2’ and ‘x2’ will mean the same
thing in many of the discussions below.

A literal is either a variable or the complement of a variable. In other words,
if v is a variable, both v and v̄ are literals. If there are n possible variables in
some problem, there are 2n possible literals. If l is the literal x̄2, which is also
written 2̄, then the complement of l, l̄, is x2, which is also written 2.

The variable that corresponds to a literal l is denoted by |l|; thus we have
|v| = |v̄| = v for every variable v. Sometimes we write ±v for a literal that is
either v or v̄. We might also denote such a literal by σv, where σ is ±1. The
literal l is called positive if |l| = l; otherwise |l| = l̄, and l is said to be negative.

Two literals l and l′ are distinct if l ̸= l′. They are strictly distinct if |l| ̸= |l′|.
A set of literals {l1, . . . , lk} is strictly distinct if |li| ̸= |lj | for 1 ≤ i < j ≤ k.

The satisfiability problem, like all good problems, can be understood in many
equivalent ways, and we will find it convenient to switch from one viewpoint to
another as we deal with different aspects of the problem. Example (1) is an AND
of clauses, where every clause is an OR of literals; but we might as well regard
every clause as simply a set of literals, and a formula as a set of clauses. With
that simplification, and with ‘xj ’ identical to ‘j’, Eq. (1) becomes

F =
{
{1, 2̄}, {2, 3}, {1̄, 3̄}, {1̄, 2̄, 3}

}
.

And we needn’t bother to represent the clauses with braces and commas either;
we can simply write out the literals of each clause. With that shorthand we’re
able to perceive the real essence of (1) and (2):

F = {12̄, 23, 1̄3̄, 1̄2̄3}, G = F ∪ {123̄}. (3)

Here F is a set of four clauses, and G is a set of five.
In this guise, the satisfiability problem is equivalent to a covering problem,

analogous to the exact cover problems that we considered in Section 7.2.2.1: Let

Tn =
{
{x1, x̄1}, {x2, x̄2}, . . . , {xn, x̄n}

}
= {11̄, 22̄, . . . , nn̄}. (4)

“Given a set F = {C1, . . . , Cm}, where each Ci is a clause and each clause
consists of literals based on the variables {x1, . . . , xn}, find a set L of n literals
that ‘covers’ F ∪Tn, in the sense that every clause contains at least one element
of L.” For example, the set F in (3) is covered by L = {1̄, 2̄, 3}, and so is the set
T3; hence F is satisfiable. The set G is covered by {1, 1̄, 2} or {1, 1̄, 3} or · · · or
{2̄, 3, 3̄}, but not by any three literals that also cover T3; so G is unsatisfiable.

Similarly, a family F of clauses is satisfiable if and only if it can be covered
by a set L of strictly distinct literals.



7.2.2.2 SATISFIABILITY 3

If F ′ is any formula obtained from F by complementing one or more vari-
ables, it’s clear that F ′ is satisfiable if and only if F is satisfiable. For example,
if we replace 1 by 1̄ and 2 by 2̄ in (3) we obtain

F ′ = {1̄2, 2̄3, 13̄, 123}, G′ = F ′ ∪ {1̄2̄3̄}.

In this case F ′ is trivially satisfiable, because each of its clauses contains a
positive literal: Every such formula is satisfied by simply letting L be the set of
positive literals. Thus the satisfiability problem is the same as the problem of
switching signs (or “polarities”) so that no all-negative clauses remain.

Another problem equivalent to satisfiability is obtained by going back to the
Boolean interpretation in (1) and complementing both sides of the equation. By
De Morgan’s laws 7.1.1–(11) and (12) we have

F (x1, x2, x3) = (x̄1 ∧ x2) ∨ (x̄2 ∧ x̄3) ∨ (x1 ∧ x3) ∨ (x1 ∧ x2 ∧ x̄3); (5)

and F is unsatisfiable⇐⇒ F = 0⇐⇒ F = 1⇐⇒ F is a tautology. Consequently
F is satisfiable if and only if F is not a tautology: The tautology problem and
the satisfiability problem are essentially the same.*

Since the satisfiability problem is so important, we simply call it SAT. And
instances of the problem such as (1), in which there are no clauses of length
greater than 3, are called 3SAT. In general, kSAT is the satisfiability problem
restricted to instances where no clause has more than k literals.

Clauses of length 1 are called unit clauses, or unary clauses. Binary clauses,
similarly, have length 2; then come ternary clauses, quaternary clauses, and so
forth. Going the other way, the empty clause, or nullary clause, has length 0 and
is denoted by ϵ; it is always unsatisfiable. Short clauses are very important in al-
gorithms for SAT, because they are easier to deal with than long clauses. But long
clauses aren’t necessarily bad; they’re much easier to satisfy than the short ones.

A slight technicality arises when we consider clause length: The binary
clause (x1 ∨ x̄2) in (1) is equivalent to the ternary clause (x1 ∨ x1 ∨ x̄2) as well
as to (x1 ∨ x̄2 ∨ x̄2) and to longer clauses such as (x1 ∨ x1 ∨ x1 ∨ x̄2); so we can
regard it as a clause of any length ≥ 2. But when we think of clauses as sets
of literals rather than ORs of literals, we usually rule out multisets such as 112̄
or 12̄2̄ that aren’t sets; in that sense a binary clause is not a special case of a
ternary clause. On the other hand, every binary clause (x ∨ y) is equivalent to
two ternary clauses, (x ∨ y ∨ z) ∧ (x ∨ y ∨ z̄), if z is another variable; and every
k-ary clause is equivalent to two (k + 1)-ary clauses. Therefore we can assume,
if we like, that kSAT deals only with clauses whose length is exactly k.

A clause is tautological (always satisfied) if it contains both v and v̄ for some
variable v. Tautological clauses can be denoted by ℘ (see exercise 7.1.4–222).
They never affect a satisfiability problem; so we usually assume that the clauses
input to a SAT-solving algorithm consist of strictly distinct literals.

When we discussed the 3SAT problem briefly in Section 7.1.1, we took a
look at formula 7.1.1–(32), “the shortest interesting formula in 3CNF.” In our

* Strictly speaking, TAUT is coNP-complete, while SAT is NP-complete; see Section 7.9.
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new shorthand, it consists of the following eight unsatisfiable clauses:
R = {123̄, 234̄, 341, 41̄2, 1̄2̄3, 2̄3̄4, 3̄4̄1̄, 4̄12̄}. (6)

This set makes an excellent little test case, so we will refer to it frequently below.
(The letter R reminds us that it is based on R. L. Rivest’s associative block design
6.5–(13).) The first seven clauses of R, namely

R′ = {123̄, 234̄, 341, 41̄2, 1̄2̄3, 2̄3̄4, 3̄4̄1̄}, (7)
also make nice test data; they are satisfied only by choosing the complements of
the literals in the omitted clause, namely {4, 1̄, 2}. More precisely, the literals
4, 1̄, and 2 are necessary and sufficient to cover R′; we can also include either 3
or 3̄ in the solution. Notice that (6) is symmetric under the cyclic permutation
1 → 2 → 3 → 4 → 1̄ → 2̄ → 3̄ → 4̄ → 1 of literals; thus, omitting any clause
of (6) gives a satisfiability problem equivalent to (7).
A simple example. SAT solvers are important because an enormous variety
of problems can readily be formulated Booleanwise as ANDs of ORs. Let’s begin
with a little puzzle that leads to an instructive family of example problems:
Find a binary sequence x1 . . . x8 that has no three equally spaced 0s and no
three equally spaced 1s. For example, the sequence 01001011 almost works; but
it doesn’t qualify, because x2, x5, and x8 are equally spaced 1s.

If we try to solve this puzzle by backtracking manually through all 8-bit
sequences in lexicographic order, we see that x1x2 = 00 forces x3 = 1. Then
x1x2x3x4x5x6x7 = 0010011 leaves us with no choice for x8. A minute or two of
further hand calculation reveals that the puzzle has just six solutions, namely

00110011, 01011010, 01100110, 10011001, 10100101, 11001100. (8)
Furthermore it’s easy to see that none of these solutions can be extended to a
suitable binary sequence of length 9. We conclude that every binary sequence
x1 . . . x9 contains three equally spaced 0s or three equally spaced 1s.

Notice now that the condition x2x5x8 ̸= 111 is the same as the Boolean
clause (x̄2 ∨ x̄5 ∨ x̄8), namely 2̄5̄8̄. Similarly x2x5x8 ̸= 000 is the same as 258.
So we have just verified that the following 32 clauses are unsatisfiable:

123, 234, . . . , 789, 135, 246, . . . , 579, 147, 258, 369, 159,
1̄2̄3̄, 2̄3̄4̄, . . . , 7̄8̄9̄, 1̄3̄5̄, 2̄4̄6̄, . . . , 5̄7̄9̄, 1̄4̄7̄, 2̄5̄8̄, 3̄6̄9̄, 1̄5̄9̄. (9)

This result is a special case of a general fact that holds for any given positive
integers j and k: If n is sufficiently large, every binary sequence x1 . . . xn contains
either j equally spaced 0s or k equally spaced 1s. The smallest such n is denoted
by W (j, k) in honor of B. L. van der Waerden, who proved an even more general
result (see exercise 2.3.4.3–6): If n is sufficiently large, and if k0, . . . , kb−1 are
positive integers, every b-ary sequence x1 . . . xn contains ka equally spaced a’s
for some digit a, 0 ≤ a < b. The least such n is W (k0, . . . , kb−1).

Let us accordingly define the following set of clauses when j, k, n > 0:
waerden(j, k;n) =

{
(xi ∨ xi+d ∨ · · · ∨ xi+(j−1)d)

⏐⏐ 1 ≤ i ≤ n− (j−1)d, d ≥ 1
}

∪
{

(x̄i ∨ x̄i+d ∨ · · · ∨ x̄i+(k−1)d)
⏐⏐ 1 ≤ i ≤ n− (k−1)d, d ≥ 1

}
. (10)
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The 32 clauses in (9) are waerden(3, 3; 9); and in general waerden(j, k;n) is an
appealing instance of SAT, satisfiable if and only if n < W (j, k).

It’s obvious that W(1, k) = k and W(2, k) = 2k− [k even]; but when j and k
exceed 2 the numbers W(j, k) are quite mysterious. We’ve seen that W (3, 3) = 9,
and the following nontrivial values are currently known:

k = 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
W(3, k) = 9 18 22 32 46 58 77 97 114 135 160 186 218 238 279 312 349
W(4, k) = 18 35 55 73 109 146 309 ? ? ? ? ? ? ? ? ? ?

W(5, k) = 22 55 178 206 260 ? ? ? ? ? ? ? ? ? ? ? ?

W(6, k) = 32 73 206 1132 ? ? ? ? ? ? ? ? ? ? ? ? ?

V. Chvátal inaugurated the study ofW(j, k) by computing the values for j+k ≤ 9
as well as W(3, 7) [Combinatorial Structures and Their Applications (1970), 31–
33]. Most of the large values in this table have been calculated by state-of-the-art
SAT solvers [see M. Kouril and J. L. Paul, Experimental Math. 17 (2008), 53–
61; M. Kouril, Integers 12 (2012), A46:1–A46:13]. The table entries for j = 3
suggest that we might have W(3, k) < k2 when k > 4, but that isn’t true: SAT
solvers have also been used to establish the lower bounds

k = 20 21 22 23 24 25 26 27 28 29 30
W(3, k) ≥ 389 416 464 516 593 656 727 770 827 868 903

(which might in fact be the true values for this range of k); see T. Ahmed,
O. Kullmann, and H. Snevily [Discrete Applied Math. 174 (2014), 27–51].

Notice that the literals in every clause of waerden(j, k;n) have the same
sign: They’re either all positive or all negative. Does this “monotonic” property
make the SAT problem any easier? Unfortunately, no: Exercise 10 proves that
any set of clauses can be converted to an equivalent set of monotonic clauses.
Exact covering. The exact cover problems that we solved with “dancing links”
in Section 7.2.2.1 can easily be reformulated as instances of SAT and handed off
to SAT solvers. For example, let’s look again at Langford pairs, the task of
placing two 1s, two 2s, . . . , two n’s into 2n slots so that exactly k slots intervene
between the two appearances of k, for each k. The corresponding exact cover
problem when n = 3 has nine columns and eight rows (see 7.2.2.1–(00)):

d1 s1 s3, d1 s2 s4, d1 s3 s5, d1 s4 s6, d2 s1 s4, d2 s2 s5, d2 s3 s6, d3 s1 s5. (11)
The columns are di for 1 ≤ i ≤ 3 and sj for 1 ≤ j ≤ 6; the row ‘di sj sk’ means
that digit i is placed in slots j and k. Left-right symmetry allows us to omit the
row ‘d3 s2 s6’ from this specification.

We want to select rows of (11) so that each column appears just once. Let
the Boolean variable xj mean ‘select row j’, for 1 ≤ j ≤ 8; the problem is then
to satisfy the nine constraints

S1(x1, x2, x3, x4) ∧ S1(x5, x6, x7) ∧ S1(x8)
∧ S1(x1, x5, x8) ∧ S1(x2, x6) ∧ S1(x1, x3, x7)

∧ S1(x2, x4, x5) ∧ S1(x3, x6, x8) ∧ S1(x4, x7), (12)
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one for each column. (Here, as usual, S1(y1, . . . , yp) denotes the symmetric
function [y1 + · · ·+ yp = 1].) For example, we must have x5 + x6 + x7 = 1,
because column d2 appears in rows 5, 6, and 7 of (11).

One of the simplest ways to express the symmetric Boolean function S1 as
an AND of ORs is to use 1 +

(
p
2
)

clauses:

S1(y1, . . . , yp) = (y1 ∨ · · · ∨ yp) ∧
⋀

1≤j<k≤p

(ȳj ∨ ȳk). (13)

“At least one of the y’s is true, but not two.” Then (12) becomes, in shorthand,

{1234, 1̄2̄, 1̄3̄, 1̄4̄, 2̄3̄, 2̄4̄, 3̄4̄, 567, 5̄6̄, 5̄7̄, 6̄7̄, 8,
158, 1̄5̄, 1̄8̄, 5̄8̄, 26, 2̄6̄, 137, 1̄3̄, 1̄7̄, 3̄7̄,

245, 2̄4̄, 2̄5̄, 4̄5̄, 368, 3̄6̄, 3̄8̄, 6̄8̄, 47, 4̄7̄}; (14)

we shall call these clauses langford (3). (Notice that only 30 of them are actually
distinct, because 1̄3̄ and 2̄4̄ appear twice.) Exercise 13 defines langford (n); we
know from exercise 7–1 that langford (n) is satisfiable ⇐⇒ nmod 4 = 0 or 3.

The unary clause 8 in (14) tells us immediately that x8 = 1. Then from the
binary clauses 1̄8̄, 5̄8̄, 3̄8̄, 6̄8̄ we have x1 = x5 = x3 = x6 = 0. The ternary clause
137 then implies x7 = 1; finally x4 = 0 (from 4̄7̄) and x2 = 1 (from 1234). Rows
8, 7, and 2 of (11) now give us the desired Langford pairing 3 1 2 1 3 2.

Incidentally, the function S1(y1, y2, y3, y4, y5) can also be expressed as

(y1 ∨ y2 ∨ y3 ∨ y4 ∨ y5) ∧ (ȳ1∨ ȳ2) ∧ (ȳ1∨ ȳ3) ∧ (ȳ1∨ t̄)
∧ (ȳ2∨ ȳ3) ∧ (ȳ2∨ t̄) ∧ (ȳ3∨ t̄) ∧ (t∨ ȳ4) ∧ (t∨ ȳ5) ∧ (ȳ4∨ ȳ5),

where t is a new variable. In general, if p gets big, it’s possible to express
S1(y1, . . . , yp) with only 3p−5 clauses instead of

(
p
2
)
+1, by using ⌊(p−3)/2⌋ new

variables as explained in exercise 12. When this alternative encoding is used to
represent Langford pairs of order n, we’ll call the resulting clauses langford ′(n).

Do SAT solvers do a better job with the clauses langford (n) or langford ′(n)?
Stay tuned: We’ll find out later.

Coloring a graph. The classical problem of coloring a graph with at most d
colors is another rich source of benchmark examples for SAT solvers. If the graph
has n vertices V , we can introduce nd variables vj , for v ∈ V and 1 ≤ j ≤ d,
signifying that v has color j; the resulting clauses are quite simple:

(v1 ∨ v2 ∨ · · · ∨ vd) for v ∈ V (“every vertex has at least one color”); (15)
(ūj ∨ v̄j) for u−−−v, 1 ≤ j ≤ d (“adjacent vertices have different colors”). (16)

We could also add n
(
d
2
)

additional so-called exclusion clauses

(v̄i ∨ v̄j) for v ∈V , 1≤ i< j≤ d (“every vertex has at most one color”); (17)

but they’re optional, because vertices with more than one color are harmless.
Indeed, if we find a solution with v1 = v2 = 1, we’ll be extra happy, because it
gives us two legal ways to color vertex v. (See exercise 14.)
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Fig. 33. The McGregor graph
of order 10. Each region of this
“map” is identified by a two-
digit hexadecimal code. Can you
color the regions with four colors,
never using the same color for
two adjacent regions?

00 01 02 03 04 05 06 07 08 09

11 12 13 14 15 16 17 18 19

22 23 24 25 26 27 28 29

33 34 35 36 37 38 39

44 45 46 47 48 49

55 56 57 58 59

66 67 68 69

77 78 79

88 89

99

20 21

30 31 32

40 41 42 43

50 51 52 53 54

60 61 62 63 64 65

70 71 72 73 74 75 76

80 81 82 83 84 85 86 87

90 91 92 93 94 95 96 97 98

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

10

Martin Gardner astonished the world in 1975 when he reported [Scientific
American 232, 4 (April 1975), 126–130] that a proper coloring of the planar
map in Fig. 33 requires five distinct colors, thereby disproving the longstanding
four-color conjecture. (In that same column he also cited several other “facts”
supposedly discovered in 1974: (i) eπ

√
163 is an integer; (ii) pawn-to-king-rook-4

(‘h4’) is a winning first move in chess; (iii) the theory of special relativity is
fatally flawed; (iv) Leonardo da Vinci invented the flush toilet; and (v) Robert
Ripoff devised a motor that is powered entirely by psychic energy. Thousands
of readers failed to notice that they had been April Fooled!)

The map in Fig. 33 actually can be 4-colored; you are hereby challenged to
discover a suitable way to do this, before turning to the answer of exercise 18.
Indeed, the four-color conjecture became the Four Color Theorem in 1976, as
mentioned in Section 7. Fortunately that result was still unknown in April of
1975; otherwise this interesting graph would probably never have appeared in
print. McGregor’s graph has 110 vertices (regions) and 324 edges (adjacencies
between regions); hence (15) and (16) yield 110 + 1296 = 1406 clauses on 440
variables, which a modern SAT solver can polish off quickly.

We can also go much further and solve problems that would be extremely
difficult by hand. For example, we can add constraints to limit the number of
regions that receive a particular color. Randal Bryant exploited this idea in 2010
to discover that there’s a four-coloring of Fig. 33 that uses one of the colors only
7 times (see exercise 17). His coloring is, in fact, unique, and it leads to an
explicit way to 4-color the McGregor graphs of all orders n ≥ 3 (exercise 18).

Such additional constraints can be generated in many ways. We could,
for instance, append

(110
8
)

clauses, one for every choice of 8 regions, specifying
that those 8 regions aren’t all colored 1. But no, we’d better scratch that idea:(110

8
)

= 409,705,619,895. Even if we restricted ourselves to the 74,792,876,790
sets of 8 regions that are independent, we’d be dealing with far too many clauses.
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An interesting SAT-oriented way to ensure that x1 + · · · + xn is at most r,
which works well when n and r are rather large, was found by C. Sinz [LNCS
3709 (2005), 827–831]. His method introduces (n − r)r new variables skj for
1 ≤ j ≤ n− r and 1 ≤ k ≤ r. If F is any satisfiability problem and if we add the
(n− r − 1)r + (n− r)(r + 1) clauses

(s̄kj ∨ skj+1), for 1 ≤ j < n− r and 1 ≤ k ≤ r, (18)
(x̄j+k ∨ s̄kj ∨ s

k+1
j ), for 1 ≤ j ≤ n− r and 0 ≤ k ≤ r, (19)

where s̄kj is omitted when k = 0 and sk+1
j is omitted when k = r, then the new set

of clauses is satisfiable if and only ifF is satisfiable with x1+· · ·+xn ≤ r. (See ex-
ercise 26.) With this scheme we can limit the number of red-colored regions of
McGregor’s graph to at most 7 by appending 1538 clauses in 721 new variables.

Another way to achieve the same goal, which turns out to be even better,
has been proposed by O. Bailleux and Y. Boufkhad [LNCS 2833 (2003), 108–
122]. Their method is a bit more difficult to describe, but still easy to implement:
Consider a complete binary tree that has n−1 internal nodes numbered 1 through
n − 1, and n leaves numbered n through 2n − 1; the children of node k, for
1 ≤ k < n, are nodes 2k and 2k+1 (see 2.3.4.5–(5)). We form new variables bkj for
1 < k < n and 1 ≤ j ≤ tk, where tk is the minimum of r and the number of leaves
below node k. Then the following clauses, explained in exercise 27, do the job:

(b̄2k
i ∨ b̄

2k+1
j ∨ bki+j), for 0≤ i≤ t2k, 0≤ j≤ t2k+1, 1≤ i+j≤ tk+1, 1<k<n; (20)

(b̄2
i ∨ b̄3

j ), for 0≤ i≤ t2, 0≤ j≤ t3, i+ j= r + 1. (21)

In these formulas we let tk = 1 and bk1 = xk−n+1 for n ≤ k < 2n; all literals b̄k0
and bkr+1 are to be omitted. Applying (20) and (21) to McGregor’s graph, with
n = 110 and r = 7, yields just 1216 new clauses in 399 new variables.

The same ideas apply when we want to ensure that x1 + · · ·+xn is at least r,
because of the identity S≥r(x1, . . . , xn) = S≤n−r(x̄1, . . . , x̄n). And exercise 30
considers the case of equality, when our goal is to make x1 + · · ·+ xn = r. We’ll
discuss other encodings of such cardinality constraints below.

Factoring integers. Next on our agenda is a family of SAT instances with quite
a different flavor. Given an (m + n)-bit binary integer z = (zm+n . . . z2z1)2, do
there exist integers x = (xm . . . x1)2 and y = (yn . . . y1)2 such that z = x × y?
For example, if m = 2 and n = 3, we want to invert the binary multiplication

y3 y2 y1
× x2x1
a3 a2 a1

b3 b2 b1
c3 c2 c1
z5 z4 z3 z2 z1

(a3a2a1)2 = (y3y2y1)2 × x1
(b3 b2 b1)2 = (y3y2y1)2 × x2

z1 = a1
(c1z2)2 = a2 + b1
(c2z3)2 = a3 + b2 + c1
(c3z4)2 = b3 + c2

z5 = c3

(22)

when the z bits are given. This problem is satisfiable when z = 21 = (10101)2,
in the sense that suitable binary values x1, x2, y1, y2, y3, a1, a2, a3, b1, b2, b3, c1,
c2, c3 do satisfy these equations. But it’s unsatisfiable when z = 19 = (10011)2.
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Arithmetical calculations like (22) are easily expressed in terms of clauses
that can be fed to a SAT solver: We first specify the computation by constructing
a Boolean chain, then we encode each step of the chain in terms of a few clauses.
One such chain, if we identify a1 with z1 and c3 with z5, is
z1←x1∧y1,

a2←x1∧y2,

a3←x1∧y3,

b1←x2∧y1,

b2←x2∧y2,

b3←x2∧y3,

z2←a2⊕b1,

c1←a2∧b1,

s←a3⊕b2,

p←a3∧b2,

z3←s⊕c1,

q←s∧c1,

c2←p∨q,

z4←b3⊕c2,

z5←b3∧c2,

(23)

using a “full adder” to compute c2z3 and “half adders” to compute c1z2 and c3z4
(see 7.1.2–(23) and (24)). And that chain is equivalent to the 49 clauses

(x1∨z̄1)∧(y1∨z̄1)∧(x̄1∨ȳ1∨z1)∧· · ·∧(b̄3∨c̄2∨z̄4)∧(b3∨z̄5)∧(c2∨z̄5)∧(b̄3∨c̄2∨z5)

obtained by expanding the elementary computations according to simple rules:

t← u ∧ v becomes (u ∨ t̄) ∧ (v ∨ t̄) ∧ (ū ∨ v̄ ∨ t);
t← u ∨ v becomes (ū ∨ t) ∧ (v̄ ∨ t) ∧ (u ∨ v ∨ t̄);
t← u⊕ v becomes (ū ∨ v ∨ t) ∧ (u ∨ v̄ ∨ t) ∧ (u ∨ v ∨ t̄) ∧ (ū ∨ v̄ ∨ t̄).

(24)

To complete the specification of this factoring problem when, say, z = (10101)2,
we simply append the unary clauses (z5) ∧ (z̄4) ∧ (z3) ∧ (z̄2) ∧ (z1).

Logicians have known for a long time that computational steps can readily
be expressed as conjunctions of clauses. Rules such as (24) are now called Tseytin
encoding, after Gregory Tseytin (1966). Our representation of a small five-bit
factorization problem in 49+5 clauses may not seem very efficient; but we will see
shortly that m-bit by n-bit factorization corresponds to a satisfiability problem
with fewer than 6mn variables, and fewer than 20mn clauses of length 3 or less.

Even if the system has hundreds or thousands of formulas,
it can be put into conjunctive normal form “piece by piece,”

without any “multiplying out.”
— MARTIN DAVIS and HILARY PUTNAM (1958)

Suppose m ≤ n. The easiest way to set up Boolean chains for multiplication
is probably to use a scheme that goes back to John Napier’s Rabdologiæ (Edin-
burgh, 1617), pages 137–143, as modernized by Luigi Dadda [Alta Frequenza
34 (1964), 349–356]: First we form all mn products xi ∧ yj , putting every such
bit into bin [i + j], which is one of m + n “bins” that hold bits to be added
for a particular power of 2 in the binary number system. The bins will contain
respectively (0, 1, 2, . . . , m, m, . . . , m, . . . , 2, 1) bits at this point, with n−m+1
occurrences of “m” in the middle. Now we look at bin [k] for k = 2, 3, . . . . If
bin [k] contains a single bit b, we simply set zk−1 ← b. If it contains two bits
{b, b′}, we use a half adder to compute zk−1 ← b⊕ b′, c← b∧ b′, and we put the
carry bit c into bin [k + 1]. Otherwise bin [k] contains t ≥ 3 bits; we choose any
three of them, say {b, b′, b′′}, and remove them from the bin. With a full adder we
then compute r ← b⊕b′⊕b′′ and c← ⟨bb′b′′⟩, so that b+b′ +b′′ = r+2c; and we
put r into bin [k], c into bin [k+1]. This decreases t by 2, so eventually we will have
computed zk−1. Exercise 41 quantifies the exact amount of calculation involved.
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This method of encoding multiplication into clauses is quite flexible, since
we’re allowed to choose any three bits from bin [k] whenever four or more bits are
present. We could use a first-in-first-out strategy, always selecting bits from the
“rear” and placing their sum at the “front”; or we could work last-in-first-out,
essentially treating bin [k] as a stack instead of a queue. We could also select
the bits randomly, to see if this makes our SAT solver any happier. Later in this
section we’ll refer to the clauses that represent the factoring problem by calling
them factor fifo(m,n, z), factor lifo(m,n, z), or factor rand (m,n, z, s), respec-
tively, where s is a seed for the random number generator used to generate them.

It’s somewhat mind-boggling to realize that numbers can be factored without
using any number theory! No greatest common divisors, no applications of
Fermat’s theorems, etc., are anywhere in sight. We’re providing no hints to
the solver except for a bunch of Boolean formulas that operate almost blindly
at the bit level. Yet factors are found.

Of course we can’t expect this method to compete with the sophisticated
factorization algorithms of Section 4.5.4. But the problem of factoring does dem-
onstrate the great versatility of clauses. And its clauses can be combined with
other constraints that go well beyond any of the problems we’ve studied before.

Fault testing. Lots of things can go wrong when computer chips are manufac-
tured in the “real world,” so engineers have long been interested in constructing
test patterns to check the validity of a particular circuit. For example, suppose
that all but one of the logical elements are functioning properly in some chip; the
bad one, however, is stuck: Its output is constant, always the same regardless of
the inputs that it is given. Such a failure is called a single-stuck-at fault.

x1x2y1y2y3

z1z2z3z4z5

z1b1a2b2a3b3

z2c1sp

z3q

c2

z4z5

Fig. 34. A circuit that
corresponds to (23).

Figure 34 illustrates a typical digital circuit in
detail: It implements the 15 Boolean operations
of (23) as a network that produces five output sig-
nals z5z4z3z2z1 from the five inputs y3y2y1x2x1.
In addition to having 15 AND, OR, and XOR gates,
each of which transforms two inputs into one out-
put, it has 15 “fanout” gates (indicated by dots at
junction points), each of which splits one input
into two outputs. As a result it comprises 50
potentially distinct logical signals, one for each
internal “wire.” Exercise 47 shows that a circuit
with m outputs, n inputs, and g conventional 2-
to-1 gates will have g + m − n fanout gates and
3g+ 2m− n wires. A circuit with w wires has 2w
possible single-stuck-at faults, namely w faults in
which the signal on a wire is stuck at 0 and w
more on which it is stuck at 1.

Table 1 shows 101 scenarios that are possible
when the 50 wires of Fig. 34 are activated by one
particular sequence of inputs, assuming that at
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Table 1
SINGLE-STUCK-AT FAULTS IN FIGURE 34 WHEN x2x1 = 11, y3y2y1 = 110

OK x1x1
1x2

1x3
1x4

1x2x1
2x2

2x3
2x4

2y1y1
1 y2

1 y2y1
2 y2

2 y3y1
3 y2

3 z1 a2a1
2a2

2a3a1
3a2

3 b1 b1
1 b2

1 b2 b1
2 b2

2 b3 b1
3 b2

3 z2 c1 c1
1 c2

1 s s1 s2 p z3 q c2 c1
2 c2

2 z4 z5
x1←input 1 00011111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

x1
1←x1 1 01000111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

x2
1←x1 1 01110001111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

x3
1←x1

1 1 01011100011111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

x4
1←x1

1 1 01011111000111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

x2←input 1 11111111110001111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

x1
2←x2 1 11111111110100011111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

x2
2←x2 1 11111111110111000111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

x3
2←x1

2 1 11111111110101110001111111111111111111111111111111111111111111111111111111111111111111111111111111111111

x4
2←x1

2 1 11111111110101111100011111111111111111111111111111111111111111111111111111111111111111111111111111111111

y1←input 0 00000000000000000000000111000000000000000000000000000000000000000000000000000000000000000000000000000000

y1
1←y1 0 00000000000000000000010001110000000000000000000000000000000000000000000000000000000000000000000000000000

y2
1←y1 0 00000000000000000000010000011100000000000000000000000000000000000000000000000000000000000000000000000000

y2←input 1 11111111111111111111111111000111111111111111111111111111111111111111111111111111111111111111111111111111

y1
2←y2 1 11111111111111111111111111010001111111111111111111111111111111111111111111111111111111111111111111111111

y2
2←y2 1 11111111111111111111111111011100011111111111111111111111111111111111111111111111111111111111111111111111

y3←input 1 11111111111111111111111111111111000111111111111111111111111111111111111111111111111111111111111111111111

y1
3←y3 1 11111111111111111111111111111111010001111111111111111111111111111111111111111111111111111111111111111111

y2
3←y3 1 11111111111111111111111111111111011100011111111111111111111111111111111111111111111111111111111111111111

z1←x2
1∧y1

1 0 00000000000000000000010100000000000000000111000000000000000000000000000000000000000000000000000000000000

a2←x3
1∧y1

2 1 01011101111111111111111111010111111111110001111111111111111111111111111111111111111111111111111111111111

a1
2←a2 1 01011101111111111111111111010111111111110100011111111111111111111111111111111111111111111111111111111111

a2
2←a2 1 01011101111111111111111111010111111111110111000111111111111111111111111111111111111111111111111111111111

a3←x4
1∧y1

3 1 01011111011111111111111111111111010111111111110001111111111111111111111111111111111111111111111111111111

a1
3←a3 1 01011111011111111111111111111111010111111111110100011111111111111111111111111111111111111111111111111111

a2
3←a3 1 01011111011111111111111111111111010111111111110111000111111111111111111111111111111111111111111111111111

b1←x2
2∧y2

1 0 00000000000000000000010001000000000000000000000000000001110000000000000000000000000000000000000000000000

b1
1←b1 0 00000000000000000000010001000000000000000000000000000100011100000000000000000000000000000000000000000000

b2
1←b1 0 00000000000000000000010001000000000000000000000000000100000111000000000000000000000000000000000000000000

b2←x3
2∧y2

2 1 11111111110101110111111111011101111111111111111111111111110001111111111111111111111111111111111111111111

b1
2←b2 1 11111111110101110111111111011101111111111111111111111111110100011111111111111111111111111111111111111111

b2
2←b2 1 11111111110101110111111111011101111111111111111111111111110111000111111111111111111111111111111111111111

b3←x4
2∧y2

3 1 11111111110101111101111111111111011101111111111111111111111111110001111111111111111111111111111111111111

b1
3←b3 1 11111111110101111101111111111111011101111111111111111111111111110100011111111111111111111111111111111111

b2
3←b3 1 11111111110101111101111111111111011101111111111111111111111111110111000111111111111111111111111111111111

z2←a1
2⊕b1

1 1 01011101111111111111101110010111111111110101111111111010111111111111110001111111111111111111111111111111

c1←a2
2∧b2

1 0 00000000000000000000010001000000000000000000000000000100010000000000000000011100000000000000000000000000

c1
1←c1 0 00000000000000000000010001000000000000000000000000000100010000000000000001000111000000000000000000000000

c2
1←c1 0 00000000000000000000010001000000000000000000000000000100010000000000000001000001110000000000000000000000

s←a1
3⊕b1

2 0 10100000101010001000000000100010101000000000001010000000001010000000000000000000011100000000000000000000

s1←s 0 10100000101010001000000000100010101000000000001010000000001010000000000000000001000111000000000000000000

s2←s 0 10100000101010001000000000100010101000000000001010000000001010000000000000000001000001110000000000000000

p←a2
3∧b2

2 1 01011111010101110111111111011101010111111111110111011111110111011111111111111111111100011111111111111111

z3←s1⊕c1
1 0 10100000101010001000010001100010101000000000001010000100011010000000000001010001010000000111000000000000

q←s2∧c2
1 0 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001110000000000

c2←p∨q 1 01011111010101110111111111011101010111111111110111011111110111011111111111111111111101111100011111111111

c1
2←c2 1 01011111010101110111111111011101010111111111110111011111110111011111111111111111111101111101000111111111

c2
2←c2 1 01011111010101110111111111011101010111111111110111011111110111011111111111111111111101111101110001111111

z4←b1
3⊕c1

2 0 10100000100000001010000000100010001010000000001000100000001000101010000000000000000010000010100000011100

z5←b2
3∧c2

2 1 01011111010101110101111111011101010101111111110111011111110111010111011111111111111101111101110111000111

most one stuck-at fault is present. The column headed OK shows the correct
behavior of the Boolean chain (which nicely multiplies x = 3 by y = 6 and
obtains z = 18). We can call these the “default” values, because, well, they have
no faults. The other 100 columns show what happens if all but one of the 50
wires have error-free signals; the two columns under b1

2, for example, illustrate
the results when the rightmost wire that fans out from gate b2 is stuck at 0
or 1. Each row is obtained bitwise from previous rows or inputs, except that the
boldface digits are forced. When a boldface value agrees with the default, its
entire column is correct; otherwise errors might propagate. All values above the
bold diagonal match the defaults.

If we want to test a chip that has n inputs and m outputs, we’re allowed
to apply test patterns to the inputs and see what outputs are produced. Close
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inspection shows, for instance, that the pattern considered in Table 1 doesn’t
detect an error when q is stuck at 1, even though q should be 0, because all five
output bits z5z4z3z2z1 are correct in spite of that error. In fact, the value of
c2 ← p ∨ q is unaffected by a bad q, because p = 1 in this example. Similarly,
the fault “x2

1 stuck at 0” doesn’t propagate into z1 ← x2
1 ∧ y1

1 because y1
1 = 0.

Altogether 44 faults, not 50, are discovered by this particular test pattern.
All of the relevant repeatable faults, whether they’re single-stuck-at or wildly

complicated, could obviously be discovered by testing all 2n possible patterns.
But that’s out of the question unless n is quite small. Fortunately, testing isn’t
hopeless, because satisfactory results are usually obtained in practice if we do
have enough test patterns to detect all of the detectable single-stuck-at faults.
Exercise 49 shows that just five patterns suffice to certify Fig. 34 by this criterion.

The detailed analysis in exercise 49 also shows, surprisingly, that one of the
faults, namely “s2 stuck at 1,” cannot be detected! Indeed, an erroneous s2 can
propagate to an erroneous q only if c2

1 = 1, and that forces x1 = x2 = y1 = y2 = 1;
only two possibilities remain, and neither y3 = 0 nor y3 = 1 reveals the fault.
Consequently we can simplify the circuit by removing gate q ; the chain (23)
becomes shorter, with “q ← s ∧ c1, c2 ← p∨ q” replaced by “c2 ← p∨ c1.”

Of course Fig. 34 is just a tiny little circuit, intended only to introduce the
concept of stuck-at faults. Test patterns are needed for the much larger circuits
that arise in real computers; and we will see that SAT solvers can help us to find
them. Consider, for example, the generic multiplier circuit prod (m,n), which is
part of the Stanford GraphBase. It multiplies an m-bit number x by an n-bit
number y, producing an (m + n)-bit product z. Furthermore, it’s a so-called
“parallel multiplier,” with delay time O(log(m+n)); thus it’s much more suited
to hardware design than methods like the factor fifo schemes that we considered
above, because those circuits need Ω(m+ n) time for carries to propagate.

Let’s try to find test patterns that will smoke out all of the single-stuck-at
faults in prod (32, 32), which is a circuit of depth 33 that has 64 inputs, 64 out-
puts, 3660 AND gates, 1203 OR gates, 2145 XOR gates, and (therefore) 7008 fan-
out gates and 21,088 wires. How can we guard it against 42,176 different faults?

Before we construct clauses to facilitate that task, we should realize that
most of the single-stuck-at faults are easily detected by choosing patterns at
random, since faults usually cause big trouble and are hard to miss. Indeed,
choosing x = #3243F6A8 and y = #885A308D more or less at random already
eliminates 14,733 cases; and (x, y) = (#2B7E1516, #28AED2A6) eliminates 6,918
more. We might as well keep doing this, because bitwise operations such as those
in Table 1 are fast. Experience with the smaller multiplier in Fig. 34 suggests
that we get more effective tests if we bias the inputs, choosing each bit to be 1
with probability .9 instead of .5 (see exercise 49). A million such random inputs
will then generate, say, 243 patterns that detect all but 140 of the faults.

Our remaining job, then, is essentially to find 140 needles in a haystack of
size 264, after having picked 42,176 − 140 = 42,036 pieces of low-hanging fruit.
And that’s where a SAT solver is useful. Consider, for example, the analogous
but simpler problem of finding a test pattern for “q stuck at 0” in Fig. 34.
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We can use the 49 clauses F derived from (23) to represent the well-behaved
circuit; and we can imagine corresponding clauses F ′ that represent the faulty
computation, using “primed” variables z′

1, a′
2, . . . , z′

5. Thus F ′ begins with
(x1∨ z̄′

1)∧(y1∨ z̄′
1) and ends with (b̄′

3∨ c̄′
2∨z′

5); it’s like F except that the clauses
representing q′ ← s′∧ c′

1 in (23) are changed to simply q̄′ (meaning that q′ is
stuck at 0). Then the clauses of F and F ′, together with a few more clauses to
state that z1 ̸= z′

1 or · · · or z5 ̸= z′
5, will be satisfiable only by variables for which

(y3y2y1)2 × (x2x1)2 is a suitable test pattern for the given fault.
This construction of F ′ can obviously be simplified, because z′

1 is identical
to z1; any signal that differs from the correct value must be located “downstream”
from the one-and-only fault. Let’s say that a wire is tarnished if it is the faulty
wire or if at least one of its input wires is tarnished. We introduce new variables
g′ only for wires g that are tarnished. Thus, in our example, the only clauses F ′

that are needed to extend F to a faulty companion circuit are q̄′ and the clauses
that correspond to c′

2 ← p ∨ q′, z′
4 ← b3 ⊕ c′

2, z′
5 ← b3 ∧ c′

2.
Moreover, any fault that is revealed by a test pattern must have an active

path of wires, leading from the fault to an output; all wires on this path must
carry a faulty signal. Therefore Tracy Larrabee [IEEE Trans. CAD-11 (1992),
4–15] decided to introduce additional “sharped” variables g♯ for each tarnished
wire, meaning that g lies on the active path. The two clauses

(ḡ♯ ∨ g ∨ g′) ∧ (ḡ♯ ∨ ḡ ∨ ḡ′) (25)

ensure that g ̸= g′ whenever g is part of that path. Furthermore we have (v̄♯∨g♯)
whenever g is an AND, OR, or XOR gate with tarnished input v. Fanout gates
are slightly tricky in this regard: When wires g1 and g2 fan out from a tarnished
wire g, we need variables g1♯ and g2♯ as well as g♯; and we introduce the clause

(ḡ♯ ∨ g1♯ ∨ g2♯) (26)

to specify that the active path takes at least one of the two branches.
According to these rules, our example acquires the new variables q♯, c♯2, c1♯

2 ,
c2♯

2 , z♯4, z♯5, and the new clauses

(q̄♯∨q∨q′)∧ (q̄♯∨ q̄∨ q̄′)∧ (q̄♯∨c♯2)∧ (c̄♯2∨c2∨c′
2)∧ (c̄♯2∨ c̄2∨ c̄′

2)∧ (c̄♯2∨c
1♯
2 ∨c

2♯
2 )∧

(c̄1♯
2 ∨z

♯
4)∧ (z̄♯4∨z4∨z′

4)∧ (z̄♯4∨ z̄4∨ z̄′
4)∧ (c̄2♯

2 ∨z
♯
5)∧ (z̄♯5∨z5∨z′

5)∧ (z̄♯5∨ z̄5∨ z̄′
5).

The active path begins at q, so we assert the unit clause (q♯); it ends at a
tarnished output, so we also assert (z♯4 ∨ z

♯
5). The resulting set of clauses will

find a test pattern for this fault if and only if the fault is detectable. Larrabee
found that such active-path variables provide important clues to a SAT solver
and significantly speed up the solution process.

Returning to the large circuit prod (32, 32), one of the 140 hard-to-test faults
is “W 26

21 stuck at 1,” where W 26
21 denotes the 26th extra wire that fans out from

the OR gate called W21 in §75 of the Stanford GraphBase program GB GATES;
W 26

21 is an input to gate b40
40 ← d19

40 ∧W 26
21 in §80 of that program. Test patterns

for that fault can be characterized by a set of 23,194 clauses in 7,082 variables
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(of which only 4 variables are “primed” and 4 are “sharped”). Fortunately
the solution (x, y) = (#7F13FEDD, #5FE57FFE) was found rather quickly in the
author’s experiments; and this pattern also killed off 13 of the other cases, so
the score was now “14 down and 126 to go”!

The next fault sought was “A36,2
5 stuck at 1,” where A36,2

5 is the second
extra wire to fan out from the AND gate A36

5 in §72 of GB GATES (an input
to R36

11 ← A36,2
5 ∧ R35,2

1 ). This fault corresponds to 26,131 clauses on 8,342
variables; but the SAT solver took a quick look at those clauses and decided
almost instantly that they are unsatisfiable. Therefore the fault is undetectable,
and the circuit prod (32, 32) can be simplified by setting R36

11 ← R35,2
1 . A closer

look showed, in fact, that clauses corresponding to the Boolean equations

x = y ∧ z, y = v ∧ w, z = t ∧ u, u = v ⊕ w

were present (where t = R44
13, u = A45

58, v = R44
4 , w = A45

14, x = R46
23, y = R45

13,
z = R45

19); these clauses force x = 0. Therefore it was not surprising to find
that the list of unresolved faults also included R46

23, R46,1
23 and R46,2

23 stuck at 0.
Altogether 26 of the 140 faults undetected by random inputs turned out to be
absolutely undetectable; and only one of these, namely “Q46

26 stuck at 0,” required
a nontrivial proof of undetectability.

Some of the 126−26 = 100 faults remaining on the to-do list turned out to be
significant challenges for the SAT solver. While waiting, the author therefore had
time to take a look at a few of the previously found solutions, and noticed that
those patterns themselves were forming a pattern! Sure enough, the extreme por-
tions of this large and complicated circuit actually have a fairly simple structure,
stuck-at-fault-wise. Hence number theory came to the rescue: The factorization
#87FBC059 × #F0F87817 = 263 − 1 solved many of the toughest challenges,
some of which occur with probability less than 2−34 when 32-bit numbers are
multiplied; and the “Aurifeuillian” factorization (231 − 216 + 1)(231 + 216 + 1) =
262 + 1, which the author had known for more than forty years (see Eq. 4.5.4–
(15)), polished off most of the others.

The bottom line (see exercise 51) is that all 42,150 of the detectable single-
stuck-at faults of the parallel multiplication circuit prod (32, 32) can actually be
detected with at most 196 well-chosen test patterns.

Learning a Boolean function. Sometimes we’re given a “black box” that
evaluates a Boolean function f(x1, . . . , xN ). We have no way to open the box,
but we suspect that the function is actually quite simple. By plugging in various
values for x = x1 . . . xN , we can observe the box’s behavior and possibly learn the
hidden rule that lies inside. For example, a secret function of N = 20 Boolean
variables might take on the values shown in Table 2, which lists 16 cases where
f(x) = 1 and 16 cases where f(x) = 0.

Suppose we assume that the function has a DNF (disjunctive normal form)
with only a few terms. We’ll see in a moment that it’s easy to express such an
assumption as a satisfiability problem. And when the author constructed clauses
corresponding to Table 2 and presented them to a SAT solver, he did in fact learn
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Table 2
VALUES TAKEN ON BY AN UNKNOWN FUNCTION

Cases where f(x) = 1
x1x2x3x4x5x6x7x8x9 . . . x20

1 1 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1
1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1
0 1 1 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 1 1
0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 1 0
0 1 1 0 0 0 1 0 1 0 0 0 1 0 1 1 1 0 0 0
0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0 0
1 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0
0 0 1 0 0 1 0 0 1 1 1 0 0 0 0 0 1 0 0 0
1 0 0 0 1 0 1 0 0 1 1 0 0 1 1 1 1 1 0 0
1 1 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 1 1 1 0 1 1 1 1 1 0 1 0 1 0
0 1 1 0 0 0 1 1 1 0 1 1 0 0 0 1 0 0 1 1
1 0 0 1 1 0 1 1 0 0 1 0 0 0 1 0 0 1 0 1
0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 1 0 0 0
0 1 1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1
0 1 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 1

Cases where f(x) = 0
x1x2x3x4x5x6x7x8x9 . . . x20

1 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 0 1
0 1 0 0 0 1 0 1 1 0 0 0 1 0 1 0 0 0 1 0
1 0 1 1 1 0 1 1 0 1 0 0 1 0 1 0 1 0 0 1
1 0 1 0 1 0 1 0 1 1 1 1 1 1 0 1 1 1 0 0
0 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0
0 1 1 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 0 0
1 1 1 1 0 0 0 1 1 1 0 1 1 0 0 0 1 0 1 1
1 0 0 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 1 1
1 1 0 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 1 1
0 1 1 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1
1 1 1 0 0 0 0 1 0 0 1 1 0 1 1 0 0 1 0 0
0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 0 0 1 0 0
0 0 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 0 0
1 1 0 0 1 0 0 1 0 0 1 1 1 0 0 1 1 1 0 1
1 1 0 0 1 1 1 0 0 0 1 0 0 1 0 0 1 0 0 1
1 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 0 0 1

almost immediately that a very simple formula is consistent with all of the data:

f(x1, . . . , x20) = x̄2x̄3x̄10 ∨ x̄6x̄10x̄12 ∨ x8x̄13x̄15 ∨ x̄8x10x̄12. (27)

This formula was discovered by constructing clauses in 2MN variables pi,j
and qi,j for 1 ≤ i ≤ M and 1 ≤ j ≤ N , where M is the maximum number of
terms allowed in the DNF (here M = 4) and where

pi,j = [term i contains xj ], qi,j = [term i contains x̄j ]. (28)

If the function is constrained to equal 1 at P specified points, we also use auxiliary
variables zi,k for 1 ≤ i ≤M and 1 ≤ k ≤ P , one for each term at every such point.

Table 2 says that f(1, 1, 0, 0, . . . , 1) = 1, and we can capture this specification
by constructing the clause

(z1,1 ∨ z2,1 ∨ · · · ∨ zM,1) (29)
together with the clauses

(z̄i,1∨ q̄i,1) ∧ (z̄i,1∨ q̄i,2) ∧ (z̄i,1∨ p̄i,3) ∧ (z̄i,1∨ p̄i,4) ∧ · · · ∧ (z̄i,1∨ q̄i,20) (30)

for 1 ≤ i ≤M . Translation: (29) says that at least one of the terms in the DNF
must evaluate to true; and (30) says that, if term i is true at the point 1100 . . . 1,
it cannot contain x̄1 or x̄2 or x3 or x4 or · · · or x̄20.

Table 2 also tells us that f(1, 0, 1, 0, . . . , 1) = 0. This specification corre-
sponds to the clauses

(qi,1 ∨ pi,2 ∨ qi,3 ∨ pi,4 ∨ · · · ∨ qi,20) (31)

for 1 ≤ i ≤ M . (Each term of the DNF must be zero at the given point; thus
either x̄1 or x2 or x̄3 or x4 or · · · or x̄20 must be present for each value of i.)

In general, every case where f(x) = 1 yields one clause like (29) of length M,
plus MN clauses like (30) of length 2. Every case where f(x) = 0 yields M
clauses like (31) of length N . We use qi,j when xj = 1 at the point in question,
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and pi,j when xj = 0, for both (30) and (31). This construction is due to
A. P. Kamath, N. K. Karmarkar, K. G. Ramakrishnan, and M. G. C. Resende
[Mathematical Programming 57 (1992), 215–238], who presented many exam-
ples. From Table 2, with M = 4, N = 20, and P = 16, it generates 1360 clauses
of total length 3904 in 224 variables; a SAT solver then finds a solution with
p1,1 = q1,1 = p1,2 = 0, q1,2 = 1, . . . , leading to (27).

The simplicity of (27) makes it plausible that the SAT solver has indeed
psyched out the true nature of the hidden function f(x). The chance of agreeing
with the correct value 32 times out of 32 is only 1 in 232, so we seem to have
overwhelming evidence in favor of that equation.

But no: Such reasoning is fallacious. The numbers in Table 2 actually arose
in a completely different way, and Eq. (27) has essentially no credibility as a
predictor of f(x) for any other values of x! (See exercise 53.) The fallacy comes
from the fact that short-DNF Boolean functions of 20 variables are not at all
rare; there are many more than 232 of them.

On the other hand, when we do know that the hidden function f(x) has
a DNF with at most M terms (although we know nothing else about it), the
clauses (29)–(31) give us a nice way to discover those terms, provided that we
also have a sufficiently large and unbiased “training set” of observed values.

For example, let’s assume that (27) actually is the function in the box. If
we examine f(x) at 32 random points x, we don’t have enough data to make
any deductions. But 100 random training points will almost always home in on
the correct solution (27). This calculation typically involves 3942 clauses in 344
variables; yet it goes quickly, needing only about 100 million accesses to memory.

One of the author’s experiments with a 100-element training set yielded

f̂(x1, . . . , x20) = x̄2x̄3x̄10 ∨ x3x̄6x̄10x̄12 ∨ x8x̄13x̄15 ∨ x̄8x10x̄12, (32)

which is close to the truth but not quite exact. (Exercise 59 proves that f̂(x)
is equal to f(x) more than 97% of the time.) Further study of this example
showed that another nine training points were enough to deduce f(x) uniquely,
thus obtaining 100% confidence (see exercise 61).

Bounded model checking. Some of the most important applications of SAT
solvers in practice are related to the verification of hardware or software, because
designers generally want some kind of assurance that particular implementations
correctly meet their specifications.

A typical design can usually be modeled as a transition relation between
Boolean vectors X = x1 . . . xn that represent the possible states of a system. We
write X → X ′ if state X at time t can be followed by state X ′ at time t + 1.
The task in general is to study sequences of state transitions

X0 → X1 → X2 → · · · → Xr, (33)

and to decide whether or not there are sequences that have special properties.
For example, we hope that there’s no such sequence for which X0 is an “initial
state” and Xr is an “error state”; otherwise there’d be a bug in the design.
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→ → →

Fig. 35. Conway’s rule (35) defines these three successive transitions.

Questions like this are readily expressed as satisfiability problems: Each
state Xt is a vector of Boolean variables xt1 . . . xtn, and each transition relation
can be represented by a set of m clauses T (Xt, Xt+1) that must be satisfied.
These clauses T (X,X ′) involve 2n variables {x1, . . . , xn, x

′
1, . . . , x

′
n}, together

with q auxiliary variables {y1, . . . , yq} that might be needed to express Boolean
formulas in clause form as we did with the Tseytin encodings in (24). Then the
existence of sequence (33) is equivalent to the satisfiability of mr clauses

T (X0, X1) ∧ T (X1, X2) ∧ · · · ∧ T (Xr−1, Xr) (34)

in the n(r+1)+qr variables {xtj | 0≤ t≤r, 1≤j≤n}∪{ytk | 0≤ t<r, 1≤k≤q}.
We’ve essentially “unrolled” the sequence (33) into r copies of the transition
relation, using variables xtj for state Xt and ytk for the auxiliary quantities
in T (Xt, Xt+1). Additional clauses can now be added to specify constraints on
the initial state X0 and/or the final state Xr, as well as any other conditions
that we want to impose on the sequence.

This general setup is called “bounded model checking,” because we’re using
it to check properties of a model (a transition relation), and because we’re
considering only sequences that have a bounded number of transitions, r.

John Conway’s fascinating Game of Life provides a particularly instructive
set of examples that illustrate basic principles of bounded model checking. The
states X of this game are two-dimensional bitmaps, corresponding to arrays of
square cells that are either alive (1) or dead (0). Every bitmap X has a unique
successor X ′, determined by the action of a simple 3 × 3 cellular automaton:
Suppose cell x has the eight neighbors {xNW, xN, xNE, xW, xE, xSW, xS, xSE}, and
let ν = xNW +xN +xNE +xW +xE +xSW +xS +xSE be the number of neighbors that
are alive at time t. Then x is alive at time t+ 1 if and only if either (a) ν = 3,
or (b) ν = 2 and x is alive at time t. Equivalently, the transition rule

x′ = [2<xNW + xN + xNE + xW + 1
2x+ xE + xSW + xS + xSE < 4] (35)

holds at every cell x. (See, for example, Fig. 35, where the live cells are black.)
Conway called Life a “no-player game,” because it involves no strategy:

Once an initial state X0 has been set up, all subsequent states X1, X2, . . . are
completely determined. Yet, in spite of the simple rules, he also proved that Life
is inherently complicated and unpredictable, indeed beyond human comprehen-
sion, in the sense that it is universal: Every finite, discrete, deterministic system,
however complex, can be simulated faithfully by some finite initial state X0
of Life. [See Berlekamp, Conway, and Guy, Winning Ways (2004), Chapter 25.]

In exercises 7.1.4–160 through 162, we’ve already seen some of the amazing
Life histories that are possible, using BDD methods. And many further aspects
of Life can be explored with SAT methods, because SAT solvers can often deal
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with many more variables. For example, Fig. 35 was discovered by using 7×15 =
105 variables for each state X0, X1, X2, X3. The values of X3 were obviously
predetermined; but the other 105× 3 = 315 variables had to be computed, and
BDDs can’t handle that many. Moreover, additional variables were introduced
to ensure that the initial state X0 would have as few live cells as possible.

Here’s the story behind Fig. 35, in more detail: Since Life is two-dimensional,
we use variables xij instead of xj to indicate the states of individual cells, and xtij
instead of xtj to indicate the states of cells at time t. We generally assume that
xtij = 0 for all cells outside of a given finite region, although the transition rule
(35) can allow cells that are arbitrarily far away to become alive as Life goes on.
In Fig. 35 the region was specified to be a 7× 15 rectangle at each unit of time.
Furthermore, configurations with three consecutive live cells on a boundary edge
were forbidden, so that cells “outside the box” wouldn’t be activated.

The transitions T (Xt, Xt+1) can be encoded without introducing additional
variables, but only if we introduce 190 rather long clauses for each cell not on the
boundary. There’s a better way, based on the binary tree approach underlying
(20) and (21) above, which requires only about 63 clauses of size ≤ 3, together
with about 14 auxiliary variables per cell. This approach (see exercise 65) takes
advantage of the fact that many intermediate calculations can be shared. For
example, cells x and xW have four neighbors {xNW, xN, xSW, xS} in common; so
we need to compute xNW + xN + xSW + xS only once, not twice.

The clauses that correspond to a four-step sequence X0 → X1 → X2 →
X3 → X4 leading to X4 = turn out to be unsatisfiable without going
outside of the 7 × 15 frame. (Only 10 gigamems of calculation were needed to
establish this fact, using Algorithm C below, even though roughly 34000 clauses
in 9000 variables needed to be examined!) So the next step in the preparation
of Fig. 35 was to try X3 = ; and this trial succeeded. Additional clauses,
which permitted X0 to have at most 39 live cells, led to the solution shown, at a
cost of about 17 gigamems; and that solution is optimum, because a further run
(costing 12 gigamems) proved that there’s no solution with at most 38.

Let’s look for a moment at some of the patterns that can occur on a
chessboard, an 8×8 grid. Human beings will never be able to contemplate more
than a tiny fraction of the 264 states that are possible; so we can be fairly sure
that “Lifenthusiasts” haven’t already explored every tantalizing configuration
that exists, even on such a small playing field.

One nice way to look for a sequence of interesting Life transitions is to assert
that no cell stays alive more than four steps in a row. Let us therefore say that
a mobile Life path is a sequence of transitions X0 → X1 → · · · → Xr with the
additional property that we have

(x̄tij ∨ x̄(t+1)ij ∨ x̄(t+2)ij ∨ x̄(t+3)ij ∨ x̄(t+4)ij), for 0 ≤ t ≤ r − 4. (36)

To avoid trivial solutions we also insist that Xr is not entirely dead. For example,
if we impose rule (36) on a chessboard, with xtij permitted to be alive only if
1 ≤ i, j ≤ 8, and with the further condition that at most five cells are alive in each
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generation, a SAT solver can quickly discover interesting mobile paths such as

→ → → → → → → → → · · · , (37)

which last quite awhile before leaving the board. And indeed, the five-celled
object that moves so gracefully in this path is R. K. Guy’s famous glider (1970),
which is surely the most interesting small creature in Life’s universe. The glider
moves diagonally, recreating a shifted copy of itself after every four steps.

Interesting mobile paths appear also if we restrict the population at each
time to {6, 7, 8, 9, 10} instead of {1, 2, 3, 4, 5}. For example, here are some of the
first such paths that the author’s solver came up with, having length r = 8:

→ → → → → → → → ;

→ → → → → → → → ;

→ → → → → → → → ;

→ → → → → → → → ;

→ → → → → → → → .

These paths illustrate the fact that symmetry can be gained, but never lost, as
Life evolves deterministically. Marvelous designs are spawned in the process.
In each of these sequences the next bitmap, X9, would break our ground rules:
The population immediately after X8 grows to 12 in the first and last examples,
but shrinks to 5 in the second-from-last; and the path becomes immobile in the
other two. Indeed, we have X5 = X7 in the second example, hence X6 = X8
and X7 = X9, etc. Such a repeating pattern is called an oscillator of period 2.
The third example ends with an oscillator of period 1, known as a “still life.”

What are the ultimate destinations of these paths? The first one becomes
still, with X69 = X70; and the fourth becomes very still, with X12 = 0! The
fifth is the most fascinating of the group, because it continues to produce ever
more elaborate valentine shapes, then proceeds to dance and sparkle, until finally
beginning to twinkle with period 2 starting at time 177. Thus its members X2
through X7 qualify as “Methuselahs,” defined by Martin Gardner as “Life pat-
terns of population less than 10 that do not become stable within 50 generations.”
(A predictable pattern, like the glider or an oscillator, is called stable.)

SAT solvers are basically useless for the study of Methuselahs, because the
state space becomes too large. But they are quite helpful when we want to
illuminate many other aspects of Life, and exercises 66–85 discuss some notable
instances. We will consider one more instructive example before moving on,
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namely an application to “eaters.” Consider a Life path of the form

X0 = →
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?

→
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?

→
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?

→ → = X5, (38)

where the gray cells form a still life and the cells of X1, X2, X3 are unknown.
Thus X4 = X5 and X0 = X5 + glider. Furthermore we require that the still
life X5 does not interact with the glider’s parent, ; see exercise 77. The idea
is that a glider will be gobbled up if it happens to glide into this particular still
life, and the still life will rapidly reconstitute itself as if nothing had happened.

Algorithm C almost instantaneously (well, after about 100 megamems) finds

→ → → → → , (39)

the four-step eater first observed in action by R. W. Gosper in 1971.

Applications to mutual exclusion. Let’s look now at how bounded model
checking can help us to prove that algorithms are correct. (Or incorrect.) Some
of the most challenging issues of verification arise when we consider parallel
processes that need to synchronize their concurrent behavior. To simplify our
discussion it will be convenient to tell a little story about Alice and Bob.

Alice and Bob are casual friends who share an apartment. One of their joint
rooms is special: When they’re in that critical room, which has two doors, they
don’t want the other person to be present. Furthermore, being busy people, they
don’t want to interrupt each other needlessly. So they agree to control access to
the room by using an indicator light, which can be switched on or off.

The first protocol they tried can be characterized by symmetrical algorithms:

A0. Maybe go to A1.
A1. If l go to A1, else to A2.
A2. Set l← 1, go to A3.
A3. Critical, go to A4.
A4. Set l← 0, go to A0.

B0. Maybe go to B1.
B1. If l go to B1, else to B2.
B2. Set l← 1, go to B3.
B3. Critical, go to B4.
B4. Set l← 0, go to B0.

(40)

At any instant of time, Alice is in one of five states, {A0,A1,A2,A3,A4}, and
the rules of her program show how that state might change. In state A0 she isn’t
interested in the critical room; but she goes to A1 when she does wish to use
it. She reaches that objective in state A3. Similar remarks apply to Bob. When
the indicator light is on (l = 1), they wait until the other person has exited the
room and switched the light back off (l = 0).

Alice and Bob don’t necessarily operate at the same speed. But they’re
allowed to dawdle only when in the “maybe” state A0 or B0. More precisely, we
model the situation by converting every relevant scenario into a discrete sequence
of state transitions. At every time t = 0, 1, 2, . . . , either Alice or Bob (but not
both) will perform the command associated with their current state, thereby per-
haps changing to a different state at time t+ 1. This choice is nondeterministic.

Only four kinds of primitive commands are permitted in the procedures we
shall study, all of which are illustrated in (40): (1) “Maybe go to s”; (2) “Critical,
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go to s”; (3) “Set v ← b, go to s”; and (4) “If v go to s1, else to s0”. Here s
denotes a state name, v denotes a shared Boolean variable, and b is 0 or 1.

Unfortunately, Alice and Bob soon learned that protocol (40) is unreliable:
One day she went from A1 to A2 and he went from B1 to B2, before either of
them had switched the indicator on. Embarrassment (A3 and B3) followed.

They could have discovered this problem in advance, if they’d converted the
state transitions of (40) into clauses for bounded model checking, as in (33), then
applied a SAT solver. In this case the vector Xt that corresponds to time t con-
sists of Boolean variables that encode each of their current states, as well as the
current value of l. We can, for example, have eleven variables A0t, A1t, A2t, A3t,
A4t, B0t, B1t, B2t, B3t, B4t, lt, together with ten binary exclusion clauses (A0t∨
A1t), (A0t ∨ A2t), . . . , (A3t ∨ A4t) to ensure that Alice is in at most one state,
and with ten similar clauses for Bob. There’s also a variable @t, which is true or
false depending on whether Alice or Bob executes their program step at time t.
(We say that Alice was “bumped” if @t = 1, and Bob was bumped if @t = 0.)

If we start with the initial state X0 defined by unit clauses

A00 ∧ A10 ∧ A20 ∧ A30 ∧ A40 ∧ B00 ∧ B10 ∧ B20 ∧ B30 ∧ B40 ∧ l̄0, (41)

the following clauses for 0 ≤ t < r (discussed in exercise 87) will emulate the
first r steps of every legitimate scenario defined by (40):

(@t ∨ A0t ∨ A0t+1)
(@t ∨ A1t ∨ A1t+1)
(@t ∨ A2t ∨ A2t+1)
(@t ∨ A3t ∨ A3t+1)
(@t ∨ A4t ∨ A4t+1)
(@t ∨ B0t ∨ B0t+1)
(@t ∨ B1t ∨ B1t+1)
(@t ∨ B2t ∨ B2t+1)
(@t ∨ B3t ∨ B3t+1)
(@t ∨ B4t ∨ B4t+1)

(@t ∨ A0t ∨ A0t+1 ∨ A1t+1)
(@t ∨ A1t ∨ l̄t ∨ A1t+1)
(@t ∨ A1t ∨ lt ∨ A2t+1)
(@t ∨ A2t ∨ A3t+1)
(@t ∨ A2t ∨ lt+1)
(@t ∨ A3t ∨ A4t+1)
(@t ∨ A4t ∨ A0t+1)
(@t ∨ A4t ∨ l̄t+1)
(@t ∨ lt ∨ A2t ∨ A4t ∨ l̄t+1)
(@t ∨ l̄t ∨ A2t ∨ A4t ∨ lt+1)

(@t ∨ B0t ∨ B0t+1 ∨ B1t+1)
(@t ∨ B1t ∨ l̄t ∨ B1t+1)
(@t ∨ B1t ∨ lt ∨ B2t+1)
(@t ∨ B2t ∨ B3t+1)
(@t ∨ B2t ∨ lt+1)
(@t ∨ B3t ∨ B4t+1)
(@t ∨ B4t ∨ B0t+1)
(@t ∨ B4t ∨ l̄t+1)
(@t ∨ lt ∨ B2t ∨ B4t ∨ l̄t+1)
(@t ∨ l̄t ∨ B2t ∨ B4t ∨ lt+1)

(42)

If we now add the unit clauses (A3r) and (B3r), the resulting set of 13 + 50r
clauses in 11+12r variables is readily satisfiable when r = 6, thereby proving that
the critical room might indeed be jointly occupied. (Incidentally, standard termi-
nology for mutual exclusion protocols would say that “two threads concurrently
execute a critical section”; but we shall continue with our roommate metaphor.)

Back at the drawing board, one idea is to modify (40) by letting Alice use
the room only when l = 1, but letting Bob in when l = 0:

A0. Maybe go to A1.
A1. If l go to A2, else to A1.
A2. Critical, go to A3.
A3. Set l← 0, go to A0.

B0. Maybe go to B1.
B1. If l go to B1, else to B2.
B2. Critical, go to B3.
B3. Set l← 1, go to B0.

(43)

Computer tests with r = 100 show that the corresponding clauses are unsatisfi-
able; thus mutual exclusion is apparently guaranteed by (43).
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But (43) is a nonstarter, because it imposes an intolerable cost: Alice can’t
use the room k times until Bob has already done so! Scrap that.

How about installing another light, so that each person controls one of them?
A0. Maybe go to A1.
A1. If b go to A1, else to A2.
A2. Set a← 1, go to A3.
A3. Critical, go to A4.
A4. Set a← 0, go to A0.

B0. Maybe go to B1.
B1. If a go to B1, else to B2.
B2. Set b← 1, go to B3.
B3. Critical, go to B4.
B4. Set b← 0, go to B0.

(44)

No; this suffers from the same defect as (40). But maybe we can cleverly switch
the order of steps 1 and 2:

A0. Maybe go to A1.
A1. Set a← 1, go to A2.
A2. If b go to A2, else to A3.
A3. Critical, go to A4.
A4. Set a← 0, go to A0.

B0. Maybe go to B1.
B1. Set b← 1, go to B2.
B2. If a go to B2, else to B3.
B3. Critical, go to B4.
B4. Set b← 0, go to B0.

(45)

Yes! Exercise 95 proves easily that this protocol does achieve mutual exclusion.
Alas, however, a new problem now arises, namely the problem known as

“deadlock” or “livelock.” Alice and Bob can get into states A2 and B2, after
which they’re stuck — each waiting for the other to go critical.

In such cases they could agree to “reboot” somehow. But that would be
a cop-out; they really seek a better solution. And they aren’t alone: Many
people have struggled with this surprisingly delicate problem over the years, and
several solutions (both good and bad) appear in the exercises below. Edsger
Dijkstra, in some pioneering lecture notes entitled Cooperating Sequential Pro-
cesses [Technological University Eindhoven (September 1965), §2.1], thought of
an instructive way to improve on (45):

A0. Maybe go to A1.
A1. Set a← 1, go to A2.
A2. If b go to A3, else to A4.
A3. Set a← 0, go to A1.
A4. Critical, go to A5.
A5. Set a← 0, go to A0.

B0. Maybe go to B1.
B1. Set b← 1, go to B2.
B2. If a go to B3, else to B4.
B3. Set b← 0, go to B1.
B4. Critical, go to B5.
B5. Set b← 0, go to B0.

(46)

But he realized that this too is unsatisfactory, because it permits scenarios in
which Alice, say, might wait forever while Bob repeatedly uses the critical room.
(Indeed, if Alice and Bob are in states A1 and B2, she might go to A2, A3,
then A1, thereby letting him run to B4, B5, B0, B1, and B2; they’re back where
they started, yet she’s made no progress.)

The existence of this problem, called starvation, can also be detected via
bounded model checking. The basic idea (see exercise 91) is that starvation
occurs if and only if there is a loop of transitions

X0 → X1 → · · · → Xp → Xp+1 → · · · → Xr = Xp (47)

such that (i) Alice and Bob each are bumped at least once during the loop; and
(ii) at least one of them is never in a “maybe” or “critical” state during the loop.
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And those conditions are easily encoded into clauses, because we can identify
the variables for time r with the variables for time p, and we can append the
clauses

(@p ∨@p+1 ∨ · · · ∨@r−1) ∧ (@p ∨@p+1 ∨ · · · ∨@r−1) (48)

to guarantee (i). Condition (ii) is simply a matter of appending unit clauses; for
example, to test whether Alice can be starved by (46), the relevant clauses are
A0p ∧ A0p+1 ∧ · · · ∧ A0r−1 ∧ A4p ∧ A4p+1 ∧ · · · ∧ A4r−1.

The deficiencies of (43), (45), and (46) can all be viewed as instances of
starvation, because (47) and (48) are satisfiable (see exercise 90). Thus we
can use bounded model checking to find counterexamples to any unsatisfactory
protocol for mutual exclusion, either by exhibiting a scenario in which Alice and
Bob are both in the critical room or by exhibiting a feasible starvation cycle (47).

Of course we’d like to go the other way, too: If a protocol has no coun-
terexamples for, say, r = 100, we still might not know that it is really reliable;
a counterexample might exist only when r is extremely large. Fortunately there
are ways to obtain decent upper bounds on r, so that bounded model checking
can be used to prove correctness as well as to demonstrate incorrectness. For
example, we can verify the simplest known correct solution to Alice and Bob’s
problem, a protocol by G. L. Peterson [Information Proc. Letters 12 (1981), 115–
116], who noticed that a careful combination of (43) and (45) actually suffices:

A0. Maybe go to A1.
A1. Set a← 1, go to A2.
A2. Set l← 0, go to A3.
A3. If b go to A4, else to A5.
A4. If l go to A5, else to A3.
A5. Critical, go to A6.
A6. Set a← 0, go to A0.

B0. Maybe go to B1.
B1. Set b← 1, go to B2.
B2. Set l← 1, go to B3.
B3. If a go to B4, else to B5.
B4. If l go to B3, else to B5.
B5. Critical, go to B6.
B6. Set b← 0, go to B0.

(49)

Now there are three signal lights, a, b, and l— one controlled by Alice, one
controlled by Bob, and one switchable by both.

To show that states A5 and B5 can’t be concurrent, we can observe that the
shortest counterexample will not repeat any state twice; in other words, it will be
a simple path of transitions (33). Thus we can assume that r is at most the total
number of states. However, (49) has 7×7×2×2×2 = 392 states; that’s a finite
bound, not really out of reach for a good SAT solver on this particular problem,
but we can do much better. For example, it’s not hard to devise clauses that are
satisfiable if and only if there’s a simple path of length ≤ r (see exercise 92), and
in this particular case the longest simple path turns out to have only 54 steps.

We can in fact do better yet by using the important notion of invariants,
which we encountered in Section 1.2.1 and have seen repeatedly throughout this
series of books. Invariant assertions are the key to most proofs of correctness,
so it’s not surprising that they also give a significant boost to bounded model
checking. Formally speaking, if Φ(X) is a Boolean function of the state vector X,
we say that Φ is invariant if Φ(X) implies Φ(X ′) wheneverX → X ′. For example,
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it’s not hard to see that the following clauses are invariant with respect to (49):
Φ(X) = (A0∨A1∨A2∨A3∨A4∨A5∨A6) ∧ (B0∨B1∨B2∨B3∨B4∨B5∨B6)
∧ (A0∨ ā)∧(A1∨ ā)∧(A2∨a)∧(A3∨a)∧(A4∨a)∧(A5∨a)∧(A6∨a)
∧ (B0∨ b̄)∧(B1∨ b̄)∧(B2∨b)∧(B3∨b)∧(B4∨b)∧(B5∨b)∧(B6∨b). (50)

(The clause A0 ∨ ā says that a = 0 when Alice is in state A0, etc.) And we can
use a SAT solver to prove that Φ is invariant, by showing that the clauses

Φ(X) ∧ (X → X ′) ∧ ¬Φ(X ′) (51)
are unsatisfiable. Furthermore Φ(X0) holds for the initial state X0, because
¬Φ(X0) is unsatisfiable. (See exercise 93.) Therefore Φ(Xt) is true for all t ≥ 0,
by induction, and we may add these helpful clauses to all of our formulas.

The invariant (50) reduces the total number of states by a factor of 4. And
the real clincher is the fact that the clauses

(X0 → X1 → · · · → Xr) ∧ Φ(X0) ∧ Φ(X1) ∧ · · · ∧ Φ(Xr) ∧ A5r ∧ B5r, (52)
where X0 is not required to be the initial state, turn out to be unsatisfiable
when r = 3. In other words, there’s no way to go back more than two steps
from a bad state, without violating the invariant. We can conclude that mutual
exclusion needs to be verified for (49) only by considering paths of length 2(!).
Furthermore, similar ideas (exercise 98) show that (49) is starvation-free.

Caveat: Although (49) is a correct protocol for mutual exclusion according to
Alice and Bob’s ground rules, it cannot be used safely on most modern computers
unless special care is taken to synchronize cache memories and write buffers. The
reason is that hardware designers use all sorts of trickery to gain speed, and those
tricks might allow one process to see a = 0 at time t + 1 even though another
process has set a ← 1 at time t. We have developed the algorithms above
by assuming a model of parallel computation that Leslie Lamport has called
sequential consistency [IEEE Trans. C-28 (1979), 690–691].
Digital tomography. Another set of appealing questions amenable to SAT
solving comes from the study of binary images for which partial information
is given. Consider, for example, Fig. 36, which shows the “Cheshire cat” of
Section 7.1.3 in a new light. This image is an m× n array of Boolean variables
(xi,j), with m = 25 rows and n = 30 columns: The upper left corner element,
x1,1, is 0, representing white; and x1,24 = 1 corresponds to the lone black pixel
in the top row. We are given the row sums ri =

∑n
j=1 xi,j for 1 ≤ i ≤ m and

the column sums cj =
∑m

i=1 xi,j for 1 ≤ j ≤ n, as well as both sets of sums in
the 45◦ diagonal directions, namely

ad =
∑

i+j=d+1
xi,j and bd =

∑
i−j=d−n

xi,j for 0 < d < m+ n. (53)

To what extent can such an image be reconstructed from its sums ri, cj ,
ad, and bd? Small examples are often uniquely determined by these Xray-like
projections (see exercise 103). But the discrete nature of pixel images makes
the reconstruction problem considerably more difficult than the corresponding
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Fig. 36. An array of black and white pixels together with its
row sums ri, column sums cj , and diagonal sums ad, bd.

continuous problem, in which projections from many different angles are avail-
able. Notice, for example, that the classical “8 queens problem” — to place eight
nonattacking queens on a chessboard — is equivalent to solving an 8× 8 digital
tomography problem with the constraints ri = 1, cj = 1, ad ≤ 1, and bd ≤ 1.

The constraints of Fig. 36 appear to be quite strict, so we might expect that
most of the pixels xi,j are determined uniquely by the given sums. For instance,
the fact that a1 = · · · = a5 = 0 tells us that xi,j = 0 whenever i + j ≤ 6;
and similar deductions are possible at all four corners of the image. A crude
“ballpark estimate” suggests that we’re given a few more than 150 sums, most
of which occupy 5 bits each; hence we have roughly 150× 5 = 750 bits of data,
from which we wish to reconstruct 25× 30 = 750 pixels xi,j . Actually, however,
this problem turns out to have many billions of solutions (see Fig. 37), most of
which aren’t catlike! Exercise 106 provides a less crude estimate, which shows
that this abundance of solutions isn’t really surprising.

(a) lexicographically first; (b) maximally different; (c) lexicographically last.

Fig. 37. Extreme solutions to the constraints of Fig. 36.
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A digital tomography problem such as Fig. 36 is readily represented as a
sequence of clauses to be satisfied, because each of the individual requirements
is just a special case of the cardinality constraints that we’ve already considered
in the clauses of (18)–(21). This problem differs from the other instances of SAT
that we’ve been discussing, primarily because it consists entirely of cardinality
constraints: It is a question of solving 25 + 30 + 54 + 54 = 163 simultaneous
linear equations in 750 variables xi,j , where each variable must be either 0 or 1.
So it’s essentially an instance of integer programming (IP), not an instance of
satisfiability (SAT). On the other hand, Bailleux and Boufkhad devised clauses
(20) and (21) precisely because they wanted to apply SAT solvers, not IP solvers,
to digital tomography. In the case of Fig. 36, their method yields approximately
40,000 clauses in 9,000 variables, containing about 100,000 literals altogether.

Figure 37(b) illustrates a solution that differs as much as possible from
Fig. 36. Thus it minimizes the sum x1,24 + x2,5 + x2,6 + · · · + x25,21 of the
182 variables that correspond to black pixels, over all 0-or-1-valued solutions
to the linear equations. If we use linear programming to minimize that sum
over 0 ≤ xi,j ≤ 1, without requiring the variables to be integers, we find almost
instantly that the minimum value is ≈ 31.38 under these relaxed conditions;
hence every black-and-white image must have at least 32 black pixels in common
with Fig. 36. Furthermore, Fig. 37(b) — which can be computed in a few seconds
by widely available IP solvers such as CPLEX — actually achieves this minimum.
By contrast, state-of-the-art SAT solvers as of 2013 had great difficulty finding
such an image, even when told that a 32-in-common solution is possible.

Parts (a) and (c) of Fig. 37 are, similarly, quite relevant to the current state
of the SAT-solving art: They represent hundreds of individual SAT instances,
where the first k variables are set to particular known values and we try to
find a solution with the next variable either 0 or 1, respectively. Several of the
subproblems that arose while computing rows 6 and 7 of Fig. 37(c) turned out to
be quite challenging, although resolvable in a few hours; and similar problems,
which correspond to different kinds of lexicographic order, apparently still lie
beyond the reach of contemporary SAT-oriented methods. Yet IP solvers polish
these problems off with ease. (See exercises 109 and 111.)

If we provide more information about an image, our chances of being able
to reconstruct it uniquely are naturally enhanced. For example, suppose we also
compute the numbers r′

i, c′
j , a′

d, and b′
d, which count the runs of 1s that occur

in each row, column, and diagonal. (We have r′
1 = 1, r′

2 = 2, r′
3 = 4, and

so on.) Given this additional data, we can show that Fig. 36 is the only solution,
because a suitable set of clauses turns out to be unsatisfiable. Exercise 117
explains one way by which (20) and (21) can be modified so that they provide
constraints based on the run counts. Furthermore, it isn’t difficult to express
even more detailed constraints, such as the assertion that “column 4 contains
runs of respective lengths (6, 1, 3),” as a sequence of clauses; see exercise 438.

SAT examples — summary. We’ve now seen convincing evidence that simple
Boolean clauses — ANDs of ORs of literals — are enormously versatile. Among
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The republic of letters is at present divided into three classes.

One writer, for instance, excels at a plan or a title-page,
another works away the body of the book,

and a third is a dab at an index.
— OLIVER GOLDSMITH, in The Bee (1759)

When an index entry refers to a page containing a relevant exercise, see also the answer to
that exercise for further information. An answer page is not indexed here unless it refers to a
topic not included in the statement of the exercise.

∂S (boundary set), 58, 154, 180, 188.
0–1 matrices, 106–109, 151, 176–177, 181,

see also Grid patterns.
1SAT, 49, 148.
2-colorability of hypergraphs, 185.
2SAT, 49, 51–54, 77–78, 80, 101, 144,

147, 149, 157, 159, 266.
3-regular graphs, 147, 154, 231.
3CNF, 3, 148.
3D MATCHING problem, 134, 225, 290–291.
3D visualizations, 116–118.
3SAT, 3–4, 47–51, 59, 60, 78–80, 93–94, 131,

135, 146, 148–151, 153, 182–184, 231.
4-cycles, 109–110, 178, 225, 274.
4-regular graphs, 290.
4SAT, 49, 51, 150, 290.
5SAT, 51, 58, 224, 291.
6SAT, 51.
7SAT, 51, 151.
8 queens problem, 25, 282.
90◦-rotational symmetry, 138, 202, 275.
100 test cases, 113–124, 127, 182, 184.
∅ (the empty set), 185.
ϵ (the empty clause), 3, 27, 185, 291.
ϵ (the empty string), 3, 85.
ϵ (the tolerance for convergence), 93–94.
ε (offset in heuristic scores), 126, 213.
νx (1s count), see Sideways sum.
π (circle ratio), see Pi.
ρ (damping factor for variable activity),

67, 125–127, 155, 286.
ρ (damping factor for reinforcement), 93–94.
ϱ (damping factor for clause activity),

74, 125–127, 286.
τ parameter, 125–127, 235, 286.
τ(a, b) function, 147.
ϕ (golden ratio), 146, 147, 160, 251.
ψ (agility threshold), 76–77, 124–127,

240, 286.
ψ (confidence level), 93, 255.

a.s.: almost surely, 149, 153.
AAAI: American Association for Artificial

Intelligence (founded in 1979);

Association for the Advancement of
Artificial Intelligence (since 2007), 67.

Absorbed clauses, 168.
Accordion solitaire, 282.
Achlioptas, Dimitris (Aqliìptac,

Dhmătrhc), 221.
ACT(c), 74, 125.
ACT(k), 66–68, 75, 125, 132.
Active path, 13.
Active ring, 32.
Activity scores, 67, 74–76, 125, 132,

155, 239.
Acyclic orientation, 161.
Adams, Douglas Noel (42), 126.
Adaptive control, 46, 126.
Addition, encoding of, 100–101, 114; see

also Full adders, Half adders.
Adjacency matrix, 281.
Adjacent pairs of letters, avoiding, 248.
AGILITY, 76, 158, 240.
Agility level, 76, 124, 158.
Agility threshold (ψ), 76–77, 124–127,

240, 286.
Ahmed, Tanbir (t;nbIr a;hemd), 5, 147.
Alava, Mikko Juhani, 80.
Aldous, David John, 219.
Algorithm L0, 39, 147.
Alice, 20–24, 139–141.
All-different constraint, 171.
All solutions, 143, 266.
Alon, Noga (OEL@ DBEP), 174, 254, 260.
Aloul, Fadi Ahmed (¿Ø£nň£m ŃÌČc ÝŁnş),

112, 281, 284.
Analysis of algorithms, 146–152,

158–160, 164.
Ancestors, 43.
AND operation, 9, 10, 13.

bitwise (x & y), 28, 29, 31, 37, 38, 66, 68,
76, 81, 196, 209–211, 220, 241.

André, Pascal, 131.
Anisimov, Anatoly Vasilievich (Anisimov,

Anatoliȷ Vasil~eviq), 249.
Annexstein, Fred Saul, 273.
Anti-maximal-element clauses, 56, 62, 97,

115, 153, 155, 157, 167.

293
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Antisymmetry, 178.
Appier dit Hanzelet, Jean, 57.
April Fool, 7.
Ardila Mantilla, Federico, 256.
Arithmetic progressions, 4, 114.

avoiding, 135.
Armies of queens, 180.
Asín Achá, Roberto Javier, 267.
Asserting clause, see Forcing clause.
Associative block design, 4.
Associative law, 227.
Asymmetric Boolean functions, 178.
Asymmetric elimination, 260.
Asymmetric tautology, see Certifiable

clauses.
Asymptotic methods, 53–54, 147–151,

164, 210, 226, 230, 283.
At-least-one constraint, 171, 265.
At-most-one constraint, 6, 97–99, 103,

104, 120, 134, 149, 170, 171, 238,
265, 266, 289.

ATPG: Automatic test pattern generation,
see Fault testing.

Atserias, Albert Perí, 262.
Audemard, Gilles, 72.
Aurifeuille, Léon François Antoine,

factors, 14.
Autarkies, 44, 71, 146, 152, 177, 214,

215, 217.
testing for, 146, 214.

Autarky principle, 44.
Automatic test pattern generation, see

Fault testing.
Automaton, 272.
Automorphisms, 108, 111, 180, 197,

236, 277.
Autosifting, 220.
Auxiliary variables, 6, 8, 15, 17, 60, 97, 101,

104, 105, 109, 135, 136, 148, 170–174,
186, 262, 268, 276–279, 280–281, 287.

AVAIL stack, 257.
Averages, 120.
Avoiding submatrices, 106–107.
Awkward trees, 227.
Axiom clauses, 54, 59, 100, 264, 266.

Bacchus, Fahiem, 73, 271.
Backjumping, 64, 68, 74, 132, 233, 236, 239.
Backtrack trees, see Search trees.
Backtracking, 4, 27–34, 38–39, 64, 105,

128, 129, 132, 151, 176, 190, 204,
219, 231, 236.

Bailleux, Olivier, 8, 26, 135, 137, 143,
174, 272.

Baker, Andrew Baer, 98.
Balas, Egon, 206.
Baldassi, Carlo, 93.
Ball, Walter William Rouse, 180.
Ballot numbers, 78.

Balls and urns, 221.
Banbara, Mutsunori ( ), 264,

267, 268.
Bartley, William Warren, III, 129.
Basket weavers, 141.
Batcher, Kenneth Edward, 266.
Baumert, Leonard Daniel, 265.
Bayardo, Roberto Xavier, Jr., 132.
Bayes, Thomas, networks, 95.
BCP: Boolean constraint propagation,

see Unit propagation.
BDD: A reduced, ordered binary decision

diagram, 17–18, 102, 103, 132, 137, 148,
174, 181, 188, 193, 194, 197, 202, 220.

BDD base, 219.
Belief propagation, 95.
Ben-Dor, Amir (XEC-OA XIN@), 289.
Ben-Sasson, Eli (OEYY -OA IL@), 57–58,

153, 231.
Benchmark tests, 35, 131–133, 139,

147, 190, 206.
100 test cases, iv, 113–124, 127, 182, 184.

Bender, Edward Anton, 250.
Beresin, May, 275.
Berghammer, Rudolf, 204.
BerkMin solver, 132.
Berlekamp, Elwyn Ralph, 17.
Berman, Piotr, 224.
Bernhart, Frank Reiff, 188.
Bernoulli, Jacques (= Jakob = James),

distribution, multivariate, 89.
Bethe, Hans Albrecht, 95.
Better reasons, 157.
Bias messages, 92.
Biased random bits, 12, 241.
Biere, Armin, v, 66, 76, 96, 129, 132, 166,

188, 258, 260, 261, 269, 280.
Big clauses, 145.
BIMP tables, 36–41, 43, 45, 124, 144, 235.
Binary addition, 114.
Binary clauses, 3, 6, 36, 124, 133, 155–156.
Binary constraints, 171.
Binary decoder, 179.
Binary implication graph, see Dependency

digraph, 41.
Binary matrices, 106–109, 151, 176–177,

181, see also Grid patterns.
Binary multiplication, 8.
Binary number system, 9, 98.
Binary recurrence relations, 189.
Binary relations, 56.
Binary search, 187.
Binary strings, 181.
Binary tensor contingency problem,

142, 151.
Binomial coefficients, 149.
Binomial convolutions, 250.
Bipartite graphs, 58, 177, 290.
Bipartite matching, 150.
Bipartite structure, 90.
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Birthday paradox, 49.
Bishops, 141.
Bitmaps, 17, 139.
Bitwise operations, 11, 12, 81, 158, 161,

241, 246, 258–259.
Black and blue principle, 146, 216.
Black and white principle, 146.
Blake, Archie, 130.
blit, 234, 236.
Block decomposition, 275.
Block designs, 106.
Block diagonal matrices, 177.
Blocked clauses, 102, 215, 260, 261, 269.

binary, 146.
elimination of, 167.

Blocked self-subsumption, 167.
Blocking digraph, 215.
Blocks in Life, 197, 200.
Bloom, Burton Howard, coding, 258.
Bloom, Thomas Frederick, 185.
Bob, 20–24, 115, 139–141.
Böhm, Max Joachim, 131.
Bollobás, Béla, 54, 220.
Bonacina, Maria Paola, 129.
book graphs, 126, 179.
Boole, George, 129.
Boolean chains, 9, 11, 12, 102, 114, 173.

optimum, 178–179.
Boolean formulas, 1.
Boolean functions, 14–16.

expressible in kCNF, 220.
synthesis of, 178–179.

Boppana, Ravi Babu, 174.
Borgs, Christian, 54.
Bottom-up algorithms, 252.
Boufkhad, Yacine (ŃĹşØp ÑÛŞnÚ), 8, 26, 131,

135, 137, 143, 174, 272.
Boundary sets, 58, 154, 180, 188.
Boundary variables, 230.
Bounded model checking, 16–24, 132,

137–141, 157, 179–180.
Branching heuristics, 105, 144, see also

Decision literals.
Branching programs, 102, 173, 174.
Branchless computation, 242.
Braunstein, Alfredo, 90, 91, 256.
Breadth-first search, 37, 43, 68, 130, 235.
Break count, 79.
Breaking symmetries, vii, 5, 19, 105–114,

138, 176–181, 187, 188, 190–192, 238,
267, 281–283, 285, 288–290.

in graph coloring, 99–100, 114, 171,
179, 187.

Broadcasting, 170.
Broadword computations, 11, 12, 158,

161, 246, 258.
Brown, Cynthia Ann Blocher, 30, 32,

131, 151, 226.
Brown, Thomas Craig, 185.

Brummayer, Robert Daniel, 269.
Brunetti, Sara, 206.
Bryant, Randal Everitt, v, 7, 187.
BST(l), 211.
BSTAMP counter, 211.
Buckingham, David John, 197, 200.
Buddy system, 36, 144, 235.
Bugrara, Khaled Mohamed

(ÒŐmŔŕØpm ŃÌĎË Ń£nĞ), 226.
Bugs, 16, 69, 77, 133, 240.
Bulnes-Rozas, Juan Bautista, 215.
Bumped processes, 21–22, 140, 202.
Bundala, Daniel, 196.
Burney, Charles, viii.
Burns, James Edward, 204.
Buro, Michael, 131.
Buss, Samuel Rudolph, v, 153, 270.
Bystanders, see Easy clauses.

C-SAT solver, 131.
Cache memories, 24.
Calabro, Chris, 288.
Candidate variables, 40–44, 131, 214.
Canonical forms, 138, 248.
Cardinality constraints, 7–8, 26, 104, 106,

113, 114, 121, 135, 143, 187, 188,
193, 194, 196, 204, 285.

for intervals, 100, 190, 280.
Carlier, Jacques, 131.
Carlitz, Leonard, 162.
Carriers in Life, 197, 200.
Carroll, Lewis (= Dodgson, Charles

Lutwidge), 129–130.
Carry bits, 9, 12, 101, 192, 193.
Cartier, Pierre Emile, 83, 86, 163.
Case analysis, 27, 130.
CDCL (conflict driven clause learning)

solvers, 62–71, 103, 121, 132–133, 155.
combined with lookahead solvers, 129.
compared to lookahead solvers, 98–100,

118–121, 182, 290.
Cells of memory, 28, 122–124.
Cellular automata, 17, 202.
Certifiable clauses, 168, 260.
Certificates of unsatisfiability, 69–71,

157, 169, 176, 178.
Chaff solver, 67, 132.
Chain rule for conditional probability, 254.
Chains, 276, see also Boolean chains,

Resolution chains, s-chains.
Channel assignment, 136.
Channeling clauses, 264.
Characteristic polynomial of a matrix,

163, 218.
Chavas, Joël, 91.
Chayes, Jennifer Tour, 54.
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Chebyshev (= Tschebyscheff), Pafnutii
Lvovich (Qebyxev, Pafnut˛ȷ
L~voviq = Qebyxev, Pafnutiȷ
L~voviq), inequality, 221.

polynomials, 247.
Cheshire Tom, 24–26, 115, 142–143.
Chess, 7, 170.
Chessboards, 18, 25, 99, 106, 115, 138, 180.
Chiral symmetry (rotation but not

reflection), 138, 202, 275.
Chordal graphs, 163–164.
Chromatic number χ(G), 99, 135–136,

147, 174, 281.
Chung Graham, Fan Rong King

( ), 283.
Chvátal, Václav (= Vašek), 5, 52, 59, 185.
Cimatti, Alessandro, 132.
Circuits, Boolean, 10, 101–103, 114, see

also Boolean chains.
Circular lists, 32.
Clarke, Edmund Melson, Jr., 132.
Clashing pairs of letters, 84.
Clausal proofs, see Certificates of

unsatisfiability.
Clause activity scores, 74, 239.
Clause-learning algorithms, 61–62, 103,

118, 121, 132–133, 154–155.
Clauses per literal, 150, 231; see also

Density of clauses.
Claw graph, 249.
Clichés, 76.
Clique Local Lemma, 165.
Cliques, 81, 100, 162, 167, 169, 171,

179, 190.
covering by, 165.

Closest strings, 114, 181, 182.
Clusters, 166.
CNF: Conjunctive normal form, 9, 101,

154, 173, 193, 196.
Cocomparability graphs, 249, 250.
Coe, Timothy Vance, 201.
Coexisting armies of queens, 180.
Cographs, 163, 250.
Cohen, Bram, 79, 246.
Coja-Oghlan, Amin, 221.
Colexicographic order, 206, 278.
Coloring a graph, 6–7, 99–100, 153, 179, 260.

fractional, 135.
multiple, 135.
of queens, 99–100, 114–115, 171.
radio, 136.

Column sums, 151.
Commutative law, 27, 180, 227.

partial, 83, 250–251.
Comparator modules, 115, 137.
Comparison, lexicographic, 101, 111–113.
Comparison of running times, 34–35, 39,

69, 97–100, 105–107, 110, 112, 118–128,
182, 184, 218, 237, 264, 281, 290.

Compensation resolvents, 39, 144, 147.
Competitions, 131–133, 291.
Complement of a graph, 134.
Complementation of unary representations,

100.
Complemented literals, 2–4, 37, 62–64,

78, 111, 210, 266.
Complete binary trees, 8, 135, 230.
Complete bipartite graphs Km,n, 250, 254.
Complete graphs Kn, 153, 178, 186, 262.
Complete k-partite graphs, 250, 262.
Complete t-ary trees, 160.
Compressing, see Purging unhelpful clauses.
Conditional autarkies, 215.
Conditional expectation inequality, 150.
Conditional symmetries, 107, see

Endomorphisms.
Conditioning operations (F | l and F |L), 27,

96, 143, 157, see Unit conditioning.
Cones in trace theory, 87.
Confidence level (ψ), 93, 255.
Conflict clauses, 63, 70, 171; see also

Preclusion clauses.
Conflict driven clause learning, 62–69,

103, 121, 132–133, 155.
Conflicts, 62, 124, 132.
Conjunctive normal form, 1, 9, 101,

154, 173, 193, 196.
irredundant, 257.

Conjunctive prime form, 104.
Connected graphs, 177.
Connectedness testing, 169–170.
Connection puzzles, 170.
CoNP-complete problems, 3, 207.
Consecutive 1s, 88, 175, 254.
Consensus of implicants, 130.
Consistent Boolean formulas, see

Satisfiable formulas.
Consistent partial assignments, 30, 165.
Constrained variables in partial assignments,

165–166.
Contests, 131–132.
Context free languages, 175.
Contiguous United States, 136.
Contingency tables, binary, 142.

3D, 151.
Convex functions, 216.
Convex hulls, 247.
Convolution principle, 250.
Conway, John Horton, 17, 139, 201.
Cook, Stephen Arthur, 61, 62, 130–131,

154, 229, 237.
cook clauses, 157.
Cooper, Alec Steven, 285.
Core assignments, 166.
Core of Horn clauses, 174, 216.
Coupon collector’s test, 220.
Covering assignments, 166, 221, 255.
Covering problems, 2, 193, 194, see also

Domino coverings.
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Covering strings, 181.
CPLEX system, 26, 289.
CPU: Central Processing Unit (one

computer thread), 121.
Crawford, James Melton, Jr., 98, 113.
Cray 2 computer, 137.
Critical sections, 21–23, 140–141.
Crossover point, see Threshold of

satisfiability.
Crusoe (= Kreutznaer), Robinson, vii.
CSP: The constraint satisfaction

problem, 283.
Cube and conquer method, 129.
Cubic graphs (3-regular, trivalent),

147, 154, 231.
Cufflink pattern, 255.
Culver, Clayton Lee, 185.
Cut rule, 59.
Cutoff parameters, 41, 145.
Cutting planes, 184, 206.
Cycle detection problem, 260.
Cycle graphs Cn, 135, 160, 262.
Cycle structure of a permutation, 108,

112–113, 163, 178, 277.
Cyclic DPLL algorithm, 33.
Cyclic patterns, 19.
Cyclic permutations, 163.

da Vinci, Leonardo di ser Piero, 7.
Dadda, Luigi, 9, 114, 136, 173.
Dags: Directed acyclic graphs, 54.

of resolutions, 54–56, 70.
Damping factors, 46, 67, 74, 76, 93–94,

125, 126, 155.
Dancing links, 5, 121, 134, 208, 288, 291.
Dantchev, Stefan Stoyanov (Danqev,

Stefan Stofflnov), 110.
Darwiche, Adnan Youssef

(ŹÚŒŐŁ ţŞØÚ ÎnÏŃń), 67, 262.
Data structures, 28–34, 36–38, 43, 66–67,

80, 95–96, 143–145, 155–156, 159,
167, 238, 273.

Davis, Martin David, 9, 31–32, 130, 298.
Dawson, Thomas Rayner, 170.
De Morgan, Augustus, laws, 3.
de Vries, Sven, 206.
de Wilde, Boris, 213.
Deadlock, 22–23.
Debugging, 69, 77.
Dechter, Rina Kahana (XHKC @PDK DPIX), 67.
Decision literals, 62, 69, 124, 132.
Decision trees, see Search trees.
Decomposable matrices, 177.
Default parameters, 93, 125–126.
Default values of gates, 11.
Definite Horn clauses, 174.
Defoe, Daniel (= Daniel Foe), vii.
Degree of a vertex, 191.
Degrees of truth, 37–39, 42–43, 45–46, 216.

Dekker, Theodorus Jozef, 140.
Del Lungo, Alberto, 206.
Delayer, 55–56, 152–153.
Deletion from a heap, 234.
Delta sequence, 290.
Demenkov, Evgeny Alexandrovich

(Demenkov, Evgeniȷ Aleksandroviq),
280.

Density of clauses: The number of clauses
per variable, 50–51, 150, 231, 288.

Dependence graph in trace theory, 248.
Dependence of literals, 63.
Dependency digraph (of literals), 41, 131,

168, 215, 237, 260.
Dependency-directed backtracking, see

Backjumping.
Dependency graph (of events), 82, 164, 165.
Dependency on a variable, 137.
Depth-first search, 130.
Dequen, Gilles Maurice Marceau, 131.
Determinants, 162, 163, 251.
Deterministic algorithm, 17, 120.
Deventer, Mattijs Oskar van, 290.
DFAIL, 46, 147.
Dfalse literals, 45.
Diagonals of a matrix, 24–25, 141–142.
Diagram of a trace, 84.
Díaz Cort, José Maria (= Josep), 51.
Dick, William Brisbane, 180.
Difficult instances of SAT, 5, 14, 26, 51,

55–59, 118–121, 153–154, 184, 190,
192, 197, 206, 280.

Digital tomography, 24–26, 115, 141–143,
167, 285.

Digraphs, 54, 108, 161, 162, 263, see also
Blocking digraph, Dependency digraph,
Implication digraph.

Dijkstra, Edsger Wybe, 22, 202, 204.
DIMACS: Center for Discrete Mathematics

and Theoretical Computer Science, 131.
DIMACS: DIMACS Series in Discrete

Mathematics and Theoretical Computer
Science, inaugurated in 1990.

Ding, Jian ( ), 51.
Direct encoding, 98, 114, 171, 186,

264, 265, 281.
Direct sum of graphs or matrices, 162, 177.
Directed acyclic graphs of resolutions,

54–56, 70.
Directed graphs, see Digraphs.
Discarding the previous learned clause,

72, 156.
Discrepancy patterns, 114, 182.
Disjoint shortest paths, 276.
Disjunctive normal forms, 14, 115,

130, 195, 257.
Distance d(u, v) in a graph, 262.
Distinct literals, 2.
Division of traces, 85, 161, 250.
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DNF: Disjunctive normal form, 14, 115,
130, 195, 257.

Dodgson, Charles Lutwidge, 129–130.
Domino coverings, 110, 114, 115, 143,

177, 178.
Don’t-cares, 194, 280.
Double clique hints, 100, 114, 171.
Double coloring, 115, 135.
Double lookahead, 45–46, 126, 131, 286.
Double order, 214.
Double truth, 45.
Doubly linked lists, 28, 257, 259.
Downhill resolution, 96, 166.
Downhill transformations, 95.
Doyle, Arthur Ignatius Conan, 72.
DPLL (Davis, Putnam, Logemann,

Loveland) algorithm, 32–33, 62.
with lookahead, 38, 131.

DT (double truth), 45.
Dtrue literals, 45.
Dual of a Boolean function, 130, 174.
Dubois, Olivier, 131.
Dudeney, Henry Ernest, 114, 263.
Dufour, Mark, 37.
Dull, Brutus Cyclops, 181.
Durfee, William Pitt, square, 276.
Dynamic storage allocation, 144.
Dynamical system, discrete, 16.

e, as source of “random” data, 12, 193.
Eager data structures, 30, 36, 156.
Easy clauses, 149.
Eaters in Life, 20, 139.
Eén, Niklas Göran, v, 67, 96, 166,

203, 260, 268.
Ehlers, Thorsten, 196.
Eightfold symmetry, 138, 198.
Elegance, 35–36, 196.
Elimination of clauses, 167–168; see also

Purging unhelpful clauses.
Elimination of variables, 60–61, 95–97, 101,

102, 129, 130, 154–155, 166–168, 173,
174, 256–257, 259–260, 270, 271.

Embedded graphs, 169, 262.
Empilements, 84, 161, 248.
Empirical performance measurements,

122–124.
Empty clause (ϵ), 3, 27, 185.
Empty list, representation of, 33, 210.
Empty partial assignment, 166.
Empty set (∅), 185.
Empty string (ϵ), 3, 85.
Encoding into clauses, 6, 18, 97–105, 120,

134, 170, 179, 198, 202.
ternary data, 100, 141, 179.

Endomorphisms, 107–111, 177–178,
181, 281, 290.

Equal sums, encoding of, 174.
Equally spaced 1s, 4, 114, 135; see

also waerden .

Equivalence classes in trace theory, 84.
Equivalence of Boolean functions, 178.
Erdős, Pál (= Paul), 81, 107, 190, 281.

discrepancy patterns, 114, 179, 182.
Erp rules, 95–96, 166–168, 259.
Evaluation of Boolean functions, 137,

178–179, 194.
Even-length cycles, 277.
Even-odd endomorphisms, 110, 177–178.
Exact cover problems, vii, 2, 5–6, 28, 134,

183, 186, 219, 225, 257, 291.
by pairs (perfect matchings), 109–110,

see also Domino coverings.
by triples (3D MATCHING), 134,

225, 290–291.
fractional, 135–136.

Exclusion clauses, 6, 21, 99, 114, 134,
149, 153, 238, 260, 289.

Exclusive or, ternary, 136.
Existential quantifiers, 60.
Expander graphs, 58, 231.
Exploitation stack, 259.
Exploration phase of lookahead, 40, 43–44.
Exponential time, 144.

hypothesis, 288.
Extended resolution, 60, 71, 133, 154,

168, 215.
Extreme distribution, 87, 89, 163.

factor fifo(m,n, z), 10, 12, 114, 184, 192.
factor lifo(m,n, z), 10, 114, 184, 192.
factor rand(m,n, z, s), 10, 184.
Factorization, 8–10, 136, 184, 192.

of traces, 86, 162, 250.
Failed literals, 97, 167, 175, 269.
Fallacious reasoning, 16, 284.
False hits, 258.
False literals preferred, 31, 33, 67,

125–127, 286.
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Path detection, 169.
Path graphs Pn, 84, 160, 253.
Patience, see Solitaire games.
Paturi, Ramamohan ( gĄĂeîĂoŤZ ÑVĹÝ), 288.
Paul, Jerome Larson, 5.
Paull, Marvin Cohen, 148.
PCk, 176, 178.
Pearl, Judea (LXT DCEDI), 95.
Pegden, Wesley Alden, v, 164, 253.
Peierls, Rudolf Ernst, 95.
Peres, Yuval (QXT LAEI), 221.
Pérez Giménez, Xavier, 51.
Perfect matchings in a graph, 109–110, 177.
Permanent of a matrix, 183, 251.
Permutation polynomial of a set, 163.
Permutation posets, 213.
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Permutations, 105, 265.
signed, see Signed permutations.
weighted, 163.

Permuting variables and/or complementing
them, see Signed permutations.

Peterson, Gary Lynn, 23, 115, 140, 204.
Petrie, Karen Elizabeth Jefferson, 283.
Phase saving, 67, 75.
Phase transitions, 50–52, 149–150.
Phi (ϕ), 146, 147, 160, 251.
Phoenix in Life, 198, 207.
Pi (π), as source of “random” data, 12,

46, 108, 115, 147, 184, 193, 286;
see also Pi function.

Pi function, 102, 174.
Pieces, in trace theory, 84–87.
Pigeonhole principle, 57.

clauses for, 57–59, 105–106, 113, 153,
176, 181, 186, 265.

Pikhurko, Oleg Bohdan (P˛hurko, Oleg
Bogdanoviq), 285.

Pile sums, 151.
Pincusians, 133.
Pipatsrisawat, Thammanit (= Knot)

(¿Ô¿ÑšźìÈÃÕÊÇÑÊťť, ÿÃÃÁźÔţť (= źÍţ)), 67, 262.
Pixel images, 200; see also Grid patterns.
Plaisted, David Alan, 102.
Planning, 132.
Playing cards, 114, 180, 282.
Points, abstracted, 106.
Poison cards, 282.
Poisson, Siméon Denis, probability, 225.
Polarities, 3, 67, 76, 207, 237.
Pólya, György (= George), theorem, 284.
Polynomials in trace theory, 85.
Population in Life, 19.
Portfolio solvers, 133.
Posets, see Partial orderings.
Positive autarkies, 146.
Positive j-clauses, 157.
Positive literals, 2, 132, 146.
Posthoff, Christian, 275.
Postorder, 42–43, 214.
Postprocessor, 96.
PostScript language, v.
Preclusion clauses, 99, 171, 186.
Preorder, 42–43, 214.
Preprocessing of clauses, 95–97, 103,

166–168, 182, 269, 271, 278.
Preselection phase of lookahead, 40–42, 147.
Prestwich, Steven David, 264.
Primary variables, 104, 105.
Prime clauses, 174, 270, 273.
Prime implicants, 281.
Pringsheim, Alfred Israel, 88, 164.
Prins, Jan Fokko, 267.
Probabilistic method, 81.
Probability of satisfiability, 47–54.
prod(m,n), 12–14, 114, 137.

Production rules, 175.
Profile of a search tree, 151.
Progress, display of, 30, 145, 155.
Progress saving, 67, see Phase saving.
Projection of a path, 184.
Projective plane, 274.
Propagation, kth order, 175–176, 273.
Propagation completeness (UC1), 176.
Proper ancestors, 164.
Proto truth, 37, 42.
Prover–Delayer game, 55–56, 152–153.
PSATO solver, 159.
Pseudo-Boolean constraints, see Threshold

functions.
PT (proto truth), 37, 42.
Pudlák, Pavel, 55.
Puget, Jean-François, 113.
Purdom, Paul Walton, Jr., 30, 32,

131, 151, 226.
Pure cycles, 140.
Pure literals, 29, 31, 32, 34, 44, 60, 130,

135, 146, 152, 208, 215, 227, 256,
259, 268, 269, 275.

Purging unhelpful clauses, 68, 71–75, 124,
132, 157, 158, 168, 182, 184, 235.

threshold for, 74, 125, 127.
Putnam, Hilary, 9, 32, 130, 298.
Pyramids in trace theory, 87, 162.

q.s.: quite surely, 149, 153, 169.
QDD: A quasi-BDD, 188.
Quad-free matrices, 106–107, 113,

176–177, 274, 284.
Quantified formulas, 60, 154.
Queen graphs, 25, 99–100, 114–115,

120, 171, 180, 181.
Quenchable graphs, 179–180, 281.
Quick, Jonathan Horatio, 181.
Quilt patterns, 198.
Quimper, Claude-Guy, 272.
Quine, Willard Van Orman, 129, 130.

R(G) (Local Lemma bounds), 82, 87–90,
160, 163–165.

Radio colorings, 136.
Radix-d representation, 173.
Rado, Richard, 191.
Ramakrishnan, Kajamalai Gopalaswamy, 16.
raman graphs, 231.
Ramani, Arathi (BmgŮ ĚČŰ), 112,

281, 284.
Ramanujan Iyengar, Srinivasa (ßŸĹWŁ

ĚWČWÈ{h IĎaxWm), graphs, 154;
see also raman graphs.

Ramos, Antonio, 75.
Ramsey, Frank Plumpton, theorem, 81.
rand , 39–40, 46, 50, 115, 147, 182.
Random bits, biased, 12, 241.
Random choices, 12.
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Random decision variables, 125–127,
155, 286.

Random graphs, 81.
Random permutations, 233.
Random satisfiability problems, 47–54,

91, 151.
2SAT, 51–54, 149.
3SAT, 39–40, 46–51, 59–60, 80, 93–94,

147–149, 153, 242.
kSAT, 49–51, 146, 148.

Random walks, 77–81, 125, 243.
Random words, 149.
Randomized methods, 77, 129, 182, 210.
RANGE scores, 74, 125–127, 158, 239.
RAT, see Resolution certifiable clauses.
Rauzy, Antoine Bertrand, 131, 215.
Reachability in a graph, 169.
Ready list, 32.
Real roots of polynomials, 163, 249.
Real truth, 37–39.
Reasons, 62, 72, 157, 165, 233.
Rebooting, 22.
Reckhow, Robert Allen, 61.
Recurrence relations, 151, 177, 189, 215, 243.
Recursive procedures, 27, 130, 172, 186, 233.
Recycling of clauses, 66, 124.
Reduction of clauses, 27, 143; see also

Simplification of clauses.
Redundant clauses, 257.
Redundant literals, 65, 155–156, 232, 234.
Redundant representations, 171.
Reed, Bruce Alan, 52.
Reflected ternary code, 290.
Reflection symmetries, 112, 138, 156.
Refutation chains, 57, 227.
Refutation trees, 152.
Refutations, 54–60, 70, 110, 152; see also

Certificates of unsatisfiability.
Regular expressions, 174–175.
Regular resolution, 55, 152, 231.
Reinforcement messages, 91–93.
Reliability polynomials, 83.
Reluctant doubling, iv, 77, 80–81, 159–160.
Reluctant Fibonacci sequence, 160.
Renamed Horn clauses, 176, 263.
Repeated clauses, 49.
Replacement principle, 96.
Representation of Boolean functions, 104,

see Encoding into clauses.
Representing three states with two bits, 179.
Rescaled activity scores, 67.
Resende, see Guilherme De Carvalho

Resende.
Resizing of data structures, 210.
Resolution certifiable clauses, 261.
Resolution chains, 57–59, 152, 153, 227.
Resolution of clauses, 54–65, 70, 101, 129,

130, 144, 167, 185, 215, 224, 256.
implementation of, 167.

Resolution refutations, 54–60, 70, 110, 152;
see also Certificates of unsatisfiability.

extended, 60, 71, 133, 154, 168, 215.
regular, 55, 152, 231.
treelike, 55–56, 152–153.

Resolvable clauses, 164.
Resolvent (C′ ⋄ C′′), 54, 130, 152.
Restarting, 80–81, 95, 125, 132.

and flushing literals, 68, 75–77, 124, 132,
157, 158, 169, 234, 246.

Restricted growth strings, 179.
Restricted pigeonhole principle, 58.
Reusing the trail, 75.
Reverse unit propagation, 71.
Revolving door Gray code, 282.
Reynaud, Gérard, 226.
Richards, Keith, 1.
Rickard, John, 290.
Right division of traces, 85, 161.
Right factor of a trace, 161.
Riis, Søren Møller, 110.
Ripoff, Robert Iosifovich (Ripov, Robert

Iosifoviq), 7.
Rivest, Ronald Linn, clauses, 4, 55,

70, 134, 144, 182.
Roberts, Fred Stephen, 136.
Robertson, Aaron Jon, 185.
Robinson, Gilbert de Beauregard, 275.
Robinson, John Alan, 59, 96, 227.
Rodríguez Carbonell, Enric, 267.
Rokicki, Tomas Gerhard, 200.
Rooij, Iris van, 207.
Rook paths, 206.
Rookwise connected cells, 170.
Ross, Kenneth Andrew, 282.
Rotational symmetry, 138, 202, 275.
Rotors in Life, 138.
Roussel, Olivier Michel Joseph, 132, 272.
Routing, disjoint, 170.
Row sums, 151.
Roy, Amitabha (aimt;& r;Y), 113.
RT (real truth), 37–39, 43.
Ruler doubling, 160.
Ruler of Fibonaccis, 246.
Running times, 89–90.

comparison of, 34–35, 39, 69, 97–100,
105–107, 110, 112, 118–128, 182, 184,
218, 237, 264, 281, 290.

mean versus median, 120.
worst case, 144, 146, 154.

Runs of 1s, 26, 143, 175.

s-chains, 52–53, 149.
s-snares, 53, 149.
S1(y1, . . . , yp), 6.
Sk(m,n), 50–54.
Sk,n, 49–51, 148, 149.
S≤r(x1, . . . , xn) and S≥r(x1, . . . , xn), 8,

see Cardinality constraints.
Saddle point method, 226.
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Sahni, Sartaj Kumar (srtAj k̀mAr
sAhnF), 268.

Saïs, Lakhdar (ÓayÓ laØĂar, ŢÚnŞ

ŔăĹ£), 236, 289.
Sakallah, Karem Ahmad (?műnŞ ŃÌČc

ÊŐnż), 112, 132, 281, 284.
Salhi, Yakoub (ÞĎ£nŻ oØÿňÚ), 289.
Sampling with and without replacement,

49–50, 132, 226.
Samson, Edward Walter, 60, 130.
SAT: The satisfiability problem, 3.
SAT solvers, 1, 131–133.
SATexamples.tgz, iv, 118.
Satisfiable formulas, 1.

variability in performance, 35, 120–121,
128, 287.

Satisfiability, 1–184.
history, 32, 59–60, 105, 129–133.
thresholds for, 50–54, 91, 148–149, 221.

Satisfiability-preserving transformations,
107–113.

Satisfying assignments, 1, 30, 143–144,
166, 214, 219.

SATzilla solver, 132–133.
Schaefer, Thomas Jerome, 289.
Schensted, Craige Eugene (= Ea Ea), 275.
Schlipf, John Stewart, 273.
Schmitt, John Roger, 285.
Schoenfield, Jon Ellis, 192.
Schöning, Uwe, 78.
Schrag, Robert Carl, 132.
Schroeppel, Richard Crabtree, 197.
Schwarzkopf, Bernd, 282.
Scott, Alexander David, 224, 251, 252.
Scott, Allan Edward Jolicoeur, 207.
Scott, Sidney Harbron, 191.
Scoville, Richard Arthur, 162.
Search trees, 28–29, 32–34, 124, 152.

expected size, 151–152.
optimum, 144.

Second moment principle, 54, 221, 222.
Seitz, Simo Sakari, 80.
Self-subsumption, 96, 167, 168, 257.
Selman, Bart, 50, 79, 132.
Semimodular lattices, 255–256.
Sentinel values, 259.
Sequential consistency, 24.
Sequential lists, 36–37, 144.
Sequents, 59.
Serial correlation coefficients, 143.
Set partitions, 220.
SGB, see Stanford GraphBase.
Shadows of paths, 184.
Shandy, Tristram, iii.
Sharp thresholds, 51–52, 149.
Shearer, James Bergheim, 82, 87, 160.
Sheeran, Mary, 203.
Shlyakhter, Ilya Alexander (Xlfflhter,

Il~ffl Aleksandroviq), 284.

Shmoys, David Bernard, 267.
Shortest paths, 262.
Shortz, William Frederic, v.
SIAM: The Society for Industrial and

Applied Mathematics, 204.
Sideways sum (νx): Sum of binary digits,

114, 143, 179, 195, 279.
second order (ν(2)x), 143.

Sifting, 219, 220.
Siftup in a heap, 234.
Signature of a clause, 72, 158.
Signature of a literal, 258.
Signed mappings, 180–181.
Signed permutations, 4, 111, 178.

involutions, 112–113, 180, 277–278.
Silva, see Marques da Silva.
Silver, Stephen Andrew, 138, 200.
Simmons, Gustavus James, 192.
Simon, Laurent Dominique, 72, 132.
Simple cycles and paths, 23–24, 140.
simplex graphs, 136.
Simplification of clauses, 65, 155, 232; see

also Preprocessing of clauses.
Sims, Charles Coffin, tables, 283.
Simultaneous read/write, 141.
Simultaneous write/write, 141.
Sinclair, Alistair, 80, 159, 256.
Singh, Satnam, 203.
Single lookahead unit resolution, 105, 176.
Single-stuck-at faults, 10–14, 114, 136–137.
Sink: A vertex with no successor, 87, 214.

components, 108–110.
Sinz, Carsten Michael, v, 8, 117, 118,

135, 174, 189, 280.
Skip Two solitaire, 282.
Slack, in trace theory, 88, 251.
Slisenko (= Slissenko), Anatol Olesievitch

(Slisenko, Anatol~ Oles~eviq), 59.
SLS: Stochastic local search, 77.
SLUR algorithm, 105, 176.
Sly, Allan Murray, 51.
Smile, 207.
Smith, Barbara Mary, 283.
Snake dance, 138.
Snakes, 52–54, 149.
Snares, 52–54, 149.
Snark graphs, 69, 147, 153, 157.
Snevily, Hunter Saint Clair, 5.
Socrates, son of Sophroniscus of

Alopece (SwkrĹthc SwfrwnÐskou

>Alwpekĺjen), 129.
Soft clauses, 168.
Sokal, Alan David, 251, 252.
Solitaire games, 180, 282.
Solutions, number of, 48, 219.
Somenzi, Fabio, 236.
Sörensson, Niklas Kristofer, v, 67,

155, 203, 268.
Sorting networks, 115, 137, 203, 263, 266.
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Source: A vertex with no predecessor,
87, 252.

Spaceships in Life, 139, 201.
Spanning trees, 281, 290.
Sparse encoding, see Direct encoding.
Speckenmeyer, Ewald, 131, 215.
Spence, Ivor Thomas Arthur, 290.
Spencer, Joel Harold, 81, 82, 254.
Sperner, Emanuel, k-families, 276.
Spiral order, 206.
Stable Life configurations, 19, 197.
Stable partial assignments, 165–166.
Stacks, 37–39, 43.
Stacking the pieces, 84–85.
Stålmarck, Gunnar Martin Natanael, 56,

132, 153, 203, 232, 238.
Stamm-Wilbrandt, Hermann, 131.
STAMP(l), 258.
Stamping of data, 37–38, 64, 66, 145,

155, 211, 236, 258–260.
Standard deviation, 48, 240.
Stanford GraphBase, ii, 12, 13, 126,

179, 214, 231.
Stanford Information Systems Laboratory, v.
Stanford University, 282.
Stanley, Richard Peter, 275.
Starfish graphs, 249.
Starvation, 22–24, 115, 140, 141.
Statistical mechanics, 90.
Stators in Life, 138.
Stege, Ulrike, 207.
Stein, Clifford Seth, 267.
Steinbach, Heinz Bernd, 275.
Steiner, Jacob, tree packing, 264.

triple systems, 106, 274.
Sterne, Laurence, iii.
Stickel, Mark Edward, 132.
Sticking values, 67, see Phase saving.
Still Life, 19, 138, 200.
Stirling, James, approximation, 221, 240.

subset numbers, 149, 220, 226.
Stochastic local search, 77.
Stopping time, 48–50, 148.
Strahler, Arthur Newell, numbers, 152.
Strengthening a clause, 96, 156, 259–260.
Stříbrná, Jitka, 224.
Strichman, Ofer (ONKIXHY XTER), 203.
Strictly distinct literals, 2–3, 52, 165.
Strings generalized to traces, 83.
Strong components: Strongly connected

components, 41–42, 52–53, 108,
131, 215, 221, 263.

Strong exponential time hypothesis, 183.
Strong product of graphs, 134.
Strongly balanced sequences, 179.
Stuck-at faults, single, 10–14, 114, 136–137.
Stützle, Thomas Günter, 125.
Subadditive law, 59.
Subcubes, 148.

Subforests, 42.
Subinterval constraints, 190.
Submatrices, 106–109, 177.
Subset sum problem, 268.
Substitution, 257.
Subsumption of clauses, 61, 96, 124, 152,

155, 156, 166–168, 181, 269.
implementation, 167, 259.
on-the-fly, 124, 156.

Subtraction, encoding of, 100.
Sudoku, 183, 225.
Summation by parts, 48.
Summers, Jason Edward, 200.
Sun, Nike ( ), 51.
Support clauses, 99, 114, 171.
Survey propagation, 51, 90–95, 165–166, 213.
Swaminathan, Ramasubramanian (= Ram)

Pattu (ĚWČÂjĚČŰĎh ĆeÅ

zĹWŻĄWh), 273.
Swapping to the front, 211, 242.
Sweep of a matrix, 108–109, 177.
Swoop of a matrix problem, 109.
Syllogisms, 129.
Symeater in Life, 200.
Symmetric Boolean functions, 179, 207, 219,

270; see also Cardinality constraints.
S≤1, see At-most-one constraint.
S1, 6, 220.
S≥1, see At-least-one constraint.
Sr, 135, 179, 256.

Symmetric threshold functions, see
Cardinality constraints.

Symmetrical clauses, 105–106, 156.
Symmetrical solutions, 138, 183, 274.
Symmetries of Boolean functions, 178.
Symmetry breaking, vii, 5, 105–114, 138,

176–181, 187, 188, 190–192, 238, 267,
281–283, 285, 288–290.

in graph coloring, 99–100, 114, 171,
179, 187.

Symmetry from asymmetry, 19, 201.
Synthesis of Boolean functions, 137,

178–179, 194.
Szabó, Tibor András, 224.
Szegedy, Márió, 90, 161, 255.
Szeider, Stefan Hans, 224, 284.
Szemerédi, Endre, 59.
Szpankowski, Wojciech, 225.

t-snakes, 53, 54, 149.
Tµ: teramems = trillions of memory

accesses, 110, 121, 126, 265, 281.
Tableaux, 275.
Taga, Akiko ( ), 264, 267.
Tajima, Hiroshi ( ), 100.
Tak, Peter van der, 75.
Takaki, Kazuya ( ), 224.
Tamura, Naoyuki ( ), 100, 171,

264, 267, 268.
“Take account,” 37, 43, 45–46, 217, 235.
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Tanjo, Tomoya ( ), 268.
TAOCP: The Art of Computer

Programming, problem, 115, 169.
Tape records, 32.
Tardos, Gábor, 82, 224, 254.
Tarjan, Robert Endre, 41, 42, 214, 217.
Tarnished wires, 13, 193.
Tatami tilings, 115, 143.
TAUT: The tautology problem, 3, 129, 130.
Tautological clause (℘), 3, 58, 60, 152,

180, 215, 226–228, 258.
Tensors, 151.
Teramem (Tµ): One trillion memory

accesses, 40, 106, 107, 110, 217,
218, 286.

Ternary clauses, 3–6, 36, 118, 131, 183;
see also 3SAT.

Ternary numbers, 100, 141, 179.
Ternary operations, 9, 136.
Territory sets, 84, 161, 163.
Test cases, 113–124.

capsule summaries, 114–115.
Test patterns, see Fault testing.
Tetris, 84.
Theobald, Gavin Alexander, 190.
Theory and practice, 109.
Three-coloring problems, see Flower snarks.
Threshold functions, 100–101, 175.
Threshold of satisfiability, 50–54, 91,

148–149, 221.
Threshold parameter Θ, 126, 213, 286.
Thurley, Marc, 262.
Tie-breakers, 74, 239.
Tiling a floor, 115, 138, 143, 199.
Time stamps, see Stamping of data.
Timeouts, 120.
TIMP tables, 36–40, 43, 45, 144–145.
To-do stack, 259.
Tomographically balanced matrices, 141.
Tomography, 24–26, 115, 141–143, 167, 285.
Top-down algorithms, 252.
Topological sorting, 85, 248.
Toruses, 134, 138, 200.
Touched clauses, 44.
Touched variables, 259.
Tovey, Craig Aaron, 150, 223.
Tower of Babel solitaire, 282.
Tower of London solitaire, 282.
Trace of a matrix: The sum of its diagonal

elements, 108, 218.
Traces (generalized strings), 83–90,

161–162, 252, 254.
Tradeoffs, 125–126.
Trail (a basic data structure for Algorithm

C), 62–65, 68, 72, 124, 166, 236, 238.
reusing, 75.

Training sets, 15–16, 115, 125–127, 133,
137, 182, 286.

Transitions between states, 16–24,
175, 202, 218.

Transitive law, 56, 228.
Tree-based lookahead, see Lookahead forest.
Tree function, 230.
Tree-ordered graphs, 163–164.
Treelike resolution, 55–56, 152–153.
Treengeling solver, 121.
Triangle-free graphs, 167.
Triangles (3-cliques), 167, 238, 264.
Triangular grids, 136.
Tribonacci numbers, 216.
Triggers, 46, 126.
Trivalent graphs, 147, 154, 231.
Trivial clauses, 124–127, 156, 236, 239.
Trivially satisfiable clauses, 3.
Truemper, Klaus, 273.
Truszczyński, Mirosław (= Mirek)

Janusz, 216.
Truth, degrees of, 37–39, 42–43, 45–46, 216.
Truth tables, 129–130, 179, 194, 220, 277.
Tseytin, Gregory Samuelovich (Ceȷtin,

Grigoriȷ Camuiloviq), 9, 59–60, 71,
133, 152, 154, 168, 178, 215, 231, 290.

encodings, 9, 17, 101–102, 136, 173, 195.
encodings, half of, 192, 268.

Tsimelzon, Mark Boris, 134.
Tuning of parameters, 124–128, 133, 182.
Turán, Pál (= Paul), 190.
Turton, William Harry, 180.
Two-level circuit minimization, 257.

UCk, 176, 273.
UIP: Unique implication point, 132, 233.
Unary clauses, see Unit clauses.
Unary representation (= order encoding),

98–101, 114, 120, 170–173, 190,
268, 281.

Undoing, 28–31, 37–39, 95–96, 143–145,
208, 212, 217–218.

Uniform distribution, 159.
Unique implication points, 132, 233.
Uniquely satisfiable clauses, 48, 219.
Unit clauses (= unary clauses), 3, 6, 9, 13,

21, 23, 30, 31, 33, 35, 36, 66, 70, 130,
144, 151, 157, 192, 205, 210, 238, 290.

Unit conditioning, 27, 96, 166, 259, 261.
Unit propagation (⊢1), 31–34, 36, 62, 65,

68, 70–71, 93, 97–99, 103–104, 132, 155,
157, 165, 171, 174, 236, 269, 272, 276.

generalized to ⊢k, 175.
Universality of Life, 17.
Unnecessary branches, 55, 227.
Unsatisfiable core, 185.
Unsatisfiable formulas, 1.

implications of, 104, 175–176.
Unsolvable problems, 130.
Urns and balls, 221.
Urquhart, Alisdair Ian Fenton, 231.

VAL array, in Algorithm C, 66–68, 73–76,
233–236, 238, 240.

in Algorithm L, 37–39, 43, 216.
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Valid partial assignments, 165–166.
Van de Graaff, Robert Jemison, 198.
van der Tak, Peter, 75.
van der Waerden, Bartel Leendert, 4.

numbers, 5, see W (k0, . . . , kb−1).
van Deventer, Mattijs Oskar, 290.
Van Gelder, Allen, 71, 233, 237, 263.
van Maaren, Hans, 37, 46.
van Rooij, Iris, 207.
van Zwieten, Joris Edward, 37.
VAR array, in Algorithm L, 38, 182, 211.
Variability in performance on satisfiable

problems, 35, 120–121, 128, 287.
on unsatisfiable problems, 69, 121,

128, 287.
Variable elimination, 96–97, 101, 102,

129, 154–155, 166–168, 173, 174,
256–257, 259–260, 270, 272.

Variable interaction graphs, 116–118, 182.
Variables, 2.

introducing new, 3, 6, 8, 9, 13, 60;
see Auxiliary variables, Extended
resolution.

Variance, 49, 158, 164, 240, 243.
Vassilevska Williams, Virginia Panayotova

(Vasilevska, Virginiffl Panaȷotova),
167.

Vaughan, Theresa Phillips, 162.
Verification, 16, 157; see also Certificates

of unsatisfiability.
Viennot, Gérard Michel François Xavier,

83, 84, 87, 162, 249.
Vinci, Leonardo di ser Piero da, 7.
Virtual unswapping, 211.
Visualizations, 116–118.
Vitushinskiy, Pavel Viktorovich

(Vituxinskiȷ, Pavel Viktoroviq),
282.

Vries, Sven de, 206.
VSIDS, 132.

W (k0, . . . , kb−1) (van der Waerden
numbers), 4–5, 127, 133.

waerden(j, k;n), 4–5, 32, 35, 37, 39–42,
45, 63–66, 69, 71–75, 97, 112, 115,
121, 127–129, 133, 142–145, 156, 157,
166, 167, 181, 210, 236, 256.

Waerden, Bartel Leendert van der, 4.
numbers, 5, see W (k0, . . . , kb−1).

Wagstaff, Samuel Standfield, Jr., 190.
Wainwright, Robert Thomas, 138,

166, 197, 198.
Walks in a graph, 260.
WalkSAT algorithm, 79–81, 93–94, 118, 125,

159–160, 182, 191, 265, 281.
Walsh, Toby, 272.
Warmup runs, 125, 239.
Warners, Johannes (= Joost) Pieter, 268.
Warrington, Gregory Saunders, 285.

Watched literals, 30–34, 65–66, 68, 132,
144, 155, 233–236.

Weakly forcing, 174.
Websites, ii, iii, v, 118.
Weighted permutations, 163.
Wein, Joel Martin, 267.
Weismantel, Robert, 264.
Welzl, Emmerich Oskar Roman (=

Emo), 158.
Wermuth, Udo Wilhelm Emil, v.
Wetzler, Nathan David, 71, 239.
Wheel graphs (Wn), 191.
Whittlesey, Marshall Andrew, 192.
Width of a resolution chain, 57–59, 153–154.
Wieringa, Siert, 129.
Wigderson, Avi (OEFXCBIE IA@), 57–58,

153, 231.
Wilde, Boris de, 213.
Williams, Richard Ryan, v, 270.
Williams, Virginia Panayotova Vassilevska

(Virginiffl Panaȷotova Vasilevska),
167.

Wilson, David Bruce, 54, 149, 221.
Windfalls, 43, 147, 182, 217.
Winkler, Peter Mann, 290.
Winn, John Arthur, Jr., 275.
Wires of a circuit, 10–14, 136.
Wobble function, 51, 151.
Worst case, 144, 146, 154, 239, 244.
Write buffers, 24.

Xeon computer, 289.
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