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Abstract

Recent research concerning the Gaussian canonical form forSimultaneous Localization and Mapping (SLAM)
has given rise to a handful of algorithms that attempt to solve the SLAM scalability problem for arbitrarily large
environments. One such estimator that has received due attention is the Sparse Extended Information Filter (SEIF)
by Thrunet al., which is reported to be nearly constant time, irrespectiveof the size of the map. The key to the
SEIF’s scalability is to prune weak links in what is a dense information (inverse covariance) matrix to achieve a
sparse approximation that allows for efficient, scalable SLAM. We demonstrate that the SEIF sparsification strategy
yields error estimates that are overconfident when expressed in the global reference frame, while empirical results
show that relative map consistency is maintained.

In this paper, we propose an alternative scalable estimatorbased in the information form that maintains sparsity
while preserving consistency. The paper describes a methodfor controlling the population of the information matrix,
whereby we track a modified version of the SLAM posterior, essentially by ignoring a small fraction of temporal
measurements. In this manner, the Exactly Sparse Extended Information Filter (ESEIF) performs inference over a
model that is conservative relative to the standard Gaussian distribution. We compare our algorithm to the SEIF
and standard EKF both in simulation as well as on two nonlinear datasets. The results convincingly show that our
method yields conservative estimates for the robot pose andmap that are nearly identical to those of the EKF.

Index Terms

mobile robotics, SLAM, Kalman filters, information filters,robotic mapping, and robotic navigation.

I. INTRODUCTION

The capability to accurately navigate ina priori unknown environments is critical for autonomous
robotics. Using a suite of inertial and velocity sensors, dead-reckoning provides position estimates sub-
ject to unbounded error growth with time. In some outdoor applications, one can utilize GPS fixes to
periodically minimize this error. Unfortunately, GPS measurements are not available in many common
environments (e.g. indoors and underwater), thus requiring an alternative means of keeping the error
drift in check. Underwater vehicles, for example, often rely upon acoustic long-baseline (LBL) range
measurements that are fused with motion sensor data [1]. Utilizing LBL navigation requires the deployment
and calibration of a transponder network and limits the operating range of the vehicle. The need for such
an infrastructure constrains the degree of autonomy that underwater robots are able to achieve.

Simultaneous Localization and Mapping (SLAM) offers a solution for unencumbered navigation that
exploits the environment to maintain accurate pose estimates. By building a map on-line while using inertial
and velocity measurements to predict vehicle motion, the robot utilizes observations of the environment
to localize itself within the map. The stochastic nature of the vehicle motion and measurement models,
together with noisy sensor data, further complicates the coupling between navigation and mapping that is
inherent to SLAM. Many successful SLAM algorithms address these issues by formulating the problem
in a probabilistic manner, tracking the joint posterior over the vehicle pose and map.
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In their seminal paper [2], Smithet al. show how this distribution can be modeled by a Gaussian that
is completely described by a mean vector and covariance matrix, and tracked via an Extended Kalman
Filter (EKF). In part as a result of its relative simplicity,this model has become the standard tool of
choice for a majority of SLAM algorithms. With explicit knowledge of the correlation between the robot
state and the map elements, the EKF exploits observations ofthe environment to improve the vehicle
pose and map estimates. Maintaining these correlations, though, imposes anO(n2) memory requirement,
wheren is proportional to the size of the map [3]. Furthermore, while the EKF efficiently predicts the
vehicle motion, measurement updates for the standard EKF are quadratic in the number of states. As
a consequence, it is well known that the standard EKF SLAM algorithm is limited to relatively small
environments (i.e. on the order of a few hundred features) [4].

As robots are deployed in larger environments, extensive research has focused on the scalability
restrictions of EKF SLAM. An intuitive way of dealing with this limitation is to divide the world
into numerous sub-environments, each comprised of a more manageable number ofl features. These
submap approaches [5]–[8] shed some of the computational burden of the full EKF solution by performing
estimation based only upon the robot’s local neighborhood.The performance time for the Kalman updates
is thenO(l2) rather than the standardO(n2). One tradeoff of focusing on individual local maps is that
some methods forgo an immediate estimate for the global map and, in general, are believed to sacrifice
convergence speed [7]. Alternatively, the FastSLAM algorithm [9] takes advantage of the conditional
independence of the map elements given knowledge of the robot pose to improve scalability. Employing a
particle filter representation for the pose distribution, FastSLAM efficiently tracks a map for each particle
with a collection of independent EKFs, one for every feature. The computational cost is proportional
to the number of particles used and is low in situations whererelatively few particles are sufficient to
describe the robot pose. With larger uncertainties, though, the efficiency benefits are not as obvious since
an increased number of particles is necessary [10] to characterize the pose distribution. Additionally,
there is the problem of particle depletion [11] as particlesdescribing the true trajectory are lost due to
resampling.

Recently, strategies have emerged that offer the promise ofscalability through the canonical parametriza-
tion for the SLAM distribution. Rather than a dense covariance matrix and mean vector, the canonical
form completely describes the Gaussian by the information (inverse covariance) matrix and information
vector. Analogous to the EKF, the evolution of the posterioris tracked over time via a two step process
comprising the so-called Extended Information Filter (EIF) [12]. The dual of the covariance form, the
EIF update step is efficient as it is quadratic in the number ofmeasurements1 and not the size of the map.
On the other hand, the time projection step is, in general, quadratic in the number of landmarks. Also,
recovering the mean from the information vector and matrix requires a costlyO(n3) matrix inversion.
Together, these characteristics would seem to rule out the information parametrization as a viable remedy
to the scalability problem of the standard EKF and are largely the reason for its limited application to
SLAM.

Pivotal insights by Thrunet al. [13] and Freseet al. [14] reveal that the canonical form is, in fact,
particularly beneficial in the context of feature-based SLAM as a majority of the off-diagonal elements in
the normalized information matrix are inherently very small. By essentially approximating these entries
as being zero, Thrunet al. take advantage of what is then a sparse information matrix, presenting the
Sparse Extended Information Filter (SEIF), an adaptation of the EIF. In addition to incorporating new
observations efficiently, the SEIF performs the time projection step at a significant savings in cost, offering
a near constant-time solution to the SLAM problem. The caveat is that a subset of the mean is necessary
to linearize the motion and measurement models as well as to enforce the sparsity of the information
matrix. To that end, the authors estimate the mean of the robot pose and a limited number of features as
the solution to a sparse set of linear equations that is approximated using relaxation.

Similar benefits extend from interpreting the canonical parametrization as a Gaussian Markov Random

1This assumes knowledge of the mean, which is necessary for observations that are nonlinear in the state.
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Field (GMRF) [15] where small entries in the normalized information matrix correspond to weak links
in the graphical model. By essentially breaking these weak links, Paskin [10] and Frese [16] approximate
the graphical model with a sparse tree structure. Paskin’s Thin Junction Tree Filter (TJTF) and Frese’s
Treemap filter are then each capable of efficient inference upon this representation, involvingO(n) and
O(log n) time, respectively.

Recently, a number of batch algorithms have been proposed that solve for the maximum likelihood
estimate (MLE) based upon the entire history of robot motionand measurement data [4], [17]–[20]. They
solve for the MLE by optimizing a full, nonlinear log-likelihood function over a series of iterations, which
provides robustness to linearization and data associationerrors. GraphSLAM [4], in similar fashion to the
other batch algorithms, forms a graph in which the nodes correspond to the robot poses and map elements
and the edges capture the motion and measurement constraints. At each iteration, the linearization yields
a sparse information matrix to which they apply the variableelimination algorithm to marginalize over
the map and reduce the graph to one over only the pose history.They subsequently solve for the posterior
over the pose history and, in turn, the current ML map estimate.

Dellaert [20] adopts much the same strategy as it considers the posterior over the robot’s entire pose
history, taking advantage of what is then a naturally sparseinformation matrix [10], [21]. The approach
formulates the corresponding mean as the solution to a set oflinear equations for which the information
matrix is the matrix of coefficients. The technique decomposes the information matrix into either its
Cholesky or QR factorization, paying close attention to variable ordering. In turn, they jointly solve for
the mean over the pose and map via back-substitution. As the author insightfully shows, this closely
parallels aspects of the aforementioned graphical model methods. The results demonstrate promising
advantages over the EKF with regards to performance though the algorithm currently does not address
some important aspects of the SLAM problem such as data association.

Alternatively, Wanget al. [22] treat map building and localization as two separate estimation problems.
They represent the distribution over the map as a canonical Gaussian that is maintained using measurements
of the relative pose between pairs of landmarks. The advantage of sacrificing robot pose information is
that the information matrix for the map is then naturally sparse. Meanwhile, the robot is continuously
relocated within the map based upon observations of features. This estimate is fused with that of a
standard EKF, which concurrently performs local SLAM, via covariance intersection [23] to estimate the
robot pose. There are a number of similarities between this algorithm and the approach presented in this
paper although the two approaches have been developed independently of one another.

The benefit of maintaining thejoint distribution over the robot and map is that we can take advantage
of dependence relationships between landmarks and the vehicle pose. Unfortunately, the consequence is
that, while the information matrix is relatively sparse, itis nonetheless fully populated. In this paper, we
analyze the process by which the SEIF actively breaks weak robot-landmark links to enforce a desired
level of sparsity. We show that a consequence of the SEIF sparsification is an overconfident estimate for
the global map and pose errors while the consistency of the local map relations is preserved.

As a remedy, we propose an efficient information-based formulation of the SLAM problem that actively
controls the population of the information matrix without relying upon an approximation to the state
distribution. By essentially relocalizing the robot within the map, we show that the filter maintains exact
analytical sparseness while producing state estimates that are both globallyand locally conservative relative
to the full EKF solution. We evaluate the performance of our algorithm alongside the SEIF and full KF
in a controlled linear Gaussian simulation to reveal the consistency traits inherent to the estimators. We
then demonstrate our filter alongside the SEIF and full EKF ona pair of real-world datasets, including
a benchmark nonlinear experiment. The results reveal that the SEIF is globally inconsistent while our
algorithm yields estimates for the robot pose and map nearlyidentical to those of the EKF, yet both
globally and locally conservative.
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II. BACKGROUND

Let ξt be a random vector governed by a multivariate Gaussian probability distribution,ξt ∼ N
(

µt, Σt

)

,
traditionally parametrized in full by the mean vector,µt, and covariance matrix,Σt. Expanding the
quadratic term within the Gaussian exponential, we arrive at an equivalent representation for the multi-
variate distribution,N−1

(

ηt, Λt

)

.

p (ξt) = N
(

µt, Σt

)

∝ exp
{

−1

2
(ξt − µt)

⊤Σ−1
t (ξt − µt)

}

= exp
{

−1

2

(

ξ⊤
t Σ−1

t ξt − 2µ⊤
t Σ−1

t ξt + µ⊤
t Σ−1

t µt

)}

∝ exp
{

−1

2
ξ⊤

t Σ−1
t ξt + µ⊤

t Σ−1
t ξt

}

= exp
{

−1

2
ξ⊤

t Λtξt + η⊤
t ξt

}

∝ N−1
(

ηt, Λt

)

(1)

The canonical form of the Gaussian (1) is completely parametrized by the information matrix,Λt, and
information vector,ηt, which are related to the mean vector and covariance matrix by (2).

Λt = Σ−1
t ηt = Σ−1

t µt (2)

A. Duality between Standard and Canonical Forms

The canonical parametrization for the multivariate Gaussian is the dual of the standard form in regards
to the marginalization and conditioning operations [10], as demonstrated in Table I. Marginalizing over
variables with the standard form iseasysince we simply remove the corresponding elements from the mean
vector and covariance matrix. However, the same operation for the canonical form involves calculating
a Schur complement and is computationallyhard. The opposite is true when calculating the conditional
from the joint distribution; it ishard with the standard form yeteasywith the canonical parametrization.

TABLE I

SUMMARY OF MARGINALIZATION AND CONDITIONING OPERATIONS ON AGAUSSIAN DISTRIBUTION EXPRESSED INCOVARIANCE

AND INFORMATION FORM

p (α, β) = N
(

[

µα
µβ

]

,
[

Σαα Σαβ

Σβα Σββ

]

)

= N−1
(

[

ηα
ηβ

]

,
[

Λαα Λαβ

Λβα Λββ

]

)

MARGINALIZATION CONDITIONING

p (α) =
∫

p (α, β) dβ p (α | β) = p (α, β) /p (β)

COVARIANCE

FORM

µ = µα µ′ = µα + ΣαβΣ−1
ββ (β − µβ)

Σ = Σαα Σ′ = Σαα − ΣαβΣ−1
ββΣβα

INFORMATION

FORM

η = ηα − ΛαβΛ−1
ββηβ η′ = ηα − Λαββ

Λ = Λαα − ΛαβΛ−1
ββΛβα Λ′ = Λαα

B. Implied Conditional Independence

An advantageous property of the canonical parametrizationis that the information matrix provides an
explicit representation for the structure of the corresponding Gaussian Markov random field (GMRF) [10],
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Fig. 1. An example of the effect of marginalization on the Gaussian information matrix. We start out with a joint posterior over ξ1:6

represented by the information matrix and corresponding Markov network pictorialized on the left. The information matrix for the marginalized
density,p (ξ2:6) =

∫

p (ξ1:6) dξ1, corresponds to the Schur complement ofΛββ = Λξ1ξ1 in Λξ1:6ξ1:6 . This calculation essentially passes
information constraints from the variable being removed,ξ1, onto it’s adjacent nodes, adding shared information between these variables.
We see, then, that a consequence of marginalization is the population of the information matrix.

[15]. This property follows from the factorization of a general Gaussian density

p (ξ) ∝ exp
{

−1

2
ξ⊤Λξ + η⊤ξ

}

=
∏

i

exp
{

−1

2

(

λiiξ
2
i − ηiξi

)}

·
∏

i,j
i6=j

exp
{

−1

2
ξiλijξj

}

=
∏

i

Ψi(ξi) ·
∏

i,j
i6=j

Ψij(ξi, ξj)

where

Ψi(ξi) = exp
{

−1

2

(

λiiξ
2
i − ηiξi

)}

Ψij(ξi, ξj) = exp
{

−1

2
ξiλijξj

}

are the node and edge potentials, respectively, for the corresponding undirected graph. Random variable
pairs with zero off-diagonal elements in the information matrix (i.e. λij = 0) have an edge potential
Ψij (ξi, ξj) = 1, signifying the absence of a link between the nodes representing the variables. Conversely,
non-zero shared information indicates that there is a link joining the corresponding nodes with the strength
of the edge proportional toλij. In turn, as the link topology for an undirected graph explicitly captures the
conditional dependencies among variables, so does the structure of the information matrix. The presence of
off-diagonal elements that are equal to zero then implies that the corresponding variables are conditionally
independent, given the remaining states.

It is interesting to note that one comes to the same conclusion from a simple analysis of the conditioning
operation for the information form. Per Table I, conditioning a pair of random variables,α = [ξ⊤

i ξ⊤
j ]⊤, on

the remaining states,β, involves extracting theΛαα sub-block from the information matrix. When there is
no shared information betweenξi andξj, Λαα is block-diagonal as is its inverse (i.e. the covariance matrix).
Conditioned uponβ, the two variables are uncorrelated and we can conclude thatthey are conditionally
independent:p

(

ξi, ξj | β
)

= p (ξi | β) p
(

ξj | β
)

.
The fact that the information matrix characterizes the conditional independence relationships emphasizes

the significance of its structure. In particular, it is important to make a distinction between elements that
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are truly zero and those that are just small in comparison to others. On that note, we return to the process
of marginalization, which modifies zeros in the informationmatrix, thereby destroying some conditional
indpendencies [10]. Consider a six state Gaussian random vector, ξ ∼ N−1

(

η, Λ
)

, characterized by the
information matrix and GMRF depicted in the left-hand side of Figure 1. The canonical form of the
marginal densityp (ξ2:6) =

∫

p (ξ1:6) dξ1 = N−1
(

η′, Λ′
)

follows from Table I withα = [ξ2 ξ3 ξ4 ξ5 ξ6]
⊤

and β = ξ1. The correction term in the Schur complement,ΛαβΛ−1
ββΛβα, is non-zero only at locations

associated with variables directly linked withξ1. This set, denoted asm+ = {ξ2, ξ3, ξ4, ξ5}, comprises
the Markov blanket forξ1. Subtracting the correction matrix modifies a number of entries in theΛαα

information sub-matrix, including some that were originally zero. Specifically, while no links exist between
ξ2:5 in the original distribution, the variables inm+ become fully connected as a result of marginalizing
ξ1. Marginalization results in the population of the information matrix, a characteristic that has important
consequences when it comes to applying the information formto feature-based SLAM.

III. FEATURE-BASED SLAM I NFORMATION FILTERS

We employ a feature-based representation of the environment, storing the map as a collection of
geometric primitives, e.g. points and lines. The robot pose(position and orientation),xt, together with the
set of n map features,M = {m1,m2, . . . ,mn}, comprise the state vector,ξt =

[

x⊤
t M⊤

]⊤
. In similar

fashion to [2], we take a first-order linearization of the motion and measurement models and treat the
uncertainty in the data as independent, white Gaussian noise. One can then show that the posterior obeys
a Gaussian distribution:

p
(

ξt | z
t,ut

)

= N
(

µt, Σt

)

= N−1
(

ηt, Λt

)

, (3)

wherezt andut denote the history of observational data and motion controlinputs, respectively. Through-
out the paper, we will refer to (3) as the SLAM posterior.

Applying the notation introduced by Thrunet al. [13], the map is partitioned into two sets,M =
{m+,m−}, based upon the structure of the information matrix. The setof active features,m+, consists
of the map elements with non-zero off-diagonal terms that link them with the robot, whilem− signifies
the passivefeatures that are conditionally independent of the vehiclepose. In the example displayed in
the left-hand side of Figure 2, the active features arem+ = {m1,m2,m3,m5} and the single passive
landmark ism− = m4.

An Extended Information Filter (EIF) tracks the SLAM distribution through time projection and mea-
surement update steps in much the same way as the EKF. The remainder of this section is devoted to a
detailed description of the canonical formulation to theseprocesses.

A. Measurement Update Step

Observations of landmarks are key to reducing the uncertainty in the estimates for the robot pose and
the map. The measurement model (4a) is a nonlinear function of the state corrupted by white Gaussian
noise,vt ∼ N

(

0, R
)

. Equation (4b) is the first-order linearization about the mean of the robot pose and
observed features with the Jacobian,H, evaluated at this mean.

zt = h
(

ξt

)

+ vt (4a)

≈ h
(

µ̄t

)

+ H
(

ξt − µ̄t

)

+ vt (4b)

The process of updating the current distribution,p (ξt | z
t−1,ut) = N−1

(

η̄t, Λ̄t

)

, to reflect a new
observation follows from Bayes’ rule,

p
(

ξt | z
t,ut

)

∝ p (zt | ξt) p
(

ξt | z
t−1,ut

)

, (5)

where we exploit the conditional independence of the measurements given the state. The EIF estimates
the canonical form of the new posterior via the update step:

p
(

ξt | z
t,ut

)

= N−1
(

ηt, Λt

)
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Λt = Λ̄t + H⊤R−1H (6a)

ηt = η̄t + H⊤R−1
(

zt − h (µ̄t) + Hµ̄t

)

(6b)

For a detailed derivation, the reader is referred to [13].
At any timestep, the robot typically makes a limited number,m, of relative observations to individual

landmarks. The measurement model is then a function only of the vehicle pose and this small subset of
map elements,mi andmj and, in turn, a majority of terms in the Jacobian (7) are zero.

H =







∂h1

∂xt
· · · 0 · · · ∂h1

∂mi
· · · 0

...
. . .

...
∂hm

∂xt
· · · ∂hm

∂mj
· · · 0 · · · 0






(7)

The matrix outer-product in (6a),H⊤R−1H is zero everywhere except at positions associated with the
vehicle pose and observed features. More specifically, the matrix is populated at thext, mi, and mj

positions along the diagonal as well as at the off-diagonal positions for the(xt,mi) and (xt,mj) pairs.
The addition of this matrix to the original information matrix only modifies the terms exclusively related
to the robot and the observed landmarks. The update then actsto either strengthen existing constraints
between the vehicle and these features or to establish new ones (i.e., make them active).

Due to the sparseness ofH, computingH⊤R−1H involvesO(m2) multiplications. Assuming knowledge
of the mean for the robot pose and observed features for the linearization, this matrix product is the most
expensive component of (6). Since the number of observations, m, is limited by the robot’s field of view,
the EIF update time is bounded and does not grow with the size of the map. In general, though, we do
not have an estimate for the current mean and computing it via(2) requires anO(n3) matrix inversion.
The exception is when the measurement model is linear, in which case the mean is not necessary and the
update step is indeed constant-time.

B. Time Projection Step

The time projection step predicts the distribution over thenew robot pose through what can be thought of
as a two step process. First, we augment the canonical form with a new random variable that represents the
new vehicle pose. We then marginalize over the old pose, leaving us with the up-to-date state distribution.

1) State Augmentation:A Markov model governs the motion of the robot and is, in general, a nonlinear
function (8a) of the previous pose and the control input. Theadditive term,wt ∼ N

(

0, Q
)

, represents
a Gaussian approximation to the uncertainty in the model. The first-order linearization about the mean
robot pose,µxt

, follows in (8b) whereF the Jacobian matrix.

xt+1 = f
(

xt,ut+1

)

+ wt (8a)

≈ f
(

µxt
,ut+1

)

+ F
(

xt − µxt

)

+ wt (8b)

First, we grow the state vector to include the new robot pose,ξ̂t+1 = [x⊤
t x⊤

t+1 M⊤]⊤. The distribution
over ξ̂t+1 follows from the current posterior,p (ξt | z

t,ut) = N−1
(

ηt, Λt

)

, through the factorization

p
(

ξ̂t+1 | z
t,ut+1

)

= p
(

xt+1, ξt | z
t,ut+1

)

= p (xt+1 | xt,ut+1) p
(

ξt | z
t,ut

)

where we have exploited the Markov property. Accordingly, the augmentation to the information matrix
and vector is shown by Eusticeet al. [21] to have the form given in (9). Notice that the new robot pose
shares information with the previous pose but not the map. This is exemplified in the middle schematic
within Figure 2 by the fact that the only effect on the structure of the graphical model is the addition of
the xt+1 node linked to that ofxt. Givenxt, thext+1 pose is conditionally independent of the map as a
consequence of the Markov property.

p
(

xt,xt+1,M | zt,ut+1
)

= N−1
(

η̂t+1, Λ̂t+1

)
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Fig. 2. A graphical explanation for the inherent density of the information matrix due to the motion update step. Darker shades in the
matrix imply larger magnitude. On the left are the Markov network and sparse information matrix prior to time projectionin which the robot
shares information with the active features,m

+ = {m1,m2,m3,m5}. We augment the state with the new robot pose, which is linkedonly
to the previous pose due to the Markovian motion model. Subsequently, we marginalize overxt, resulting in the representation shown on
the right. The removal ofxt creates constraints between the robot and each map element in m

+, which are now fully connected. Along with
filling in the information matrix, we see from the shading that the time projection step weakens many constraints, explaining the approximate
sparsity of the normalized information matrix.

Λ̂t+1 =







(

Λxtxt
+ F⊤Q−1F

)

−F⊤Q−1 ΛxtM

−Q−1F Q−1 0
ΛMxt

0 ΛMM






=







Λ̂11
t+1 Λ̂12

t+1

Λ̂21
t+1 Λ̂22

t+1






(9a)

η̂t+1 =







ηxt
− F⊤Q−1

(

f
(

µxt
,ut+1

)

− Fµxt

)

Q−1
(

f
(

µxt
,ut+1

)

− Fµxt

)

ηM






=







η̂1
t+1

η̂2
t+1






(9b)

2) Marginalization: We complete the time projection step by marginalizingxt from the posterior to
achieve the desired distribution overξt+1 = [x⊤

t+1 M⊤]⊤.

p
(

xt+1,M | zt,ut+1
)

=

∫

xt

p
(

xt,xt+1,M | zt,ut+1
)

dxt

This brings us back to the expression for marginalization inthe canonical form from Table I that we apply
here:

p
(

ξt+1 | z
t,ut+1

)

= N−1
(

η̄t+1, Λ̄t+1

)

Λ̄t+1 = Λ̂22
t+1 − Λ̂21

t+1

(

Λ̂11
t+1

)−1

Λ̂12
t+1 (10a)

η̄t+1 = η̂2
t+1 − Λ̂21

t+1

(

Λ̂11
t+1

)−1

η̂1
t+1 (10b)

To better understand the consequences of this marginalization, we refer back to the discussion at the end
of §II-B. Prior to marginalization, the old robot pose is linkedto the active features,m+, while the new
pose shares information only withxt. When we remove the old pose, though, a link is formed between
the new pose and each feature inm+ and this set itself becomes fully connected. The information matrix
that was originally sparse is now populated as a consequenceof (10a). In the scenario depicted in the
right-hand side of Figure 2, the only remaining zero entriescorrespond to the lone feature,m4, which
will become connected to the robot upon the next observation. As Paskin [10] previously showed, the
time projection step, then, naturally leads to a dense information matrix in online, feature-based SLAM.
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Fig. 3. A sequence of illustrations highlighting the benefits of breaking links between the robot and the map. If featurem1 is first made
passive by removing the constraint to the old pose,xt, then marginalizing overxt will not link it to the other active features. This implies
that we can control the density of the information matrix by maintaining a bound on the number of active features.

The density of the matrix affects the computational cost of time prediction, specifically the marginal-
ization component. The correction term of the Schur complement (10a) is calculated as the outer product
with the off-diagonal submatrix for the old pose,Λ̂21

t+1. Computing the outer product is quadratic in the
number of nonzero elements within this submatrix and, equivalently, the number of map elements linked to
the old pose (i.e. the size ofm+). As we have just mentioned, though, this number will only increase over
time with the size of the map. Thus, while it may be possible toefficiently incorporate new measurements
with an EIF, the price we pay is a quadratic complexity for themotion update step.

In its natural form, the EIF is no better thanO(n2) and doesn’t offer an alternative to the EKF in
addressing scalability issues. A closer look at the structure of the information matrix, though, reveals that
an adapted form of the EIF may provide a solution. Returning to the example pictorialized in Figure 2,
note that, aside from populating the information matrix, the time projection step weakens the off-diagonal
links. This has been shown to result in a normalized information matrix that is nearly sparse [24]. The
analysis of [10], [13], [14] reveals that, by approximatingthe matrix as being exactly sparse, it is possible
to achieve significant gains when it comes to both storage andtime requirements. Specifically, a bound
on the number of links between the robot and the map allows fornear constant-time implementation of
the time projection step and controls the fill-in of the information matrix resulting from marginalization.
The delicate issue ishow to approximate the posterior,p (ξt | z

t,ut), with a sparse canonical form.

IV. SPARSIFICATION VIA ENFORCED CONDITIONAL INDEPENDENCE

The fill-in of the information matrix induced by the motion update step, together with its computational
complexity, are proportional to the number of links betweenthe robot and the map. Unfortunately, while
these links may weaken, they never disappear and lead to an ever-growing size of the active map [10].
In order to achieve a scalable SLAM information filter, we need to break links with the robot, thereby
bounding the number of active landmarks. Adopting the notation used in [13], we letΓa signify the bound
on the number of active map elements and useΓp to denote the number of inter-landmark links in the
matrix.

As motivation, consider again the scenario depicted in Figure 2 in which four features are active.
Marginalizing outxt creates links among each element inm+, potentially violating theΓp bound. Instead,
Figure 3 demonstrates that ifm1 was first made passive, then the number of non-zero elements created
as a result of marginalization can be controlled.
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A. SEIF Sparsification

Recalling the conditional dependency implicit in the GMRF,the SEIF breaks links between the robot
and a set of landmarks by replacing the SLAM posterior with a distribution that approximates the
conditional independence between the pose and these features. Decompose the map into three disjoint
sets,M = {m0,m+,m−}, wherem− refers to the passive features that willremainpassive,m0 are the
active landmarks that will bemadepassive, andm+ denotes the active features that are toremainactive.
The sparsification routine proceeds from a decomposition ofthe SLAM posterior

p
(

ξt | z
t,ut

)

= p
(

xt,m
0,m+,m−

)

= p
(

xt | m
0,m+,m−

)

p
(

m0,m+,m−
)

(11a)

= p
(

xt | m
0,m+,m− = ϕ

)

p
(

m0,m+,m−
)

(11b)

where we have omitted the dependence uponzt and ut for notational convenience. In (11b), we are
free to condition on an arbitrary instantiation of the passive features,m− = ϕ, due to the conditional
independence between the robot and these landmarks.

The SEIF deactivates landmarks by replacing (11) with an approximation to the posterior that drops
the dependence of the robot pose onm0:

p̃SEIF

(

ξt | z
t,ut

)

= p̃SEIF

(

xt,m
0,m+,m−

)

= p
(

xt | m
+,m− = ϕ

)

p
(

m0,m+,m−
)

(12)

While the expression in (11b) is theoretically exact, it is no longer valid to condition upon a particular
value for the passive map elements while ignoring the dependence uponm0 as we have done in (12).
Given only a subset of the active map, the robot pose and passive features aredependent, suggesting that
the particular choice forϕ affects the approximation. In fact, the authors show in [25]that setting the
passive features to any value other than their mean (i.e.ϕ 6= µm−) yields a mean of̃pSEIF

(

ξt | zt,ut
)

that differs from that of the original posterior2, p (ξt | z
t,ut). Furthermore, we will demonstrate that

by ignoring the dependence relationships in (12), the SEIF sparsification strategy leads to inconsistent
covariance estimates.

B. Discussion on Overconfidence

An important consequence of the SEIF sparsification algorithm is that the resulting approximation to
the SLAM posterior significantly underestimates the uncertainty in the state estimate. In this section, we
show that this inconsistency is a natural consequence of imposing conditional independence between the
robot pose and them0 subset of the map. To illustrate this effect, consider a general three state Gaussian
distribution,

p
(

a, b, c
)

= N









µa

µb

µc



 ,





σ2
a ρabσaσb ρacσaσc

ρabσaσb σ2
b ρbcσbσc

ρacσaσc ρbcσbσc σ2
c







 = N−1









ηa

ηb

ηc



 ,





λaa λab λac

λab λbb λbc

λac λbc λcc







 , (13)

that we would like to sparsify by forcinga and b to be conditionally independent givenc:

p (a, b, c) = p (a, b | c) p (c)
approx.
−−−→ p̃ (a, b, c) = p (a | c) p (b | c) p (c) . (14)

Recalling the discussion in§II-B, the approximation is implemented in the canonical form by setting
λab = 0. In the standard form, this is equivalent to treatinga and b as being uncorrelated inp (a, b | c).
The resulting approximation then follows as

p̃
(

a, b, c
)

= N









µa

µb

µc



 ,





σ2
a ρacρbcσaσb ρacσaσc

ρacρbcσaσb σ2
b ρbcσbσc

ρacσaσc ρbcσbσc σ2
c







 . (15)

2The mean is preserved by the sparsification routine in [13] since they condition uponϕ = µm− and notϕ = 0 as is stated in the paper.
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Fig. 4. At timet, the robot observes four features,{m1,m2,m3,m5}, three of which are already active, whilem3 is passive. The update
strengthens the shared information between vehicle pose and m1, m2, andm5 and adds a link tom3 as we indicate on the left. The next
time projection step forms a clique among the robot and thesefour features and populates the information matrix. The ESEIF sparsification
strategy avoids this effect by controlling the number of active landmarks and, in turn, the size of this clique.

In order for the approximation to be consistent, it is necessary and sufficient that the resulting covariance
matrix obey the inequality,

Σ̃ − Σ =





0 (ρacρbc − ρab)σaσb 0
(ρacρbc − ρab)σaσb 0 0

0 0 0



 ≥ 0. (16)

A necessary condition for (16) to hold is that the determinant of the upper-left2 × 2 sub-block be non-
negative [26]. Clearly, this is not the case for everyρacρbc 6= ρab. Extending this insight to the SEIF
sparsification strategy sheds some light on why enforcing the conditional independence between the robot
pose and them0 landmarks leads to overconfident state estimates.

V. EXACTLY SPARSE EXTENDED INFORMATION FILTERS

Recall that, as landmarks are added to the map, EIF SLAM algorithms create shared information with
the robot pose. Over time, these off-diagonal elements in the information matrix may decay, but never to
zero. Together with the time projection step, this leads to apopulated matrix as discussed in [10] and noted
earlier. The SEIF deals with this by substituting the SLAM posterior with an approximation in which the
vehicle is conditionally independent of much of the map. Thealgorithm takes advantage of what is then
a sparse information matrix to achieve near constant-time efficiency. The drawback, though, is that the
SEIF yields overconfident state estimates as a result of approximating conditional independencies.

We propose the Exactly Sparse Extended Information Filter (ESEIF) as an alternative sparse information
matrix SLAM algorithm; one which imposes exact sparsity in contrast to the approximate conditional
independencies enforced in SEIF. As we show, the result is a computationally efficient SLAM algorithm
that tracks a posterior distribution,pESEIF

(

ξt | zt,ut
)

, that is consistent with respect to that of the full
EKF/EIF.

A. ESEIF Sparsification

The general premise of ESEIF sparsification is straightforward: rather than deliberately breaking links
between the robot and map, we maintain sparsity by controlling their initial formation. More specifically,
the ESEIF manages the number of active landmarks by first marginalizing out the vehicle pose, essentially
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“kidnapping” the robot. The algorithm subsequently relocalizes the vehicle within the map based upon
new observations to a set of known landmarks. The set of features that were originally active have been
made passive and the set of landmarks used for relocalization form the new active map.

Time Projection:
(

η+
t−1, Λ

+
t−1

)

−→
(

η−
t , Λ−

t

)

;

Measurement Update
(

zt =
{

zactive, zpassive

})

:
if Nactive + n (zpassive) ≤ Γa then

Standard update:
(

η−
t , Λ−

t

) (6)
−−→

(

η+
t , Λ+

t

)

;
Nactive = Nactive + n (zpassive);

else
Partitionzt =

{

zα, zβ

}

s.t. n
(

zβ

)

≤ Γa ;

(i) Update usingzα:
(

η−
t , Λ−

t

) (17)
−−→

(

η̄−
t , Λ̄−

t

)

;

(ii) Marginalize over the robot:
(

η̄−
t , Λ̄−

t

) (19)
−−→

(

η̌−
t , Λ̌−

t

)

;

(iii) Relocate the robot usingzβ:
(

η̌−
t , Λ̌−

t

) (22)
−−→

(

η̆+
t , Λ̆+

t

)

;

Nactive = n
(

zβ

)

;
end

Algorithm 1: A description of the ESEIF algorithm. Note thatNactive denotes the number of features which are currently active.

The ESEIF sparsification algorithm takes the form of a variation on the measurement update step and
is outlined in Algorithm 1. For a more detailed description,we consider a situation that would give rise
to the GMRF depicted in Figure 4. At timet, suppose that the robot makes four observations of the
environment,Zt = {z1, z2, z3, z5}, three of active features and one of a passive landmark:

Active: z1 = h(xv,m1), z2 = h(xv,m2), z5 = h(xv,m5)

Passive: z3 = h(xv,m3).

Updating the current distribution,p (ξt | z
t−1,ut), based upon all four measurements would strengthen the

off-diagonal entries in the information matrix pairing therobot with the three observed active features,
m1, m2, andm5. Additionally, the update would create a link to the passivelandmark,m3, the end result
being the information matrix and corresponding graphical model shown in the left-hand side of Figure 4.
Suppose that activatingm3 would violate theΓa bound. Aside from updating the filter and subsequently
implementing the SEIF sparsification rule, one strategy would be to simply disregard the observation of
the passive landmark entirely. This approach, though, is not acceptable since the size of the map that we
can build is then dictated by theΓa bound. Alternatively, ESEIFs allow us to incorporate all measurement
data while simultaneously maintaining the desired degree of sparsity.

In the ESEIF sparsification step, the measurement data is partitioned into two sets,zα andzβ , where
the first set of observations is used to update the filter and the second is reserved for performing relocal-
ization. Several factors guide the specific allocation, including the number and quality of measurements
necessary for relocalization. Of the four measurements available in our example, group that of the passive
feature together with one of the active measurements for theupdate,zα = {z1, z3}. The remaining two
observations will be used for relocalization,zβ = {z2, z5}. With that said, we now describe the two
components of sparsification.

1) Posterior Update:We first perform a Bayesian update on the current distribution, p (ξt | z
t−1,ut)

to incorporate the information provided by thezα measurements:

p
(

ξt | z
t−1,ut

)

= N−1
(

ξt; ηt, Λt

)

zα={z1,z3}
−−−−−−→ p1

(

ξt |
{

zt−1, zα

}

,ut
)

= N−1
(

ξt; η̄t, Λ̄t

)

. (17)



13

xtxt

xt xt

xtxt

xt

xt

xt

m1 m1

m1m1m1

m1m1

m1

m1

m2m2m2

m2 m2

m2m2

m2

m2

m3m3m3

m3 m3

m3m3

m3

m3

m4m4m4

m4 m4

m4m4

m4

m4

m5

m5m5m5

m5 m5

m5m5

m5

Z

zα zβ

Fig. 5. A graphical description of the ESEIF sparsification strategy. At time t, the map is comprised of three active features,
m

+ = {m1, m2,m5}, and two passive features,m− = {m3,m4}, as indicated by the shaded off-diagonal elements in the information
matrix. The robot makes three observations of active landmarks, {z1, z2, z5}, and one of a passive feature,z3. In the first step of the
sparsification algorithm, shown in the left-most diagram, the ESEIF updates the distribution based upon a subset of the measurements,
zα = {z1, z3}. The result is a stronger constraint betweenm1 and the robot as well as the creation of a link withm3, which we depict
in the middle figure. Subsequently, the ESEIF marginalizes out the vehicle pose, leading to connectivity among the active landmarks. The
schematic on the right demonstrates the final step of sparsification in which the robot is relocated within the map based upon the remaining
zβ = {z2, z5} measurements. The result is a joint posterior,pESEIF

(

ξt | z
t,ut

)

, represented by an exactly sparse information matrix where
the size of the active map is controlled.

The p1

(

ξt | {z
t−1, zα} ,ut

)

posterior follows from the standard update equations (6) for the information
filter. The Jacobian matrix,H, is nonzero only at indices affiliated with the robot pose andthem1 andm3

landmarks. As a result, the process strengthens the link between the robot and the active feature,m1, and
creates shared information withm3, which was passive. The middle diagram of Figure 5 demonstrates
this effect. With regards to the computational complexity,recall that the update step is constant-time with,
in the nonlinear case, access to the mean estimate for the robot pose as well asm1 andm3.

2) Marginalization and Relocalization:Now that a new connection to the vehicle node has been added
to the graph, there are too many active features. The ESEIF sparsification routine proceeds to marginalize
out the robot pose to achieve the distribution over the map,

p2

(

Mt |
{

zt−1, zα

}

,ut
)

=

∫

xt

p1

(

ξt |
{

zt−1, zα

}

,ut
)

dxt

= N−1
(

Mt; η̌t, Λ̌t

)

.

(18)

In order to make the derivation a little clearer, decompose the canonical expression forp1

(

ξt | {z
t−1, zα} ,ut

)

into the robot pose and map components,

p1

(

ξt |
{

zt−1, zα

}

,ut
)

= N−1
(

ξt; η̄t, Λ̄t

)

η̄t =

[

η̄xt

η̄M

]

Λ̄t =

[

Λ̄xtxt
Λ̄xtM

Λ̄Mxt
Λ̄MM

]

.

The information matrix for the marginalized distribution then follows from Table I:

p2

(

Mt |
{

zt−1, zα

}

,ut
)

= N−1
(

Mt; η̌t, Λ̌t

)

Λ̌t = Λ̄MM − Λ̄Mxt

(

Λ̄xtxt

)−1
Λ̄xtM (19a)

η̌t = η̄M − Λ̄Mxt

(

Λ̄xtxt

)−1
η̄xt

. (19b)
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This marginalization component of sparsification is computationally efficient. Inverting the robot pose
sub-matrix,Λ̄xtxt

∈ R
p×p, is a constant-time operation sincep is fixed. The ESEIF then multiplies the

inverse byΛ̄Mxt
∈ R

n×p, the sub-block that captures the shared information between the robot and map.
With a bound on the number of active landmarks, a limited number of k rows are populated and the
matrix product isO(kp2). In (19a), we then post-multiply by the transpose inO(k2p) time while, in
(19b) we post-multiply bȳηxt

∈ R
p×1, anO(kp) operation. With the valid assumption thatk ≫ p, the

marginalization component of ESEIF sparsification is quadratic in the bounded number of active features
and, thus, constant-time.

The Λ̄Mxt
(Λ̄xtxt

)−1Λ̄xtM outer product in the Schur complement (19a) is zero everywhere except for
the entries that pair the active features. Recalling our earlier discussion on marginalization in§II-B, this
establishes connectivity among the active features as we show in the right-hand side of Figure 5. Of
course, unlike the figure shows, we do not have a representation for the robot pose, which brings us to
the next step.

We conclude sparsification by relocalizing the vehicle within the map with the remainingzβ observations
of a set of features denoted by the random vectormβ . The expression for the new pose is a nonlinear
function of mβ and the measurement data. We include an additive white Gaussian noise term,wt ∼
N

(

0, R
)

to account for model uncertainty and sensor noise, giving rise to the expression in (20a). Equation
(20b) is the first order linearization with respect to the mean vector for the observed features,µ̌mβ

, from
the map distribution (18). The Jacobian matrix,G, is sparse with nonzero entries only within the columns
associated with themβ landmarks. In turn, (20b) requires only thěµmβ

mean.

xt = g
(

mβ, zβ

)

+ wt (20a)

≈ g
(

µ̌mβ
, zβ

)

+ G
(

m − µ̌t

)

+ wt (20b)

We augment the map state with this new pose,ξt = [x⊤
t M⊤

t ]⊤, and form the joint distribution,

pESEIF

(

xt,Mt | z
t,ut

)

= p (xt | mβ , zβ) p2

(

Mt |
{

zt−1, zα

}

,ut
)

, (21)

where the factorization captures the conditional independence between the pose and the remaining map
elements.

The problem of adding the robot pose is fundamentally the same as adding a new feature to the map
or augmenting the state as part of the time prediction step (9). One can then easily show that (22) is the
canonical parametrization forpESEIF(ξt | z

t,ut).

pESEIF

(

ξt | z
t,ut

)

= N−1
(

ξt; η̆t, Λ̆t

)

Λ̆t =

[

R−1 −R−1G
−G⊤R−1 Λ̌t + G⊤R−1G

]

(22a)

η̆t =





R−1

(

g
(

µ̌mβ
, zβ

)

− Gµ̌t

)

η̌t − G⊤R−1

(

g
(

µ̌mβ
, zβ

)

− Gµ̌t

)



 (22b)

As a consequence of the sparseness ofG, a majority of terms within the−R−1G = −
(

G⊤R−1
)⊤

blocks
of the information matrix that link the robot to the map are zero. The landmarks used for relocalization
are the only exception as we show in the right-hand diagram inFigure 5 with the robot linked to the
mβ = {m2,m5} features but no others.

The ESEIF controls the information constraints between thevehicle and the map in a consistent manner
since it does not break (i.e. set to zero) undesired links. Instead, the filter marginalizes over the pose,
in effect, distributing the information encoded within these links to features in the active map,m+. The
marginalization (19a) populates the information sub-matrix associated withm+, which then forms a clique
in the graph. This fill-in would otherwise occur as part of thenext time prediction step and, with the active
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map growing ever larger, would fully populate the matrix. The ESEIF avoids extensive fill-in by bounding
the number of active landmarks. When the active map reaches apredetermined size, the ESEIF “kidnaps”
the robot, sacrificing temporal information as well as a controlled amount of fill-in. The algorithm then
relocalizes the vehicle, creating a new set of active features. Since observations are typically confined to the
robot’s local environment, these features are spatially close. The active map is built up from neighboring
landmarks until the next sparsification. As a result, the ESEIF forms marginalization cliques that resemble
submaps that are structured according to robot’s visibility and the density of features in the environment.

B. Mean Recovery

The sparse information filter provides for anear constant-time SLAM implementation. The caveat is,
in part, a consequence of the fact that we no longer have access to the mean vector when the posterior
is represented in the canonical form. Naı̈vely, we can compute the entire mean vector asµt = Λ−1

t ηt,
though the cost of inverting the information matrix is cubicin the number of states, making it intractable
even for small maps.

Instead, we pose the problem as one of solving the set of linear equations

Λtµt = ηt (23)

and take advantage of the sparseness of the information matrix. There are a number of techniques that
iteratively solve such sparse, symmetric positive definitesystems of equations including conjugate gradient
descent [27] as well as relaxation-based algorithms such asGauss-Seidel [28] and, more recently, the
multilevel method proposed by [19]. The optimizations can often be performed over the course of multiple
time steps since, aside from loop closures, the mean vector evolves slowly in SLAM. As a result, we can
bound the number of iterations required at any one time step [17].

Oftentimes, we are only interested in a subset of the mean such as during the time projection step,
which requires an estimate for the robot pose. We can then consider partial mean recovery [21] in which
we partition (23) as

[

Λll Λlb

Λbl Λbb

] [

µl

µb

]

=

[

ηl

ηb

]

(24)

whereµl is the “local portion” that we want to solve for andµb is the “benign portion” of the map.
Given an estimate forµb, we can reduce (24) to an approximate solution for the local mean,

µ̂l = Λ−1
ll (ηl − Λlbµ̂b) . (25)

Due to the sparsity ofΛlb, this formulation requires only a subset ofµ̂b, corresponding to the Markov
blanket for the local map. Assuming that we have an accurate estimate for the mean of this portion of
the benign map, (25) provides an efficient approximation to the mean that we are interested in.

C. Data Association

The successful implementation of any SLAM algorithm requires the ability to correctly match obser-
vations of the environment with the associated landmarks inthe map. The data association problem is
often addressed by choosing the feature that best explains the measurement, subject to a threshold that
identifies spurious observations. For a particular correspondence, the likelihood follows from the marginal
distribution for the particular states associated with thehypothesis (typically the robot pose,xt, and a single
landmark,mi), p (xt,mi | zt−1,ut). Unfortunately, the information form is not amenable to computing
this marginal from the full joint posterior since, referring back to Table I, the Schur complement requires
the inversion of a large matrix.

Consequently, the traditional approach to data association is not an option for scalable information
filters. Instead, Thrunet al. [13] approximate the measurement likelihood from a conditional distribution
rather than the marginal. Specifically, the SEIF considers the Markov blanket, MB(xt,mi), for xt and
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mi consisting of all states directly linked in the GMRF to either xt or mi. The SEIF first computes
the conditional distributionp (xt,mi, MB(xt,mi) | M

′, zt−1,ut) whereM′ denotes all state elements not
in {xt,mi, MB(xt,mi)}. This distribution is then marginalized over the Markov blanket to achieve an
approximation to the desired marginal,p (xt,mi | M

′, zt−1,ut), which is used to determine the likelihood
of the hypothesis. The cost of conditioning onM′ is negligible and does not depend on the size of the map.
Once most of the map has been conditioned away, the matrix that is inverted as part of the subsequent
marginalization is now small, on the order of the size of the Markov blanket. The resulting distribution
has been successfully utilized for data association with SEIFs [29], though it has been demonstrated to
yield overconfident estimates for the likelihood of measurements [30].

The marginal is easily determined from the standard parametrization, described by the mean and sub-
blocks of the full covariance matrix corresponding toxt and mi. Inverting the information matrix to
access the covariance, though, is equivalent to performingthe marginalization in the canonical form and
is, thus, impractical. Alternatively, Eusticeet al. [30] propose an efficient method for approximating the
marginal that gives rise to a conservative measure for the hypothesis likelihood. The technique stems
from posing the relationship,ΛtΣt = I, as a sparse system of linear equations,ΛtΣ⋆i = ei, whereΣ⋆i

and ei denote theith columns of the covariance and identity matrices, respectively. They estimate the
robot pose joint-covariance,Σ⋆xt

, online by solving the system of equations with one of the iterative
algorithms mentioned for mean recovery. The algorithm combines this with a conservative estimate for
the feature covariance to achieve the representation for the marginal covariance. The marginal, which is
itself conservative, is then used for data association.

VI. RESULTS

This section explores the effectiveness of the ESEIF algorithm in comparison to the SEIF and EKF
when applied to different forms of the SLAM problem. We first present the results of a controlled linear
Gaussian (LG) SLAM simulation that allows us to compare the consequences of the different sparsification
strategies relative to the “gold standard” Kalman Filter (i.e. the optimal Bayes estimator). We then discuss
the performance of the sparsified information algorithms ona pair of real-world, nonlinear SLAM problems
including the benchmark Sydney Park outdoor dataset widelypopular in the SLAM community.

A. Linear Gaussian Simulation

In an effort to better understand the theoretical consequences of enforcing sparsity in information filters,
we first study the effects of applying the different approaches in a controlled simulation. In this example,
the environment is comprised of a set of point features, located according to a uniform distribution that
yields a desired density of0.10 features per unit area. The robot moves translationally according to a
linear, constant-velocity model and measures the relativeposition of a bounded number of neighboring
features. Both the measurements as well as the vehicle motion are corrupted by additive white Gaussian
noise.

We implement the ESEIF and SEIF using their corresponding sparsification routines to maintain a bound
of Γa = 10 active features. In the case of ESEIF sparsification, we reserve as many of the measurements
as possible for the relocalization component, to the extentthat we do not violate theΓa bound (i.e.
|zβ | ≤ Γa). Additionally, we apply the standard Kalman filter that, bythe linear Gaussian (LG) nature of
the simulation, is the optimal Bayesian estimator. Aside from the different sparsification routines, each
estimator is otherwise identical.

Our main interest in the LG simulation is to evaluate the effect of the different sparsification strategies
on the estimation accuracy. To that end, we perform a series of Monte Carlo simulations, using two
formulations of the normalized estimation error squared (NEES) [31] as a measure of filter consistency.
The first metric considers theglobal error between the unadulterated filter estimates for the vehicle and
feature positions and their ground truth positions. We compute this score over several simulations and
plot the averages in Figures 6(a) and 6(b) for the vehicle anda single landmark, respectively. The97.5%
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Fig. 6. Plots of the normalized estimation error squared (NEES) measured based upon a series of Monte Carlo simulations of linear
Gaussian SLAM. Theglobal errors associated with the estimates for (a) vehicle pose and (b) a single feature representative of the map are
computed by comparing the direct filter estimates with ground truth and provide a measure of global consistency. The plots in (c) and (d)
correspond to thelocal error in the vehicle and feature estimates, respectively, that follows from expressing the state relative to the first
feature added to the map. The horizontal threshold denotes the97.5% chi-square upper bound and serves as a test for the consistency of the
different filters. For both the vehicle and the map, the global as well as local ESEIF errors satisfy the chi-square limit.The same is true of
the local measure for the SEIF yet the global errors are significantly greater and far exceed the chi-square bound.

chi-square upper limit for the series of simulations is denoted by the horizontal threshold, which the KF
normalized errors largely obey. The SEIF vehicle pose erroris significantly larger than that of the KF and
ESEIF, and exceeds the chi-square bound for most of the simulation. The same is true of the estimate
for the landmark positions. This behavior indicates that SEIFs maintain an absolute state estimate that is
inconsistent. In contrast, the ESEIF yields global errors for both the vehicle and map that are similar to the
KF and pass the chi-square test. This suggests that the ESEIFSLAM distribution is globally consistent.

The second normalized error concerns the accuracy of the relative state elements. We first reference
the vehicle and map positions relative to the first observed feature,xm, via the compounding operation,
xmi = ⊖xm ⊕ xi [2]. We then measure thelocal error by comparing the relative map estimates to the
root-shifted ground truth positions. The local error in theestimates of the vehicle and the same feature as
in Figure 6(b) are shown in Figures 6(c) and 6(d), respectively, together with the97.5% chi-square bound.
Unlike the global estimates, the SEIF sparsification results in local errors that are nearly indistinguishable
from those of the KF. Furthermore, the SEIF appears to satisfy the chi-square test as the errors rarely
exceed the threshold. The local errors maintained by the ESEIF also fall well below the chi-square limit. It
seems, then, that while SEIFs are globally inconsistent, the sparsification routine preserves the consistency
of the relative map relationships. The ESEIF, on the other hand, maintains a posterior that is both globally
and locally consistent.

The high global NEES scores for the SEIF are not so much a consequence of error in the vehicle and
map estimates as they are of the overconfidence of the SEIF in these estimates. This becomes apparent
when the SEIF’s uncertainty estimates are compared againstthe true distribution maintained by the Kalman
Filter. We recover the map covariance from the information matrix and, for each landmark, compute the
log of the ratio of the covariance sub-block determinant to the determinant of the KF sub-block. Since the
KF estimate represents the true distribution, log ratios less than zero signify overconfidence while values
greater than zero imply conservative uncertainty estimates. Figure 7 presents a histogram plot of these
ratios for the two information filters. The SEIF uncertaintybounds for the global map are significantly
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Fig. 7. Histograms for the LG simulation describing the global map uncertainty maintained by the (a) SEIF and (b) ESEIF ascompared
with that of the KF. For each feature, we compute the log of theratio between the information filter covariance sub-block determinant and
the determinant for the actual distribution as given by the KF. Values greater than zero imply conservative estimates for the uncertainty
while log ratios less than zero indicate overconfidence. Note that all of the SEIF estimates are overconfident while thoseof the ESEIF are
conservative.
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Fig. 8. The uncertainty attributed to the relative map estimates for the (a) SEIF and (b) ESEIF expressed relative to the optimal KF. The
uncertainty ratios are determined as before, in this case based upon the local covariance estimates that follow from root-shifting the state
to the first feature added to the map. While still overconfident, the SEIF local uncertainty estimates are significantly closer to the values
maintained by the KF with the one exception being the representation of the original world origin in the relative map. TheESEIF, meanwhile,
produces relative map estimates that are conservative.

smaller than those of the KF, indicating that the SEIF posterior is susceptible to overconfidence as a
consequence of the sparsification strategy. This agrees with our discussion in§IV-B on the inherent
implications of enforcing sparsity by approximating conditional independence. In comparison, the ESEIF
maintains confidence estimates for each landmark that are conservative with respect to the Kalman Filter.

In similar fashion to the NEES score, when we transform the map relative to the first feature, we see in
Figure 8(a) that the SEIF and KF estimates for the local uncertainty agree much more closely than do the
global estimates. The one exception is the representation for the original world origin in the relative map,
which the SEIF assigns a higher measure of confidence. Overall, though, the SEIF is far less overconfident
in the accuracy of its local estimates, which helps to explain the reduced normalized error values we saw
earlier. Meanwhile, the histogram in Figure 8(b) demonstrates that the ESEIF estimates for the local map
accuracy remain conservative relative to the true distribution.

Figure 9 illustrates the computational benefits of the ESEIFover the KF. Plotted in Figure 9(a), the KF
update time grows quadratically with the number of states. In contrast, the ESEIF and SEIF updates remain
constant-time despite an increase in the state dimension. While this efficiency is inherent to information
filter updates, sparseness is beneficial for the prediction step, which is quadratic in size of the map for
non-sparse information filters. We see this benefit in Figure9(b) as the prediction time is similar for all
three filters, with a gradual increase with the number of features. Additionally, the memory requirements
for sparse matrices are considerably less than those of the covariance matrix. Consider the density of
the three matrices that are each536 × 536 at the end of the simulation. The covariance matrix is fully-
populated, yet92% of the terms in the ESEIF information matrix are exactly zeroas is89% of the SEIF
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Fig. 9. A comparison of the performance of the ESEIF, SEIF, and KF for a LG simulation. The update times (a) for the ESEIF and
SEIF are nearly identical and remain constant with the growth of the map. In contrast, the KF exhibits the well-known quadratic increase in
complexity. The prediction times (b) gradually increase with the map size and are similar for the three filters by virtue of the sparsity of the
information matrices. The plot in (c) reveals that the sparse information forms demand significantly less memory than the fully-populated
covariance matrix.

matrix. Figure 9(c) plots the difference in the memory requirements as a function of the state dimension.

B. Experimental Validation

The linear Gaussian simulations allow us to explore the theoretical implications of sparsification and
validate our claims that approximating the conditional independence of the robot and a set of map elements
leads to an inconsistent distribution. The results empirically show that the ESEIF provides a sparse
representation of the canonical Gaussian while simultaneously preserving consistency. Unfortunately, the
simulations are not representative of most real-world applications, which generally involve motion and
measurement models that are nonlinear and noise that is non-Gaussian. To study the performance of the
ESEIF under these circumstances, we apply it to two nonlinear datasets, along with the SEIF and standard
EKF.

Victoria Park Dataset
For the first real-world SLAM problem, we consider the benchmark Victoria Park dataset courtesy of

E. Nebot of the University of Sydney [5]. The dataset is widely popular in the SLAM community as a
testbed for different algorithms that address the scalability problem [5], [8], [13], [32]. In the experiment,
a truck equipped with odometry sensors and a laser range-finder drives in a series of loops within Victoria
Park, Sydney, shown in Figure 10 along with a rough plot of theGPS trajectory. We use a simple
perceptual grouping implementation to detect tree trunks located throughout the park among the laser
data, which is cluttered with spurious returns. We solve thedata association problem offline to ensure
that the correspondences are identical for each filter.

We apply the SEIF and ESEIF algorithms together with the EKF,which has been successfully applied
to the dataset in the past [5]. We limit the size of the active map to a maximum ofΓa = 10 features for
the two information filters. As with the LG simulation, we place a priority on the relocation step when
sparsifying the ESEIF, reserving as many tree observationsas possible (i.e. no more thanΓa = 10) for the
sake of adding the vehicle back into the map. Any additional measurements are used to update the filter
prior to marginalization. This helps to minimize the influence of spurious observations on the estimate
for the relocated vehicle pose.
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Fig. 10. An overhead image of Victoria Park in Sydney, Australia along with a rough plot of the GPS vehicle trajectory. Theenvironment
is approximately 250 meters East to West and 300 meters Northto South.

The final SEIF and ESEIF maps are presented in Figures 11(a) and 11(b), respectively, along with the
estimate for the robot trajectory. The ellipses denote the three-sigma uncertainty bounds estimated by the
two filters. As a basis for comparison, we plot the map generated by the EKF, which is similar to results
published elsewhere. One sees that the feature position estimates are similar for the three filters, yet the
SEIF exhibits a larger deviation from the EKF map than does the ESEIF. The most obvious distinction
between the two maps, though, is the difference in the estimated accuracy of the maps indicated by the
uncertainty ellipses. While not ground truth, the EKF results represent the baseline that the information
filters seek to emulate, yet many of the EKF feature estimatesfall outside the three-sigma SEIF uncertainty
bounds. This is particularly evident in the periphery as we reveal in the inset plot. The ESEIF confidence
regions, on the other hand, capture all of the EKF landmark estimates.

The difference becomes more apparent when we directly compare the uncertainty measures for each
feature. Figure 12(a) presents a histogram plot of the log ratio between the global feature covariance
determinants for the SEIF and ESEIF with respect to the EKF determinants. The SEIF global uncertainty
estimates are all smaller than those of the EKF while the ESEIF estimates are larger. This is consistent
with the linear Gaussian simulation results and suggests that the SEIF sparsification strategy results in an
overconfident SLAM posterior while the ESEIF produces a distribution that is conservative with respect
to the EKF.

In similar fashion to the LG experiment, we observe contrasting behavior for the relative map that
follows from root-shifting the state relative to the vehicle’s final pose. The SEIF map shown in Figure
11(c) and the ESEIF map plotted in Figure 11(d) are both nearly identical to the relative EKF map.
Furthermore, the three-sigma relative uncertainty boundsmaintained by the two filters contain the EKF
position estimates. Nonetheless, the SEIF is still more confident than the EKF as the histogram in
Figure 12(b) indicates. Aside from the representation for the original world origin, though, the local
SEIF uncertainties are nearly identical to those of the EKF.Together, this implies that the consistency
of the relative state distribution is less sensitive to the approximations used in the SEIF sparsification.
Meanwhile, the ESEIF estimates for the relative uncertainty remain conservative with respect to the EKF.

Figure 13(a) compares the total time required for the time prediction and measurement update steps
for the ESEIF and EKF. We do not include the SEIF performance but note that it is similar to that of the
ESEIF. The ESEIF implementation employed partial mean recovery (25), solving the full set of equations
only upon sparsification. The EKF is more efficient when the map is small (less than 50 landmarks), a
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Fig. 11. Estimates for the vehicle trajectory and feature positions along with the three sigma confidence bounds for the Victoria Park
dataset. The global maps generated by (a) the SEIF and (b) theESEIF are similar to the EKF map. The SEIF uncertainty ellipses, though,
are significantly smaller than those of the ESEIF and, in manycases, do not include the EKF feature estimates. In (c) and (d) we plot the
relative SEIF and ESEIF maps, respectively, that follow from root-shifting the state into the reference frame of the robot at its final pose.
The three relative maps are nearly identical and the SEIF uncertainty bounds are not nearly as small, capturing each of the EKF position
estimates.

reflection of the ESEIF prediction time that is quadratic in the number of active features along with the
mean estimation cost. Yet, as the map grows larger, the quadratic update of the EKF quickly dominates
the filtering time of the ESEIF, which varies with the number of active features rather than the state
dimension.

The plot in Figure 13(b) displays the EKF and ESEIF memory allocations. In order to store the
correlations among the map and robot pose, the fully-populated EKF covariance matrix requires quadratic
storage space. The ESEIF information matrix, though, is sparse with a bounded quantity of non-zero terms
that pair the vehicle and map and a linear number of links between landmarks. As a result, we see that
the ESEIF storage requirement is linear in the size of the map.

Hurdles Dataset
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Fig. 12. Histograms for the Victoria Park dataset comparingthe ESEIF and SEIF uncertainty estimates to the results of the EKF. We again
use the log of the ratio of the covariance sub-block determinants for each landmark. The plot in (a) describes the global map uncertainties
while the histogram in (b) corresponds to the relative map. The SEIF marginal distributions are largely overconfident when compared with
the EKF for the global map, but less so for the relative feature estimates. The representation of the world origin in the root-shifted map is
the one outlier in the latter. The ESEIF is conservative withrespect to the EKF both globally and locally.
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Fig. 13. Plots of the computational efficiency of the EKF and ESEIF for the Victoria Park dataset. In (a) we show the total prediction
and update time as a function of state dimension. The complexity of the EKF increases with the size of the map while the ESEIF does not.
Instead, the ESEIF cost is a function of the number of active features. Shown in (b), the EKF memory requirement is quadratic in the size
of the map, yet only linear for the ESEIF.

In the second experiment, a wheeled robot drives among 64 track hurdles positioned at known locations
along the baselines of four adjacent tennis courts. The vehicle observes nearby hurdles with a SICK laser
scanner and uses wheel encoders to measure pose velocity inputs for the kinematic motion model.

We again apply the ESEIF, SEIF, and EKF SLAM algorithms. The data association problem is solved
independently such that the correspondences are identicalfor all three filters. The maximum number of
active landmarks for the three information filters is set atΓa = 10 hurdles. As with the Victoria Park
dataset, we prefer to relocalize the vehicle during sparsification with as many measurements as possible
and use any surplus observations in the preceding update step.

We present the final map estimates for the ESEIF and SEIF in Figure 14 along with the EKF map and
the ground truth poses. The ellipses denote the three-sigmauncertainty bounds for the position of a leg
of each hurdle. Qualitatively, the maps for the informationfilters closely agree with the EKF estimates
as well as the true hurdle positions, however the same is not true for the global uncertainties. The SEIF
is again unique in that sparsification results in global uncertainty estimates that are too small to capture a
majority of the true hurdle positions, indicative of an overconfident SLAM posterior. Figure 14(b) shows
that SEIF estimates are more accurate upon root-shifting tothe first hurdle added to the map. The ESEIF
global and relative maps are comparable to those of the SEIF and EKF as well as the ground-truth. Unlike
the SEIF, though, both the global and local ESEIF uncertainty estimates are consistent with the EKF.

VII. D ISCUSSION

We have taken a closer look at the SEIF sparsification strategy and, in particular, the consequences on
the uncertainty estimates. We presented an alternative algorithm for maintaining sparsity and have shown
that it does not suffer from the same overconfidence. In this section, we elaborate on our claims regarding
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Fig. 14. The final maps for the hurdles dataset generated withthe SEIF and ESEIF compared with the EKF estimates and the ground truth
hurdle positions. The ellipses define the three-sigma uncertainty bounds on the location of the base leg of each hurdle. The only exception
is the inset plot for the global ESEIF map where, for aesthetic reasons, we plot the one-sigma uncertainty region. In (a) we show the global
estimates given directly from the three filters while (b) contains the relative maps transformed with respect to the firsthurdle added to the
map. As indicated in (a), the SEIF maintains global uncertainty estimates that are overconfident while the plot below reveals that the it
retains the local map structure. In comparison, the ESEIF yields estimates that are consistent with the EKF both for the global and relative
maps.
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the consistency of the ESEIF. In addition, we draw comparisons between the ESEIF and the D-SLAM
algorithm [22], which similarly achieves sparsity while preserving consistency.

A. Estimator Consistency

The results presented in the previous section empirically demonstrate that the SEIF global uncertainty
estimates are noticeably overconfident while the ESEIF is globally and locally conservative. In the linear
Gaussian case, this is sufficient to conclude that the ESEIF preserves the consistency of the SLAM
posterior for the local and global representations. On the other hand, as the ESEIF is based upon the
dual of the EKF, it is subject to the same convergence issues as the EKF for nonlinear applications [31].
While the results empirically demonstrate that the ESEIF isconservative with respect to the EKF, this
does not guarantee that the ESEIF SLAM posterior is consistent with the true, non-Gaussian distribution.
Nonetheless, the algorithm allows us to capitalize on the computational and storage benefits of a sparse
information form without incurring additional inconsistency. The EKF has been successfully applied to a
wide range of real-world datasets and the ESEIF provides a scalable means of achieving nearly identical
estimates.

B. Comparison with D-SLAM

In [22], Wanget al. propose a similar algorithm that maintains a sparse canonical parametrization in a
consistent manner. The approach decouples SLAM into separate localization and map building problems
and addresses them concurrently with different estimators. The D-SLAM considers the map distribution,
p (M | zt,ut), to be Gaussian and represents it in the canonical form. It then uses an EIF to maintain the
information matrix and vector with updates based upon relative landmark measurements that have been
extracted from the robot’s observations of the environment. The EIF time projection step is trivial since
the robot pose is not contained in this distribution and, in turn, the information matrix is naturally sparse.
An estimate for the vehicle pose is determined from map observations by solving the kidnapped robot
problem at each time step. Additionally, D-SLAM implementsa standard EKF SLAM process for the
robot’s local neighborhood that provides a second estimateof pose. To account for unmodeled correlation
between the two estimates, they are fused with covariance intersection [23] to achieve a conservative belief
over pose. By decoupling the problem in this way, D-SLAM capitalizes on an exactly sparse information
matrix without sacrificing consistency.

The key component to maintaining the sparseness of the information matrix follows from the observation
that the time projection step for the robot pose causes fill-in. By periodically kidnapping and relocalizing
the robot, the ESEIF controls the population of the information matrix. The D-SLAM algorithm takes
this one step farther by essentially performing kidnappingand relocalization at each time step. As a
result, they sacrifice nearly all information provided by the temporal constraints between successive
poses. Additionally, in order to preserve exact sparsity for the map distribution, the algorithm does not
incorporate any knowledge of the robot’s pose when buildingor maintaining the map. We believe the
D-SLAM estimator to be less optimal as it ignores markedly more information than the ESEIF, which
only occasionally disregards temporal links.

VIII. C ONCLUSION

To summarize, the computational demands of the Extended Kalman Filter limit its use in feature-based
SLAM to small environments. This problem is currently a hot research topic in robotics and has lead to
a number of different algorithms that scale with larger maps. In particular, the key observation that the
canonical SLAM distribution is relatively sparse has givenrise to scalable adaptations to the information
filter. The algorithms take advantage of the fact that, when the density of the information matrix is
bounded, estimation can be performed in near constant time,irrespective of the number of landmarks.
The problem, though, is that while a majority of the elementsin the information matrix are relatively
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weak, the feature-based SLAM matrix is fully populated. In order to achieve the computational benefits
of the sparse form, the algorithms explicitly break these weak links.

The Sparse Extended Information Filter sparsification strategy approximates the conditional indepen-
dence between the robot and most of the map. We have examined the consequences of performing
inference based upon this approximation to the SLAM posterior. The results demonstrate that the SEIF
estimates for the robot pose and map suffer from global inconsistency, yet they empirically preserve
relative relationships.

We have presented the Exactly Sparse Extended Information Filter as an efficient feature-based SLAM
algorithm. The ESEIF maintains an exactly sparse information matrix without incurring additional global
or local inconsistency. The paper has shown that occasionally marginalizing the robot pose from the
distribution and subsequently relocalizing the vehicle within the map allows us to control the number of
active features and, in turn, the population of the information matrix. The ESEIF then takes advantage
of the benefits of a sparse canonical parametrization while maintaining conservative robot pose and map
estimates.

We demonstrated the consistency of the ESEIF through a series of controlled linear Gaussian simula-
tions. The algorithm was then applied to two different nonlinear datasets including a benchmark SLAM
experiment. The results reveal that the ESEIF maintains estimates nearly identical to those of the EKF with
savings in computation time and memory requirements. The ESEIF offers an improvement in scalability
while it maintains estimates that are both globallyand locally conservative.
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