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Abstract

Ž . ŽPLS-regression PLSR is the PLS approach in its simplest, and in chemistry and technology, most used form two-block
.predictive PLS . PLSR is a method for relating two data matrices,X andY, by a linear multivariate model, but goes beyond

traditional regression in that it models also the structure ofX andY. PLSR derives its usefulness from its ability to analyze
data with many, noisy, collinear, and even incomplete variables in bothX andY. PLSR has the desirable property that the
precision of the model parameters improves with the increasing number of relevant variables and observations.

This article reviews PLSR as it has developed to become a standard tool in chemometrics and used in chemistry and
engineering. The underlying model and its assumptions are discussed, and commonly used diagnostics are reviewed together
with the interpretation of resulting parameters.

Ž .Two examples are used as illustrations: First, a Quantitative Structure–Activity Relationship QSARrQuantitative Struc-
Ž .ture–Property Relationship QSPR data set of peptides is used to outline how to develop, interpret and refine a PLSR model.

Second, a data set from the manufacturing of recycled paper is analyzed to illustrate time series modelling of process data by
means of PLSR and time-lagged X-variables.q2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this article we review a particular type of mul-
tivariate analysis, namely PLS-regression, which uses
the two-block predictive PLS model to model the re-
lationship between two matrices,X and Y. In addi-
tion PLSR models theAstructureB of X and of Y,
which gives richer results than the traditional multi-
ple regression approach. PLSR and similar ap-
proaches providequantitatiÕe multivariate modelling
methods, with inferential possibilities similar to mul-
tiple regression,t-tests and ANOVA.

) Corresponding author. Tel.:q46-90-786-5563; fax:q46-90-
13-88-85.

Ž .E-mail address: svante.wold@umetrics.com S. Wold .

The present volume contains numerous examples
of the use of PLSR in chemistry, and this article is
merely an introductory review, showing the develop-
ment of PLSR in chemistry until, around, the year
1990.

1.1. General considerations

Ž .PLS-regression PLSR is a recently developed
Ž .generalization of multiple linear regression MLR

w x1–6 . PLSR is of particular interest because, unlike
MLR, it can analyze data with strongly collinear
Ž .correlated , noisy, and numerous X-variables, and
also simultaneously model several response vari-
ables,Y, i.e., profiles of performance. For the mean-
ing of the PLS acronym, see Section 1.2.

0169-7439r01r$ - see front matterq2001 Elsevier Science B.V. All rights reserved.
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The regression problem, i.e., how to model one or
several dependent variables, responses,Y, by means
of a set of predictor variables,X, is one of the most
common data-analytical problems in science and
technology. Examples in chemistry include relating
Ys properties of chemical samples toXs their
chemical composition, relatingYs the quality and
quantity of manufactured products toXs the condi-
tions of the manufacturing process, andYschemical
properties, reactivity or biological activity of a set of

Žmolecules toXs their chemical structure coded by
.means of many X-variables . The latter models are

often called QSPR or QSAR. Abbreviations are ex-
plained in Section 1.3.

Traditionally, this modelling ofY by means ofX
is done using MLR, which works well as long as the
X-variables are fairly few and fairly uncorrelated, i.e.,
X has full rank. With modern measuring instrumen-
tation, including spectrometers, chromatographs and
sensor batteries, the X-variables tend to be many and
also strongly correlated. We shall therefore not call
themAindependentB, but insteadApredictorsB, or just
X-variables, because they usually are correlated,
noisy, and incomplete.

In handling numerous and collinear X-variables,
Ž .and response profilesY , PLSR allows us to investi-

gate more complex problems than before, and ana-
lyze available data in a more realistic way. However,
some humility and caution is warranted; we are still
far from a good understanding of the complications
of chemical, biological, and economical systems.
Also, quantitative multivariate analysis is still in its
infancy, particularly in applications with many vari-

Ž .ables and few observations objects, cases .

1.2. A historical note

The PLS approach was originated around 1975 by
Herman Wold for the modelling of complicated data

Ž .sets in terms of chains of matrices blocks , so-called
w xpath models, reviewed in Ref. 1 . This included a

simple but efficient way to estimate the parameters in
Žthese models called NIPALS Non-linear Iterative

.PArtial Least Squares . This led, in turn, to the
Žacronym PLS for these models Partial Least

.Squares . This relates to the central part of the esti-

mation, namely that each model parameter is itera-
tively estimated as the slope of a simple bivariate re-

Ž .gression least squares between a matrix column or
row as the y-variable, and another parameter vector
as the x-variable. So, for instance, the PLS weights,

X Ž X . Žw, are iteratively re-estimated asX ur u u see
.Section 3.10 . TheApartialB in PLS indicates that this

Ž .is a partial regression, since thex-vector u above is
considered as fixed in the estimation. This also shows
that we can see any matrix–vector multiplication as
equivalent to a set of simple bivariate regressions.
This provides an intriguing connection between two
central operations in matrix algebra and statistics, as
well as giving a simple way to deal with missing data.

w xGerlach et al. 7 applied multi-block PLS to the
analysis of analytical data from a river system in
Colorado with interesting results, but this was clearly
ahead of its time.

Around 1980, the simplest PLS model with two
Ž .blocks X and Y was slightly modified by Svante

Wold and Harald Martens to better suit to data from
science and technology, and shown to be useful to
deal with complicated data sets where ordinary re-
gression was difficult or impossible to apply. To give
PLS a more descriptive meaning, H. Wold et al. have
also recently started to interpret PLS as Projection to
Latent Structures.

1.3. AbbreÕiations

AA Amino Acid
ANOVA ANalysis Of VAriance
AR Ž .AutoRegressive model
ARMA Ž .AutoRegressive Moving Average model
CV Cross-Validation
CVA Canonical Variates Analysis
DModX Distance to Model in X-space
EM Expectation Maximization
H-PLS Hierarchical PLS
LDA Linear Discriminant Analysis
LV Latent Variable
MA Ž .Moving Average model
MLR Multiple Linear Regression
MSPC Multivariate SPC
NIPALS Non-linear Iterative Partial Least Squares
NN Neural Networks
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PCA Principal Components Analysis
PCR Principal Components Regression
PLS Partial Least Squares projection to latent

structures
PLSR PLS-Regression
PLS-DA PLS Discriminant Analysis
PRESD Predictive RSD
PRESS Predictive Residual Sum of Squares
QSAR Quantitative Structure–Activity

Relationship
QSPR Quantitative Structure–Property

Relationship
RSD Residual SD
SD Standard Deviation
SDEP, SEP Standard error of prediction
SECV Standard error of cross-validation
SIMCA Simple Classification Analysis
SPC Statistical Process Control
SS Sum of Squares
VIP Variable Influence on Projection

1.4. Notation

We shall employ the common notation where col-
umn vectors are denoted by bold lower case charac-
ters, e.g.,v, and row vectors shown as transposed,
e.g.,vX. Bold upper case characters denote matrices,
e.g.,X.

) multiplication, e.g.,A)B
X transpose, e.g.,vX,XX

a Ž .index of components model dimensions ;
Ž .as1,2, . . . ,A

A number of components in a PC or PLS
model

i Ž . Žindex of objects observations, cases ;is
.1,2, . . . ,N

N Ž .number of objects cases, observations
k Ž .index of X-variables ks1,2, . . . ,K
m Ž .index of Y-variables ms1,2, . . . ,M
X Ž .matrix of predictor variables, sizeN)K
Y Ž .matrix of response variables, sizeN)M
bm regression coefficient vector of themth y.

Ž .Size K)1
B matrix of regression coefficients of all Y’s.

Ž .Size K)M
c a PLSR Y-weights of componenta

C Ž .the M) A Y-weight matrix;c area

columns in this matrix
E Ž .the N)K matrix of X-residuals
f m Ž .residuals ofmth y-variable; N)1 vector
F Ž .the N)M matrix of Y-residuals
G Ž .the number of CV groupsgs1,2, . . . ,G
pa PLSR X-loading vector of componenta
P Loading matrix; p are columns ofPa

R2 multiple correlation coefficient; amountY
AexplainedB in terms of SS

R2
X amount X AexplainedB in terms of SS

Q2 cross-validatedR2; amountY ApredictedB
t a X-scores of componenta
T Ž .score matrix N) A , where the columns are

t a

u a Y-scores of componenta
U Ž .score matrix N) A , where the columns are

u a

wa PLSR X-weights of componenta
W Ž .the K) A X-weight matrix;w area

columns in this matrix
w)

a PLSR weights transformed to be indepen-
dent between components

W ) Ž .K) A matrix of transformed PLSR
weights;w) are columns inW ).a

2. Example 1, a quantitative structure property
( )relationship QSPR

We use a simple example from the literature with
one Y-variable and seven X-variables. The problem
is one of QSPR or QSAR, which differ only in that

Ž .the response sY are chemical properties in the for-
mer and biological activities in the latter. In both
cases,X contains a quantitative description of the
variation in chemical structure between the investi-
gated compounds.

The objective is to understand the variation ofy
sDDGTSs the free energy of unfolding of a pro-

Žtein tryptophane synthase a unit of bacteriophage T4
.lysosome when position 49 is modified to contain

Ž .each of the 19 coded amino acids AA’s except
arginine. The AA’s are described by seven highly
correlated X-variables as shown in Table 1. Compu-

w xtational and other details are given in Ref. 8 . For al-
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Table 1
Raw data of example 1

PIE PIF DGR SAC MR Lam Vol DDGTS

Ž .1 Ala 0.23 0.31 y0.55 254.2 2.126 y0.02 82.2 8.5
Ž .2 Asn y0.48 y0.60 0.51 303.6 2.994 y1.24 112.3 8.2
Ž .3 Asp y0.61 y0.77 1.20 287.9 2.994 y1.08 103.7 8.5
Ž .4 Cys 0.45 1.54 y1.40 282.9 2.933 y0.11 99.1 11.0
Ž .5 Gln y0.11 y0.22 0.29 335.0 3.458 y1.19 127.5 6.3
Ž .6 Glu y0.51 y0.64 0.76 311.6 3.243 y1.43 120.5 8.8
Ž .7 Gly 0.00 0.00 0.00 224.9 1.662 0.03 65.0 7.1
Ž .8 His 0.15 0.13 y0.25 337.2 3.856 y1.06 140.6 10.1
Ž .9 Ile 1.20 1.80 y2.10 322.6 3.350 0.04 131.7 16.8
Ž .10 Leu 1.28 1.70 y2.00 324.0 3.518 0.12 131.5 15.0
Ž .11 Lys y0.77 y0.99 0.78 336.6 2.933 y2.26 144.3 7.9
Ž .12 Met 0.90 1.23 y1.60 336.3 3.860 y0.33 132.3 13.3
Ž .13 Phe 1.56 1.79 y2.60 366.1 4.638 y0.05 155.8 11.2
Ž .14 Pro 0.38 0.49 y1.50 288.5 2.876 y0.31 106.7 8.2
Ž .15 Ser 0.00 y0.04 0.09 266.7 2.279 y0.40 88.5 7.4
Ž .16 Thr 0.17 0.26 y0.58 283.9 2.743 y0.53 105.3 8.8
Ž .17 Trp 1.85 2.25 y2.70 401.8 5.755 y0.31 185.9 9.9
Ž .18 Tyr 0.89 0.96 y1.70 377.8 4.791 y0.84 162.7 8.8
Ž .19 Val 0.71 1.22 y1.60 295.1 3.054 y0.13 115.6 12.0

Correlation matrix
PIE 1.000 0.967 y0.970 0.518 0.650 0.704 0.533 0.645
PIF 0.967 1.000 y0.968 0.416 0.555 0.750 0.433 0.711
DGR y0.970 y0.968 1.000 y0.463 y0.582 y0.704 y0.484 y0.648
SAC 0.518 0.416 y0.463 1.000 0.955 y0.230 0.991 0.268
MR 0.650 0.555 y0.582 0.955 1.000 y0.027 0.945 0.290
Lam 0.704 0.750 y0.704 y0.230 y0.027 1.000 y0.221 0.499
Vol 0.533 0.433 y0.484 0.991 0.945 y0.221 1.000 0.300
DDGTS 0.645 0.711 y0.648 0.268 0.290 0.499 0.300 1.000

The lower half of the table shows the pair-wise correlation coefficients of the data. PIE and PIF are the lipophilicity constant of the AA side
w xchain according to El Tayar et al. 8 , and Fauchere and Pliska, respectively; DGR is the free energy of transfer of an AA side chain from

protein interior to water according to Radzicka and Woldenden; SAC is the water-accessible surface area of AA’s calculated by MOLSV;
Ž . w xMR molecular refractivity from Daylight data base ; Lam is a polarity parameter according to El Tayar et al. 8 . Vol is the molecular

w xvolume of AA’s calculated by MOLSV. All the data except MR are from Ref. 8 .

w xternative ways, see Hellberg et al. 9 and Sandberg
w xet al. 10 .

3. PLSR and the underlying scientific model

PLSR is a way to estimate parameters in a scien-
Žtific model, which basically is linear see Section 4.3

.for non-linear PLS models . This model, like any
scientific model, consists of several parts, the philo-
sophical, conceptual, the technical, the numerical, the
statistical, and so on. We here illustrate these using

Ž .the QSPRrQSAR model of example 1 see above ,

but the arguments are similar in most other mod-
elling in science and technology.

Our chemical thinking makes us formulate the in-
Žfluence of structural change on activity and other

.properties in terms ofA effectsB—lipophilic, steric,
polar, polarizability, hydrogen bonding, and possibly
others. Similarly, the modelling of a chemical pro-
cess is interpreted usingAeffectsB of thermodynam-

Žics equilibria, heat transfer, mass transfer, pressures,
. Žtemperatures, and flows and chemical kinetics reac-

.tion rates .
Although this formulation of the scientific model

is not of immediate concern for the technicalities of
PLSR, it is of interest that PLSR modelling is consis-
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tent with AeffectsB causing the changes in the inves-
Žtigated system. The concept oflatent Õariables Sec-

.tion 4.1 may be seen as directly corresponding to
these effects.

3.1. The data— X and Y

The PLSR model is developed from a training set
Žof N observations objects, cases, compounds, pro-

.cess time points withK X-variables denoted by
Ž . Žx ks 1, . . . ,K , and M Y-variables y msk m

.1,2, . . . ,M . These training data form the two matri-
Ž . Ž .cesX andY of dimensionsN)K and N)M , re-

spectively, as shown in Fig. 1. In example 1,Ns19,
Ks7, and Ms1.

Later, predictions for new observations are made
based on their X-data. This gives predicted X-scores
Ž .t-values , X-residuals, their residual SD’s, andy-
values with confidence intervals.

3.2. Transformation, scaling and centering

Before the analysis, the X- and Y-variables are of-
ten transformed to make their distributions be fairly
symmetrical. Thus, variables with range of more than
one magnitude of 10 are often logarithmically trans-

Fig. 1. Data of a PLSR can be arranged as two tables, matrices,X
Žand Y. Note that the raw data may have been transformed e.g.,

.logarithmically , and usually have been centered and scaled before
the analysis. In QSAR, the X-variables are descriptors of chemical
structure, and the Y-variables measurements of biological activity.

formed. If the value zero occurs in a variable, the
fourth root transformation is a good alternative to the
logarithm. The response variable in example 1 is al-
ready logarithmically transformed, i.e., expressed in
thermodynamic units. No further transformation was
made of the example 1 data.

Results of projection methods such as PLSR de-
pend on thescaling of the data. With an appropriate
scaling, one can focus the model on more important
Y-variables, and use experience to increase the
weights of more informative X-variables. In the ab-
sence of knowledge about the relative importance of
the variables, the standard multivariate approach is to
Ž .i scale each variable to unit variance by dividing

Ž .them by their SD’s, and ii center them by subtract-
ing their averages, so-calledauto-scaling. This cor-

Ž .responds to giving each variable column the same
weight, the same prior importance in the analysis.

In example 1, all variables were auto-scaled, ex-
cept x sLam, the auto-scaling weight of which was6

multiplied by 1.5 to make it not be masked by the
Ž .others so-called block-scaling .

In CoMFA and GRID-QSAR, as well as in multi-
variate calibration in analytical chemistry, auto-scal-
ing is often not the best scaling ofX, but non-scaled
X-data or some intermediate between auto-scaled and

w xnon-scaled may be appropriate 5 . In process data,
the acceptable interval of variation of each variable
can form the basis for the scaling.

For ease of interpretation and for numerical stabil-
ity, it is recommended tocenter the data before the
analysis. This is done—either before or after scaling
—by subtracting the averages from all variables both
in X and Y. In process data other reference values
such as set point values may be subtracted instead of
averages. Hence, the analysis concerns the deviations
from the reference points and how they are related.
The centering leaves the interpretation of the results
unchanged.

In some applications it is customary to normalize
Ž .also theobserÕations objects . In chemistry, this is

often done in the analysis of chromatographic or
spectral profiles. The normalization is typically done
by making the sum of all peaks of one profile be 100
or 1000. This removes thesize of the observations
Ž .objects , which may be desirable if size is irrele-
vant. This is closely related to correspondence analy-

w xsis 11 .
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3.3. The PLSR model

The linear PLSR model finds a fewAnewB vari-
ables, which are estimates of the LV’s or their rota-
tions. These new variables are called X-scores and

Ž .denoted byt as1,2, . . . ,A . The X-scores area
Ž Ž . Ž .predictors ofY and also modelX Eqs. 4 and 2

.below , i.e., bothY andX are assumed to be, at least
partly, modelled by the same LV’s.

Ž .The X-scores areAfewB A in number , and or-
thogonal. They are estimated as linear combinations
of the original variablesx with the coefficients,k

) Ž .AweightsB, w as1,2, . . . ,A . These weights arek a
w xsometimes denoted byr 12,13 . Below, formulask a

Žare shown both in element and matrix form the lat-
.ter in parentheses :

t s W ) X ; TsXW ) . 1Ž . Ž .Ýi a k a i k
k

Ž .The X-scorest ’s have the following properties:a
Ž .a They are, multiplied by the loadingsp , goodak

AsummariesB of X, so that the X-residuals,e , in Eq.i k
Ž .2 areAsmallB:

X s t p qe ; XsTPXqE . 2Ž . Ž .Ýi k i a ak i k
a

Ž .With multivariateY when M)1 , the correspond-
Ž .ing AY-scoresB u are, multiplied by the weightsa

c , good AsummariesB of Y, so that the residuals,am
Ž .g , in Eq. 3 areAsmallB:i m

y s u c qg YsUCXqG , 3Ž . Ž .Ýim ia am im
a

Ž .b the X-scores are good predictors ofY, i.e.:

y s c t q f YsTCXqF . 4Ž . Ž .Ýi m m a i a i m
a

The Y-residuals,f express the deviations betweeni m

the observed and modelled responses, and comprise
the elements of the Y-residual matrix,F.

Ž . Ž .Because of Eq. 1 , Eq. 4 can be rewritten to look
as a multiple regression model:

y c w) x q f s b x q fÝ Ý Ýi m m a k a i k i m m k i k i m
a k k

YsXW )CX
HFsXBHF . 5Ž . Ž .

Ž .The APLS-regression coefficientsB, b B , can bem k

written as:

b s c w) BsW )CX . 6Ž . Ž .Ým k m a k a
a

Note that theseb’s are not independent unless A
Ž . Žthe number of PLSR components equalsK the

.number of X-variables . Hence, their confidence in-
tervals according to the traditional statistical interpre-
tation are infinite.

An interesting special case is at hand when there
Ž . Xis a singley-variable Ms1 andX X is diagonal,

Ži.e., X originates from an orthogonal design frac-
.tional factorial, Plackett–Burman, etc. . In this case

there is no correlation structure inX, and PLSR ar-
w xrives at the MLR solution in one component 14 , and

the MLR and PLS-regression coefficients are equal to
w cX .1 1

After each component,a, the X-matrix is Ade-
) Ž XflatedB by subtractingt p from x t p fromi a k a i k a a

.X . This makes the PLSR model alternatively be ex-
pressed in weightsw referring to the residuals aftera

previous dimension,E , instead of relating to theaI1
Ž .X-variables themselves. Thus, instead of Eq. 1 , we

can write:

t s w e t sE W 7aŽ . Ž .Ýi a k a i k ,ay1 a ay1 a
k

e se y t pi k ,ay1 i k ,ay2 i ,ay1 ay1,k

E sE y t pX 7bŽ . Ž .ay1 ay2 ay1 ay1

e sX E sX . 7cŽ . Ž .i k ,0 i k 0

However, the weights,w, can be transformed tow),
Ž .which directly relate toX, giving Eq. 1 above. The
w xrelation between the two is given as 14 :

y1X
)W sW P W . 8Ž . Ž .
The Y-matrix can also beAdeflatedB by subtract-

ing t cX , but this is not necessary; the results area a

equivalent with or without Y-deflation.
Ž .From the PLSR algorithm see below , one can see

Ž .that the first weight vectorw is the first eigenvec-1

tor of the combined variance–covariance matrix,
X X ŽX YY X, and the following weight vectors compo-

.nent a are eigenvectors to the deflated versions of
the same matrix, i.e.,ZX YY XZX , where Z sZa a a ay1

X Ž .yT P . Similarly, the first score vectort isay1 ay1 1

an eigenvector toXXX YY X, and later X-score vectors
Ž . X Xt are eigenvectors ofZ Z YY .a a a
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These eigenvector relationships also show that the
vectors w form an ortho-normal set, and that thea

vectorst are orthogonal to each other. The loadinga
Ž .vectors p are not orthogonal to each other, anda

neither are the Y-scores,u . Theu’s and thep’s area

orthogonal to thet’s and thew’s, respectively, one
and more components earlier, i.e.,uX t s 0 andb a

pX w s0, if b)a. Also, wX p s1.0.b a a a

3.4. Interpretation of the PLSR model

One way to see PLSR is that it formsAnew x-
Ž .variablesB LV estimates ,t , as linear combinationsa

of the old x ’s, and thereafter uses these newt ’s as
predictors ofY. Hence, PLSR is based on a linear

Ž .model see, however, Section 4.3 . Only as many new
t ’s are formed as are needed, as are predictively sig-

Ž .nificant Section 3.8 .
Ž ) . ŽAll parameters,t, u, w andw , p, andc see Fig.

.1 , are determined by a PLSR algorithm as described
below. For theinterpretation of the PLSR model, the
scores,t andu, contain the information about the ob-
jects and their similaritiesrdissimilarities with re-
spect to the given problem and model.

) ŽThe weightsw or the closely similarw see be-a a
.low , and c , give information about how the vari-a

ables combine to form the quantitative relation be-
tweenX andY, thus providing an interpretation of the
scores,t andu . Hence, these weights are essentiala a

for the understanding of which X-variables are im-
Ž .portant numerically largew -values , and which X-a

Žvariables that provide the same information similar
.profiles of w -values .a

The PLS weightsw express both theApositiveBa

correlations betweenX and Y, and theAcompensa-
tion correlationsB needed to predictY from X clear
from the secondary variation inX. The latter is ev-
erything varying inX that is not primarily related to
Y. This makesw difficult to interpret directly, espe-a

Ž .cially in later componentsa)1 . By using an or-
thogonal expansion of the X-parameters in O-PLS,
one can get the part ofw that primarily relates toY,a

w xthus making the PLS interpretation more clear 15 .
The part of the data that are not explained by the

model, the residuals, are of diagnostic interest. Large
Y-residuals indicate that the model is poor, and a
normal probability plot of the residuals of a single
Y-variable is useful for identifying outliers in the re-

lationship betweenT andY, analogously to MLR. In
PLSR we also have residuals forX; the part not used
in the modelling ofY. These X-residuals are useful
for identifying outliers in the X-space, i.e., molecules
with structures that do not fit the model, and process
points deviating fromAnormalB process operations.
This, together with control charts of the X-scores,t ,a

Ž . w xis used in multivariate SPC MSPC 16 .

3.5. Geometric interpretation

PLSR is a projection method and thus has a sim-
ple geometric interpretation as a projection of the

ŽX-matrix a swarm ofN points in a K-dimensional
.space down on anA-dimensional hyper-plane in

Žsuch a way that the coordinates of the projectiont ,a
.as1,2, . . . ,A are good predictors ofY. This is in-

dicated in Fig. 2.

Fig. 2. The geometric representation of PLSR. TheX-matrix can
be represented asN points in theK dimensional space where each

Ž .column of X x defines one coordinate axis. The PLSR modelk

defines anA-dimensional hyper-plane, which in turn, is defined by
one line, one direction, per component. The direction coefficients
of these lines arep . The coordinates of each object,i, when itsak

Ž .data row i in X are projected down on this plane aret . Thesei a

positions are related to the values ofY.
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The direction of the plane is expressed as slopes,
Žp , of each PLS direction of the plane each compo-ak

.nent with respect to each coordinate axis,x . Thisk

slope is the cosine of the angle between the PLS di-
rection and the coordinate axis.

Thus, PLSR develops anA-dimensional hyper-
plane in X-space such that this plane well approxi-

Ž .matesX the N points, row vectors ofX , and at the
same time, the positions of the projected data points
on this plane, described by the scorest , are relatedi a

Žto the values of the responses, activities,Y see Fig.i m
.2 .

( )3.6. Incomplete X and Y matrices missing data

Projection methods such as PLSR tolerate moder-
ate amounts of missing data both inX and inY. To
have missing data inY, it must be multivariate, i.e.,
have at least two columns. The larger the matricesX
and Y are, the higher proportion of missing data is
tolerated. For small data sets with around 20 obser-
vations and 20 variables, around 10% to 20% miss-
ing data can be handled, provided that they are not
missing according to some systematic pattern.

The NIPALS PLSR algorithm automatically ac-
counts for the missing values, in principle by itera-
tively substituting the missing values by predictions
by the model. This corresponds to, for each compo-
nent, giving the missing data values that have zero
residuals and thus have no influence on the compo-
nent parameterst andp . Other approaches based ona a

the EM algorithm have been developed, and often
work better than NIPALS for large percentages of

w xmissing data 17,18 . One should remember, how-
ever, that with much missing data, any resulting pa-
rameters and predictions are highly uncertain.

3.7. One Y at a time, or all in a single model?

PLSR has the ability to model and analyze several
Y’s together, which has the advantage to give a sim-
pler overall picture than one separate model for each
Y-variable. Hence, when the Y’s are correlated, they
should be analyzed together. If the Y’s really mea-
sure different things, and thus are fairly independent,
a single PLSR model tends to have many compo-
nents and be difficult to interpret. Then a separate
modelling of the Y’s gives a set of simpler models
with fewer dimensions, which are easier to interpret.

Hence, one should start with a PCA of just the
Y-matrix. This shows the practical rank ofY, i.e., the
number of resulting components,A . If this isPCA

Ž .small compared to the number of Y-variablesM ,
the Y’s are correlated, and a single PLSR model of
all Y’s is warranted. If, however, the Y’s cluster in
strong groups, which is seen in the PCA loading plots,
separate PLSR models should be developed for these
groups.

3.8. The number of PLS components, A

In any empirical modelling, it is essential to deter-
mine the correct complexity of the model. With nu-
merous and correlated X-variables there is a substan-
tial risk for Aover-fittingB, i.e., getting a well fitting
model with little or no predictive power. Hence, a
strict test of the predictive significance of each PLS
component is necessary, and then stopping when
components start to be non-significant.

Ž .Cross-validation CV is a practical and reliable
w xway to test this predictive significance 1–6 . This has

become the standard in PLSR analysis, and incorpo-
rated in one form or another in all available PLSR
software. Good discussions of the subject were given

w xby Wakeling and Morris 19 and Clark and Cramer
w x20 .

Basically, CV is performed by dividing the data in
a number of groups,G, say, five to nine, and then
developing a number of parallel models from re-
duced data with one of the groups deleted. We note
that havingGsN, i.e., the leave-one-out approach,

w xis not recommendable 21 .
After developing a model, differences between ac-

tual and predicted Y-values are calculated for the
deleted data. The sum of squares of these differences
is computed and collected from all the parallel mod-
els to form the predictive residual sum of squares
Ž .PRESS , which estimates the predictive ability of the
model.

When CV is used in the sequential mode, CV is
performed on one component after the other, but the

Ž Ž . .peeling off Eq. 7b , Section 3.3 is made only once
on the full data matrices, where after the resulting
residual matricesE andF are divided into groups for
the CV of next component. The ratio PRESSrSSa ay1

is calculated after each component, and a component
is judged significant if this ratio is smaller than
around 0.9 for at least one of the Y-variables. Slightly
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sharper bonds can be obtained from the results of
w xWakeling and Morris 19 . Here SS denotes theay1

Ž .fitted residual sum of squaresbefore the current
Ž .component indexa . The calculations continue until

a component is non-significant.
Alternatively withAtotal CVB, one first divides the

data into groups, and then calculates PRESS for each
component up to, say 10 or 15 with separateApeel-

Ž Ž . .ingB Eq. 7b , Section 3.3 of the data matrices of
each CV group. The model with the number of com-

Ž .ponents giving the lowest PRESSr NyAy1 is
then used. ThisAtotalB approach is computationally
more taxing, but gives similar results.

Both with theAsequentialB and theAtotalB mode,
a PRESS is calculated for the final model with the
estimated number of significant components. This is

2 Ž 2.often re-expressed asQ the cross-validatedR
Ž .which is 1yPRESSrSS where SS is the sum of

squares ofY corrected for the mean. This can be
2 Ž .compared withR s 1yRSSrSS , where RSS is

the fitted residual sum of squares. In models with
several Y’s, one obtains alsoR2 and Q2 for eachm m

Y-variable, y .m

These measures can, of course, be equivalently
Ž .expressed as residual SD’s RSD’s and predictive

Ž .residual SD’s PRESD’s . The latter is often called
Ž .standard error of prediction SDEP or SEP , or stan-

Ž .dard error of cross-validation SECV . If one has
some knowledge of the noise in the investigated sys-

Ž .tem, for example"0.3 units for log 1rC in
QSAR’s, these predictive SD’s should, of course, be
similar in size to the noise.

3.9. Model Õalidation

Any model needs to be validated before it is used
for AunderstandingB or for predicting new events such
as the biological activity of new compounds or the
yield and impurities at other process conditions. The
best validation of a model is that it consistently pre-
cisely predicts the Y-values of observations with new
X-values—aÕalidation set. But an independent and
representative validation set is rare.

In the absence of a real validation set, two reason-
able ways of model validation are given by cross-

Ž .validation CV, see Section 3.8 which simulates how
well the model predicts new data, and model re-
estimation after data randomization which estimates

Ž .the chance probability to get a good fit with ran-
dom response data.

3.10. PLSR algorithms

The algorithms for calculating the PLSR model are
mainly of technical interest, we here just point out
that there are several variants developed for different

w xshapes of the data 2,22,23 . Most of these algo-
rithms tolerate moderate amounts of missing data.
Either the algorithm, like the original NIPALS algo-
rithm below, works with the original data matrices,X

Ž .andY scaled and centered . Alternatively, so-called
kernel algorithms work with the variance–covariance
matrices,XXX, Y X Y, andXX Y, or association matri-
ces,XXX andYY X, which is advantageous when the

Ž .number of observationsN differs much from the
Ž .number of variablesK and M .

For extensions of PLSR, the results of Hoskulds-¨
w xson 3 regarding the possibilities to modify the NI-

PALS PLSR algorithm are of great interest. Ho-
Ž . Ž .skuldsson shows that as long as the steps C to G

below are unchanged, modifications can be made of
Ž .w in step B . Central properties remain, such as or-

thogonality between model components, good sum-
marizing properties of the X-scores,t , and inter-a

pretability of the model parameters. This can be used
w xto introduce smoothness in the PLSR solution 24 , to

develop a PLSR model where a majority of the PLSR
w xcoefficients are zero 25 , alignw with a priori speci-`

Žfied vectors similar toAtarget rotationB of Kvalheim
w x.et al. 26 , and more.

w xThe simple NIPALS algorithm of Wold et al. 2
is shown below. It starts with optionally transformed,
scaled, and centered data,X andY, and proceeds as

Žfollows note that with a single y-variable, the algo-
.rithm is non-iterative .

Ž .A Get a starting vector ofu, usually one of the
Y columns. With a single y,usy.

Ž .B The X-weights,w:

wsXXuruXu,

Ž . 5 5herew can now be modified normw to w s1.0
Ž .C Calculate X-scores,t:

tsXw.
Ž .D The Y-weights,c:

csY X trtX t.
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Ž .E Finally, an updated set of Y-scores,u:

usYcrcXc.

Ž .F Convergence is tested on the change int, i.e.,
5 5 5 5t I t r t -´ , where ´ is AsmallB, e.g.,old new new

10y6 or 10y8. If convergence hasnot been reached,
Ž . Ž .return to B , otherwise continue with G , and then

Ž .A . If there is only one y-variable, i.e.,Ms1, the
procedure converges in a single iteration, and one

Ž .proceeds directly with G .
Ž . Ž .G Remove deflate, peel off the present compo-

nent fromX andY use these deflated matrices asX
and Y in the next component. Here the deflation of
Y is optional; the results are equivalent whetherY is
deflated or not.

psXX tr tX tŽ .
XsXy tpX

YsYy tcX .

Ž . ŽH Continue with next component back to step
. Ž .A until cross-validation see above indicates that

there is no more significant information inX about
Y.

w xChu et al. 27 recently has reviewed the attractive
properties of matrix decompositions of the Wedder-
burn type. The PLSR NIPALS algorithm is such a
Wedderburn decomposition, and hence is numeri-
cally and statistically stable.

3.11. Standard errors and confidence interÕals

Numerous efforts have been made to theoretically
derive confidence intervals of the PLSR parameters,

w xsee, e.g., Ref. 28 . Most of these are, however, based
on regression assumptions, seeing PLSR as a biased
regression model. Only recently, in the work of

w xBurnham et al. 12 , have these matters been investi-
gated with PLSR as alatent Õariable regression
model.

A way to estimate standard errors and confidence
intervals directly from the data is to use jack-knifing
w x w x29 . This was recommended by Wold 1 in his orig-
inal PLS work, and has recently been revived by

w xMartens and Martens 30 and others. The idea is
simple; the variation in the parameters of the various
sub-models obtained during cross-validation is used

Žto derive their standard deviations called standard

.errors , followed by using the t-distribution to give
confidence intervals. Since all PLSR parameters
Ž .scores, loadings, etc. are linear combinations of the

Ž .original data possibly deflated , these parameters are
close to normally distributed, and hence jack-knifing
works well.

4. Assumptions underlying PLSR

4.1. Latent Variables

In PLS modelling, we assume that the investi-
gated system or process actually is influenced by just

( )a few underlying variables,latent Õariables LV’s .
The number of these LV’s is usually not known, and
one aim with the PLSR analysis is to estimate this
number. Also, the PLS X-scores,t , are usually nota

direct estimates of the LV’s, but rather they span the
Žsame space as the LV’s. Thus, the latter denoted by

. Ž .V are related to the formerT by a, usually un-
known, rotation matrix,R, with the propertyRXRs
1:

VsTRX or TsRV.

Both the X- and the Y-variables are assumed to be
realizations of these underlying LV’s, and are hence
not assumed to be independent. Interestingly, the LV
assumptions closely correspond to the use of micro-
scopic concepts such as molecules and reactions in
chemistry and molecular biology, thus making PLSR
philosophically suitable for the modelling of chemi-
cal and biological data. This has been discussed by,

w x w xamong others, Wold et al. 31,32 , Kvalheim 33 , and
recently from a more fundamental perspective, by

w xBurnham et al. 12,13 . In spectroscopy, it is clear that
the spectrum of a sample is the sum of the spectra of
the constituents multiplied by their concentrations in

Žthe sample. Identifying the latter witht Lambert–
.BeersAlawB , and the spectra withp, we get the la-

tent variable modelXs t1p1Xq t2p2Xq . . .sTPX

qnoise. In many applications this interpretation with
Žthe data explained by a number ofAfactorsB compo-

.nents makes sense.
As discussed below, we can also see the scores,T,

as comprised of derivatives of an unknown function
underlying the investigated system. The choice of the
interpretation depends on the amount of knowledge
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about the system. The more knowledge we have, the
more likely it is that we can assign a latent variable
interpretation of the X-scores or their rotation.

If the number of LV’s actually equals the number
of X-variables,K, then the X-variables are indepen-
dent, and PLSR and MLR give identical results.
Hence, we can see PLSR as a generalization of MLR,
containing the latter as a special case in situations
when the MLR solution exists, i.e., when the number
of X- and Y-variables is fairly small in comparison
to the number of observations, N. In most practical
cases, except whenX is generated according to an
experimental design, however, the X-variables are not
independent. We then callX rank deficient. Then
PLSR gives aAshrunkB solution which is statistically
more robust than the MLR solution, and hence gives

w xbetter predictions than MLR 34 .
PLSR gives a model ofX in terms of a bilinear

projection, plus residuals. Hence, PLSR assumes that
there may be parts ofX that are unrelated toY. These
parts can include noise andror regularities non-re-
lated toY. Hence, unlike MLR, PLSR tolerates noise
in X.

4.2. AlternatiÕe deriÕation

The second theoretical foundation of LV-models is
w xone of Taylor expansions 35 . We assume the data

X and Y to be generated by a multi-dimensional
Ž .function F u,v , where the vector variableu de-

Ž .scribes the change between observations rows inX
and the vector variablev describes the change be-

Ž .tween variables columns inX . Making a Taylor ex-
pansion of the function F in theu-direction, and dis-
cretizing for isobservation and ksvariable, gives
the LV-model. Again, the smaller the interval ofu
that is modelled, the fewer terms we need in the Tay-
lor expansion, and the fewer components we need in
the LV-model. Hence, we can interpret PCA and PLS

Ž .as models of similarity. Data variables measured on
Ža set of similar observations samples, items,

. Ž .cases, . . . can always be modelled approximated by
a PC- or PLS model. And the more similar are the
observations, the fewer components we need in the
model.

We hence have two different interpretations of the
LV-model. Thus, real data well explained by these
models can be interpreted as either being a linear
combination ofAfactorsB or according to the latter

interpretation as being measurements made on a set
of similar observations. Any mixture of these two in-
terpretations is, of course, often applicable.

4.3. Homogeneity

Any data analysis is based on an assumption of
homogeneity. This means that the investigated sys-
tem or process must be in a similar state throughout
all the investigation, and the mechanism of influence
of X on Y must be the same. This, in turn, corre-
sponds to having some limits on the variability and
diversity of X andY.

Hence, it is essential that the analysis providesdi-
agnostics about how well these assumptions indeed
are fulfilled. Much of the recent progress in applied

w xstatistics has concerned diagnostics 36 , and many of
these diagnostics can be used also in PLSR mod-
elling as discussed below. PLSR also provides addi-
tional diagnostics beyond those of regression-like
methods, particularly those based on the modelling of

Ž .X score and loading plots and X-residuals .
In the first example, the first PLSR analysis indi-

cated that the data set was inhomogeneous—three
Ž .aromatic amino acids AA’s are indicated to have a

different type of effect than the others on the mod-
elled property. This type of information is difficult to
obtain in ordinary regression modelling, where only
large residuals in Y provide diagnostics about inho-
mogeneities.

4.4. Non-linear PLSR

For non-linear situations, simple solutions have
w xbeen published by Hoskuldsson 4 , and Berglund and¨

w xWold 37 . Another approach based on transforming
selected X-variables or X-scores to qualitative vari-
ables coded as sets of dummy variables, the so-called

w xGIFI approach 38,39 , is described elsewhere in this
w xvolume 15 .

5. Results of example 1

5.1. The initial PLSR analysis of the AA data

Ž .The first PLSR analysis linear model of the AA
data gives one significant component explaining 43%

Ž 2 2 .of the Y-variance R s0.435,Q s0.299 . In con-
trast, the MLR gives anR2 of 0.788, which is equiv-
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Fig. 3. The PLS scoresu andt of the AA example, 1st analysis.1 1

alent to PLSR withAs7 components. The full MLR
solution, however, has aQ2 of y0.215, indicating
that the model is poor, and does not predict better than
chance.

With just one significant PLS component, the only
Ž .meaningful score plot is that ofy againstt Fig. 3 .

The aromatic AA’s, Trp, Phe, and, may be, Tyr, show
a much worse fit than the others, indicating an inho-
mogeneity in the data. To investigate this, a second
round of analysis is made with a reduced data set,
Ns16, without the aromatic AA’s.

5.2. Second analysis

The modelling ofNs16 AA’s with the same lin-
ear model as before gives a substantially better result

with As2 significant components andR2s0.783,
Q2s0.706. The MLR model for these 16 objects
gives a R2 of 0.872, and aQ2 of 0.608. This strong
improvement indicates that indeed the data set now is
more homogeneous and can be properly modelled.

Ž .The plot in Fig. 4 ofu y vs. t shows, however,1 1

a fairly strong curvature, indicating that squared terms
in lipophilicity and, may be, polarity are warranted.
In the final analysis, the squares of these four vari-
ables were included in the model, which indeed gave
better results. Two significant PLS components and
one additional with border-line significance were ob-
tained. The resultingR2 and Q2 values are forAs
2: 0.90 and 0.80, and forAs3: 0.925 and 0.82, re-
spectively. TheAs3 values correspond to RSDs

Ž .0.92, and PRESD SDEPs1.23, since the SD of Y

Fig. 4. The PLS scores,u andt of the AA example, 2nd analysis.1 1
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Fig. 5. The PLS scorest andt of the AA example, 2nd analysis. The overlapping points up to the right are Ile and Leu.1 2

is 2.989. The full MLR model givesR2s0.967, but
with much worseQ2s0.09.

( )5.2.1. X-scores t show object similarities and dis-a

similarities
Ž .The plot of the X-scorest vs. t , Fig. 5 shows1 2

the 16 amino acids grouped according to polarity
from upper left to lower right, and inside each group,
according to size and lipophilicity.

5.2.2. PLSR weights w and c
For the interpretation of PLSR models, the stan-

dard is to plot thew) ’s andc’s of one model dimen-
sion against another. Alternatively, one can plot the

w’s and c’s; the results and interpretation is similar.
This plot shows how the X-variables combine to form
the scorest ; X-variables important for theath com-a

ponent fall far from the origin along theath axis in
the wc-plot. Analogously, Y-variables well modelled
by the ath component have large coefficients,c ,am

and hence fall far from the origin along theath axis
in the same plot.

ŽThe example 1 weight plot Fig. 6, often also
.called loading plot shows the first PLS component

Ždominated by lipophilicity and polarity PIF, PIE, and
.Lam on the positive side, and DGR on the negative ,

and the second component being a mixture of size and
polarity with MR, Vol, and SAC on the positive
Ž . Ž .high side, and Lam on the negative low side.

Fig. 6. The PLS weights,w) andc for the first two dimensions of the 2nd AA model.
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Ž .Fig. 7. PLS regression coefficients afterAs2 components second analysis . The bars indicate 95% confidence intervals based on jack-
knifing.

The c-values of the response,y, are proportional
to the linear variation of Y explained by the corre-
sponding dimension, i.e.,R2. They define one point
per response; in the example with a single response,

Ž .this point DDGTS sits far to the right in the first
quadrant of the plot.

The importance of a given X-variable forY is
proportional to its distance from the origin in the
loading space. These lengths correspond to the PLS-

Žregression coefficients afterAs2 dimensions Fig.
.7 .

5.3. Comparison with multiple linear regression
( )MLR

Ž .Comparing the PLS modelAs2 and the MLR
Ž .model equivalent to the PLS model withAs7

Ž .shows that the coefficients ofx DGR and x3 4
Ž . Ž .SAC change sign between the PLSR model Fig. 7

Ž .and the MLR model Fig. 8 . Moreover, the coeffi-
cients of x , x , and x which are moderate in the4 5 7

Ž .PLSR As2 model become large and with oppo-
Ž .site signs in the MLR modelAs7 , although they

are strongly positively correlated to each other in the
raw data.

The MLR coefficients clearly are misleading and
un-interpretable, due to the strong correlations be-
tween the X-variables. PLSR, however, stops atAs
2, and gives reasonable coefficient values both for
As2 and As3. With correlated variables one can-
not assignAcorrectB values to the individual coeffi-
cients, the only thing we can estimate is theirjoint
contribution toy.

Fig. 8. The MLR coefficients corresponding to analysis 2. The bars indicate 95% confidence intervals based on jack-knifing. Note the differ-
ences in the vertical scale to Fig. 7.
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Fig. 9. VIP of the X-variables of the three-component PLSR model, 3rd analysis. The squares ofx sPIE, x sPIF, x sDGR, andx s1 2 3 6

Lam, are denoted by S1)1, S2)2, S3)3, and S6)6, respectively.

5.4. Measures of Õariable importance

Ž .In PLSR modelling, a variablex may be im-k

portant for the modelling ofY. Such variables are
identified by large PLS-regression coefficients,b .m k

However, a variable may also be important for the
modelling of X, which is identified by large load-
ings, p . A summary of the importance of an X-ak

Žvariable forboth Y andX is given by VIP variablek
.importance for the projection, Fig. 9 . This is a

weighted sum of squares of the PLS-weights,w) ,ak

with the weights calculated from the amount of Y-
variance of each PLS component,a.

5.5. Residuals

Ž Ž .The residuals ofY andX E andF in Eqs. 2 and
Ž . .4 above are of diagnostic value for the quality of
the model. A normal probability plot of the Y-residu-

Ž .als Fig. 10 of the final AA model shows a fairly
straight line with all values within"3 SD’s. To be a
serious outlier, a point should clearly deviate from the
line, and be outside"4 SD’s.

Ž .Since the X-residuals are manyN) K , one
Ž .needs a summary for each observation compound

not to drown in details. This is provided by the resid-
ual SD of the X-residuals of the corresponding row

Fig. 10. Y-residuals of the three-component PLSR model, 3rd analysis, normal probability plot.
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of the residual matrixE. Because this SD is propor-
tional to the distance between the data point and the
model plane in X-space, it is also often called

Ž .DModX distance to the model in X-space . A
DModX larger than around 2.5 times the overall SD

Žof the X-residuals corresponding to anF-value of
.6.25 indicates that the observation is an outlier. Fig.

11 shows that none of the 16 compounds in example
1 has a large DModX. Here the overall SDs0.34.

5.6. Conclusions of example 1

ŽThe initial PLSR analysis gave diagnostics score
.plots that indicated in-homogeneities in the data. A

much better model was obtained for theNs 16
non-aromatic AA’s. A remaining curvature in the
score plot ofu vs. t lead to the inclusion of squared1 1

terms, which gave a good final model. Only the
squares in the lipophilicity variables are significant in
the final model.

If additional aromatic AA’s had been present, a
second separate model could have been developed for
this type of AA’s. This would provide insight in how
this aromatic group differs from the non-aromatic
AA’s. This is, in a way, a non-linear model of the
changes in the relationship between structure and ac-
tivity when going from non-aromatic to aromatic
AA’s. These changes are too large and non-linear to
be modelled by a linear or low degree polynomial
model. The use of two separate models, which do not

directly model the change from one group to another,
provides a simple approach to deal with these non-
linearities.

( )6. Example 2 SIMCODM

High and consistent product quality combined with
AgreenB plant operation is important in today’s com-
petitive industrial climate. The goal of process data
modelling is often to reduce the amount of down time
and eliminate sources of undesired and deleterious
process variability. The second example shows the
investigation of possibilities to operate a process in-

w xdustry in an environment-friendly manner 40 .
At the Aylesford Newsprint paper-mill in Kent,

UK, premium quality newsprint is produced from
100% recycled fiber, i.e., reclaimed newspapers and
magazines. The first step of the process is one of de-
inking. This has stages of cleaning, screening, and
flotation. First the wastepaper is fed into rotating
drum pulpers, where it is mixed with warm water and
chemicals to initiate the fiber separation and ink re-
moval. In the next stage, the pulp undergoes pre-
screening and cleaning to remove light and heavy

Žcontaminants staples, paper clips, sand, plastics,
.etc. . Thereafter the pulp goes to a pre-flotation stage.

After the pre-flotation the pulp is thickened and dis-
persed and the brightness is adjusted. After post-flo-

Ž .tation and washing the de-inked pulp DIP is sent via

Ž .Fig. 11. RSD’s of each compound’s X-residuals DModX , 3rd analysis.
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storage towers to the paper machines for production
of premium quality newsprint.

The wastewater discharged from the de-inking
process is the main source of chemical oxygen de-

Ž .mand COD of the mill effluent. COD estimates the
oxygen requirements of organic matter present in the
effluent. The COD in the effluent is reduced by 85%
prior to discharge to the river Medway. Stricter envi-
ronmental regulations and costs of COD reduction
made the investigation of the COD sources and pos-
sible control strategies one of the company’s envi-
ronmental objectives for 1999. A multivariate ap-
proach was adopted.

Thus, data from more than a year were used in the
multivariate study. The example data set contains 384

Ždaily observations, with one response variable COD
. Ž .load, y and 54 process variablesx yx . Half of1 2 55

Ž .the observations process time points are used for
model training and half for model validation.

6.1. OÕerÕiew by PCA

Ž .PCA applied to the entire data setX andY gave
an eight-component model explainingR2s79% and
predictingQ2s68% of the data variation. Scores and
loadings of the first two components accounting for
54% of the sum of squares are plotted in Figs. 12 and
13.

Ž .Fig. 12. Example 2. PCA score plott1rt2 of overview model.
Each point represents one process time point.

Ž .Fig. 13. Example 2. PCA loading plotp1rp2 corresponding to
Fig. 12. The position of the COD load, variable number 1, is high-
lighted by an increased font size.

Fig. 12 reveals a main cluster in the right-hand part
of the score plot, where the process has spent most
of its time. Occasionally, the process has drifted away
towards the left-hand area of the score plot, corre-
sponding to a lower production rate, including
planned shut downs in one of the process lines. The
loading plot shows most of the variables having low

Žnumerical values i.e., low material flow, low addi-
.tion of process chemicals, etc. for the low produc-

tion rates.
This analysis shows that the data are not strongly

clustered. The low production process time points
deviate from the main cluster, but not seriously.
Rather, the inclusion of the low production time
points in the subsequent PLSR modelling give a good
spanning of key features such as brightness, residual
ink, and addition of external chemicals.

6.2. Selection of training set for PLSR and lagging of
data

The parent data set, with preserved time order, was
split into two halves, one training set and one predic-
tion set. Only forward prediction was applied. Pro-
cess insight, initial PLSR modelling, and inspection
of cross-correlations, indicated that lagging 10 of the
variables was warranted to catch process dynamics.
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Fig. 14. Example 2. Observed verses predicted COD for the pre-
diction set.

These were: lags 1–4 of COD, and lags 1 and 2 of
Ž .variables x , x addition of two chemicals , and23 24

Ž .x a flow , totally 10 lagged X’s. Lagging a vari-35

able L steps means that the same variable shiftedL
steps in time is included as an additional variable in
the data set.

6.3. PLSR modelling

PLSR was utilized to relate the 54q10 process
variables to the COD load. A two-component PLSR
model was obtained, withR2 s0.49, R2s0.60, Q2

X Y Y
Ž . 2 Ž . ŽCV s0.57, andQ ext s0.59 external valida-Y

.tion set . Fig. 14 shows relationships between ob-
served and predicted levels of COD for the vali-
dation set. The picture for the training set is very
similar.

6.4. Results

The collected process variables together with their
lags predict COD load withQ2)0.6. This is a satis-
fying result considering the complexity of the pro-
cess and the great variations that occur in the starting

Ž .material recycled paper .
Ž .The PLS-regression coefficients Fig. 15 , show

the process variables with the strongest correlation to
Ž .the COD load to bex , x addition of chemicals ,23 24

Ž . Ž .x , x flows , and x and x temperatures ,34 35 49 50

with coefficients exceeding 0.04. Only some of these
can be controlled, namelyx , x , and x . More-23 24 49

Fig. 15. Example 2. Plot of regression coefficients of scaled and centered variables of PLS model. Coefficients with numbers 2 to 55 repre-
sent the 54 original process variables. Coefficients 57–60 depict lags 1–4 of COD, and coefficients 61–66 the two first lags of variables
x , x , and x .23 24 35
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over, the lagged variables are important. Variables
57–60 are the four first lags of the COD variable.
Obviously, past measurements of COD are useful for
modelling and predicting future levels of COD—the
change in this variable is slow. The variables 61–66
are lags 1 and 2 ofx , x , and x . The dynamics23 24 35

of these process variables are thus related to COD.
Unfortunately, none of the three controlled vari-

Ž .ables x , x , and x offer a means to decrease23 24 49

COD. The former two variables describe the addition
of caustic and peroxide to the dispergers, and cannot
be significantly reduced without endangering pulp
quality. The last variable is the raw effluent tempera-
ture which cannot be lowered without negative ef-
fects on pulp quality.

This result is typical for the analysis of historical
process data. The value of the analysis is mainly to
detect deviations from normal operation, not as a
means to process optimization. The latter demands
data from a statistically designed set of experiments
with the purpose of optimizing the process.

7. Summary; how to develop and interpret a PLSR
model

Ž .1 Have a good understanding of the stated prob-
Ž .lem, particularly which responses properties ,Y, that

are of interest to measure and model, and which pre-
dictors, X, that should be measured and varied. If
possible, i.e., if the X-variables are subject to experi-
mental control, use statistical experimental design
w x41 for the construction ofX.

Ž . Ž . Ž2 Get good data, bothY responses andX pre-
.dictors . Multivariate Y’s provide much more infor-

mation because they can first be separately analyzed
by a PCA. This gives a good idea about the amount
of systematic variation inY, which Y-variables that
should be analyzed together, etc.

Ž .3 The first piece of information about the model
is the number of significant components, A—the
complexity of the model and hence of the system.
This number of components gives a lower bound of
the number ofeffects we need to postulate in the
system.

Ž .4 The goodness of fit of the model is given by
2 2 Ž 2.R and Q cross-validatedR . With several Y’s,

one obtains alsoR2 and Q2 for eachy . The R2’sm m m

give an upper bound of how well the model explains
the data and predicts new observations, and theQ2’s
give lower bounds for the same things.

Ž . Ž .5 The u,t score plots for the first two or three
model dimensions will show the presence of outliers,
curvature, or groups in the data.

Ž .The t,t score plots—windows in X-space—show
in-homogeneities, groups, or other patterns. Together

Ž ) .with this, the w c weight plots gives an interpreta-
tion of these patterns.

Ž . 2 26a If problems are seen, i.e., smallR and Q
values, or outliers, groups, or curvature in the score
plots, one should try to remedy the problem. Plots of

Žresiduals normal probability and DModX and
.DModY may give additional hints for the sources of

the problems.
Single outliers should be inspected for correctness

of data, and if this does not help, be excluded from
Žthe analysis only if they are non-interesting i.e., low

.activity .
Ž .Curvature in u,t plots may be improved by

Ž .transforming parts of the data e.g., log , or by in-
cluding squared andror cubic terms in the model.

After possibly having transformed the data, modi-
fied the model, divided the data into groups, deleted
outliers, or whatever warranted, one returns to step 1.

Ž . 2 26b If no problems are seen, i.e.,R and Q are
OK, and the model is interpretable, one may try to
mildly prune the model by deleting unimportant
terms, i.e., with small regression coefficients and low
VIP values. Thereafter a final model is developed,
interpreted, and validated, predictions are made, etc.

Ž ) .For the interpretation thew c weight plots, coeffi-
cient plots, and contour or 3D plots with dominating
X’s as plot coordinates, are invaluable.

8. Regression-like data-analytical problems

A number of seemingly different data-analytical
problems can be expressed as regression problems
with a special coding ofY or X. These include linear

Ž .discriminant analysis LDA , analysis of variance
Ž . ŽANOVA , and time series analysis ARMA and

.similar models . With many and collinear variables
Ž .rank-deficientX , a PLSR solution can therefore be
formulated for each of these.
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Ž .In linear discriminant analysis LDA , and the
Ž .closely related canonical variates analysis CVA , one

has theX-matrix divided in a number of classes, with
index 1,2, . . . ,g, . . . ,G. The objective of the analysis

Žis to find linear combinations of the X-variables dis-
.criminant functions that discriminate between the

classes, i.e., have very different values for the classes
w x11 . Provided that each class isAtightB and occupies
a small and separate volume in X-space, one can find
a plane—a discriminant plane—in which the pro-
jected observations are well separated according to
class. With many and collinear X-variables, a PLS

Ž . w xversion of LDA PLS-DA is useful 42,43 .
However, when some of the classes are not tight,

often due to a lack of homogeneity and similarity in
these non-tight classes, the discriminant analysis does
not work. Then other approaches, such as, SIMCA
have to be used, where a PC or PLSR model is de-
veloped for each tight class, and new observations are
classified according to their nearness in X-space to
these class models.

Analogously, whenX contains qualitative vari-
Ž .ables the ANOVA situation , these can be coded us-

ing dummy variables, and the data then analyzed us-
ing MLR or PLSR. The latter is advantageous if the

Žcoded X is unbalanced andror rank deficient or
.close to . With several Y-variables, this provides a

Žsimple approach to MANOVA multiple responses
. w xANOVA 11 .

Auto-regressive and transfer function models in
time-series analysis are easily analyzed by first con-
structing an expanded X-matrix that contains the ap-
propriate lags of Y- and X-variables, and then calcu-
lating a PLSR solution. If the disturbancesa aret

Ž .included in the models ARMA, etc. , a two-step
analysis is needed, first calculating estimates ofa ,t

and then using these in lagged forms in the final
PLSR model.

In the modelling of mixtures, for instance of
chemical ingredients in paints, pharmaceutical, cos-
metic, and polymer formulations, beverages, etc., the
sum of the X-variables is 1.0, since ingredients sum
to 100%. This makesX rank deficient, and a number
of special regression approaches have been devel-
oped for the analysis of mixture data. With PLSR,
however, the rank deficiency presents no difficulties,
and the data analysis becomes straight forward, as

w xshown by Kettaneh-Wold 44 .

The iterative calculations in non-linear regression
Žoften involve a regression-like updating step e.g., the

.Gauss–Newton approach . TheX-matrix of this step
is often highly rank-deficient, and ridge-regression is

Žused to remedy the situation Marquardt–Lefwen-
.berg algorithms . PLSR provides a simple and inter-

esting alternative, which also is computationally very
fast.

9. Conclusions and discussion

PLSR provides an approach to the quantitative
modelling of the often complicated relationships be-
tween predictors,X, and responses,Y, that with
complex problems often is more realistic than MLR
including stepwise selection variants. This because
the assumptions underlying PLS— correlations
among the X’s, noise inX, model errors—are more
realistic than the MLR assumptions of independent
and error free X’s.

The diagnostics of PLSR, notably cross-validation
Ž .and score plotsu, t and t, t with corresponding

loading plots, provide information about the correla-
tion structure ofX that is not obtained in ordinary
MLR. In particular, PLSR results showing that the

Ždata are inhomogeneous like the AA example looked
.at here , are hard to obtain by MLR. In complicated

systems, non-linearities so strong that a single poly-
nomial model cannot be constructed, seem to be
rather common. Hence, a flexible approach to mod-
elling is often warranted with separate models for
different mechanistic classes. And there is no loss of
information with this approach in comparison with

Žthe single model approach. A new observation ob-
.ject is first classified with respect to its X-values, and

predicted response values are then obtained by the
appropriate class model.

The ability of PLSR to analyzeprofiles of re-
sponses, makes it easier to device response measure-
ments that are relevant to the stated objective of the
investigation; it is easier to capture the behavior of a
complicated system by a battery of measurements
than by a single variable.

PLSR can be extended in various directions, to
non-linear modelling, hierarchical modelling when
the variables are very numerous, multi-way data, PLS
time series, PLS-DA, etc. Many recently developed
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PLS based approaches are discussed in other articles
in this volume. The statistical understanding of PLSR

w xhas recently improved substantially 12,13,34 .
We feel that the flexibility of the PLS-approach,

its graphical orientation, and its inherent ability to
handle incomplete and noisy data with many vari-

Ž .ables and observations makes PLS a simple but
powerful approach for the analysis of data of compli-
cated problems.
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