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Abstract

Recent research concerning the Gaussian canonical for@ifarltaneous Localization and Mapping (SLAM)
has given rise to a handful of algorithms that attempt toesdhe SLAM scalability problem for arbitrarily large
environments. One such estimator that has received dugiattés the Sparse Extended Information Filter (SEIF)
by Thrunet al, which is reported to be nearly constant time, irrespeativéhe size of the map. The key to the
SEIF’s scalability is to prune weak links in what is a dend®iimation (inverse covariance) matrix to achieve a
sparse approximation that allows for efficient, scalabl&8LWe demonstrate that the SEIF sparsification strategy
yields error estimates that are overconfident when expiassthe global reference frame, while empirical results
show that relative map consistency is maintained.

In this paper, we propose an alternative scalable estinhateed in the information form that maintains sparsity
while preserving consistency. The paper describes a méthadntrolling the population of the information matrix,
whereby we track a modified version of the SLAM posterioreesiglly by ignoring a small fraction of temporal
measurements. In this manner, the Exactly Sparse Extemfi@danation Filter (ESEIF) performs inference over a
model that is conservative relative to the standard Gaugdigtribution. We compare our algorithm to the SEIF
and standard EKF both in simulation as well as on two nonfidegasets. The results convincingly show that our
method yields conservative estimates for the robot posenaaqulthat are nearly identical to those of the EKF.
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I. INTRODUCTION

The capability to accurately navigate & priori unknown environments is critical for autonomous
robotics. Using a suite of inertial and velocity sensorgddeeckoning provides position estimates sub-
ject to unbounded error growth with time. In some outdoorliappons, one can utilize GPS fixes to
periodically minimize this error. Unfortunately, GPS me@snents are not available in many common
environments (e.g. indoors and underwater), thus requiain alternative means of keeping the error
drift in check. Underwater vehicles, for example, oftenyrapon acoustic long-baseline (LBL) range
measurements that are fused with motion sensor data [1izibg LBL navigation requires the deployment
and calibration of a transponder network and limits the afpeg range of the vehicle. The need for such
an infrastructure constrains the degree of autonomy thaemvater robots are able to achieve.

Simultaneous Localization and Mapping (SLAM) offers a $ioln for unencumbered navigation that
exploits the environment to maintain accurate pose estisn8ly building a map on-line while using inertial
and velocity measurements to predict vehicle motion, thmtraitilizes observations of the environment
to localize itself within the map. The stochastic nature led vehicle motion and measurement models,
together with noisy sensor data, further complicates thgpliog between navigation and mapping that is
inherent to SLAM. Many successful SLAM algorithms addressse issues by formulating the problem
in a probabilistic manner, tracking the joint posterior otlee vehicle pose and map.
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In their seminal paper [2], Smitat al. show how this distribution can be modeled by a Gaussian that
is completely described by a mean vector and covarianceixpatrd tracked via an Extended Kalman
Filter (EKF). In part as a result of its relative simplicithis model has become the standard tool of
choice for a majority of SLAM algorithms. With explicit kndedge of the correlation between the robot
state and the map elements, the EKF exploits observatioiseoénvironment to improve the vehicle
pose and map estimates. Maintaining these correlationsgth imposes afd(n?) memory requirement,
wheren is proportional to the size of the map [3]. Furthermore, whiie EKF efficiently predicts the
vehicle motion, measurement updates for the standard EKFgaadratic in the number of states. As
a consequence, it is well known that the standard EKF SLAMrélgm is limited to relatively small
environments (i.e. on the order of a few hundred featurels) [4

As robots are deployed in larger environments, extensigeareh has focused on the scalability
restrictions of EKF SLAM. An intuitive way of dealing with i limitation is to divide the world
into numerous sub-environments, each comprised of a moreageable number of features. These
submap approaches [5]-[8] shed some of the computationdébof the full EKF solution by performing
estimation based only upon the robot’s local neighborhd@beé. performance time for the Kalman updates
is thenO(/?) rather than the standa@(n?). One tradeoff of focusing on individual local maps is that
some methods forgo an immediate estimate for the global mdpia general, are believed to sacrifice
convergence speed [7]. Alternatively, the FastSLAM aliponi [9] takes advantage of the conditional
independence of the map elements given knowledge of the paise to improve scalability. Employing a
particle filter representation for the pose distributioastSLAM efficiently tracks a map for each particle
with a collection of independent EKFs, one for every featdree computational cost is proportional
to the number of particles used and is low in situations whetatively few particles are sufficient to
describe the robot pose. With larger uncertainties, thptighefficiency benefits are not as obvious since
an increased number of particles is necessary [10] to ctemize the pose distribution. Additionally,
there is the problem of particle depletion [11] as partidescribing the true trajectory are lost due to
resampling.

Recently, strategies have emerged that offer the promiseaddbility through the canonical parametriza-
tion for the SLAM distribution. Rather than a dense covazeamatrix and mean vector, the canonical
form completely describes the Gaussian by the informatiove(se covariance) matrix and information
vector. Analogous to the EKF, the evolution of the posteisotracked over time via a two step process
comprising the so-called Extended Information Filter (EJE2]. The dual of the covariance form, the
EIF update step is efficient as it is quadratic in the numbenefsurementsand not the size of the map.
On the other hand, the time projection step is, in generadrtic in the number of landmarks. Also,
recovering the mean from the information vector and mateiquires a costlyO(n?) matrix inversion.
Together, these characteristics would seem to rule outfioennation parametrization as a viable remedy
to the scalability problem of the standard EKF and are |grgeé reason for its limited application to
SLAM.

Pivotal insights by Thruret al. [13] and Freseet al. [14] reveal that the canonical form is, in fact,
particularly beneficial in the context of feature-based $L.4s a majority of the off-diagonal elements in
the normalized information matrix are inherently very sinBly essentially approximating these entries
as being zero, Thruet al. take advantage of what is then a sparse information matresegmting the
Sparse Extended Information Filter (SEIF), an adaptatibthe EIF. In addition to incorporating new
observations efficiently, the SEIF performs the time priopecstep at a significant savings in cost, offering
a near constant-time solution to the SLAM problem. The chigethat a subset of the mean is necessary
to linearize the motion and measurement models as well asfwoe the sparsity of the information
matrix. To that end, the authors estimate the mean of thet qodse and a limited number of features as
the solution to a sparse set of linear equations that is appeated using relaxation.

Similar benefits extend from interpreting the canonicabpaetrization as a Gaussian Markov Random

IThis assumes knowledge of the mean, which is necessary §amadtions that are nonlinear in the state.



Field (GMRF) [15] where small entries in the normalized mmh@tion matrix correspond to weak links
in the graphical model. By essentially breaking these we#ds] Paskin [10] and Frese [16] approximate
the graphical model with a sparse tree structure. Paskinie Junction Tree Filter (TJTF) and Frese’s
Treemap filter are then each capable of efficient inferena upis representation, involvin@(n) and
O(logn) time, respectively.

Recently, a number of batch algorithms have been propossdstive for the maximum likelihood
estimate (MLE) based upon the entire history of robot moind measurement data [4], [17]-[20]. They
solve for the MLE by optimizing a full, nonlinear log-lik&lood function over a series of iterations, which
provides robustness to linearization and data associatiams. GraphSLAM [4], in similar fashion to the
other batch algorithms, forms a graph in which the nodesespond to the robot poses and map elements
and the edges capture the motion and measurement corstrairgach iteration, the linearization yields
a sparse information matrix to which they apply the variaddienination algorithm to marginalize over
the map and reduce the graph to one over only the pose histoey. subsequently solve for the posterior
over the pose history and, in turn, the current ML map esgmat

Dellaert [20] adopts much the same strategy as it consitherposterior over the robot’s entire pose
history, taking advantage of what is then a naturally sparfemation matrix [10], [21]. The approach
formulates the corresponding mean as the solution to a deteafr equations for which the information
matrix is the matrix of coefficients. The technique deconegothe information matrix into either its
Cholesky or QR factorization, paying close attention taalae ordering. In turn, they jointly solve for
the mean over the pose and map via back-substitution. As uttemrinsightfully shows, this closely
parallels aspects of the aforementioned graphical modehads. The results demonstrate promising
advantages over the EKF with regards to performance tholighalgorithm currently does not address
some important aspects of the SLAM problem such as data iatisoc

Alternatively, Wanget al. [22] treat map building and localization as two separatamegion problems.
They represent the distribution over the map as a canonmas§ian that is maintained using measurements
of the relative pose between pairs of landmarks. The adganth sacrificing robot pose information is
that the information matrix for the map is then naturally rsga Meanwhile, the robot is continuously
relocated within the map based upon observations of featurbis estimate is fused with that of a
standard EKF, which concurrently performs local SLAM, viavariance intersection [23] to estimate the
robot pose. There are a number of similarities between tgmrighm and the approach presented in this
paper although the two approaches have been developeceimdiamtly of one another.

The benefit of maintaining thpint distribution over the robot and map is that we can take acwegnt
of dependence relationships between landmarks and thelegiose. Unfortunately, the consequence is
that, while the information matrix is relatively sparseisitnonetheless fully populated. In this paper, we
analyze the process by which the SEIF actively breaks web&t#andmark links to enforce a desired
level of sparsity. We show that a consequence of the SEIFs#igation is an overconfident estimate for
the global map and pose errors while the consistency of tte lmap relations is preserved.

As a remedy, we propose an efficient information-based ftatimn of the SLAM problem that actively
controls the population of the information matrix withowying upon an approximation to the state
distribution. By essentially relocalizing the robot withihe map, we show that the filter maintains exact
analytical sparseness while producing state estimateatb&oth globallyandlocally conservative relative
to the full EKF solution. We evaluate the performance of dgodathm alongside the SEIF and full KF
in a controlled linear Gaussian simulation to reveal thes@iancy traits inherent to the estimators. We
then demonstrate our filter alongside the SEIF and full EKFaguair of real-world datasets, including
a benchmark nonlinear experiment. The results reveal ttatSEIF is globally inconsistent while our
algorithm vyields estimates for the robot pose and map neddgtical to those of the EKF, yet both
globally and locally conservative.



[I. BACKGROUND

Let £, be a random vector governed by a multivariate Gaussian pilapalistribution, &, ~ N(ut, Et),
traditionally parametrized in full by the mean vectqr,, and covariance matrix3,. Expanding the
guadratic term within the Gaussian exponential, we arrivaraequivalent representation for the multi-
variate distribution V"~ (n,, A¢).

p(&) = N(/J’tu Et)
oc exp{—5(& — m) ' Z (€ — m)}
= exp{—§ (&S, € — 21/ 5,6, + 1 T )}
oc exp{ —3&/ 5 '&, + 1 T}
= eXp{_%EIAtEt + "’7:&} X N_l("?tv At) (1)

The canonical form of the Gaussian (1) is completely parepget by the information matrix)\;, and
information vector,n,, which are related to the mean vector and covariance mayri2p

AN=3%" n,=%"n, 2)

A. Duality between Standard and Canonical Forms

The canonical parametrization for the multivariate Gaars$s the dual of the standard form in regards
to the marginalization and conditioning operations [1@],d@monstrated in Table |. Marginalizing over
variables with the standard formeasysince we simply remove the corresponding elements from #am
vector and covariance matrix. However, the same operatorihie canonical form involves calculating
a Schur complement and is computationdiprd. The opposite is true when calculating the conditional
from the joint distribution; it ishard with the standard form yetasywith the canonical parametrization.

TABLE |
SUMMARY OF MARGINALIZATION AND CONDITIONING OPERATIONS ON AGAUSSIAN DISTRIBUTION EXPRESSED INCOVARIANCE
AND INFORMATION FORM

pleod) =N ([ ] [ 5 D =~ ([ ][R 22 )
MARGINALIZATION CONDITIONING
pla)=[p(e,B)dB | p(a|B)=p(c,B)/p(B)
COVARIANCE B=p, B =g+ SasS55(8 — pg)
FORM S = Yaa > = Do — DapZiA Y00
INFORMATION N =1, —NapAzimg, n' =n,—AapB
FORM A= Aua = AaphiAge | A = Aaa

B. Implied Conditional Independence

An advantageous property of the canonical parametrizasidhat the information matrix provides an
explicit representation for the structure of the corresiiog Gaussian Markov random field (GMRF) [10],
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Fig. 1. An example of the effect of marginalization on the &aan information matrix. We start out with a joint posteraver &;1.6
represented by the information matrix and correspondingkManetwork pictorialized on the left. The information matfor the marginalized
density, p (€2:6) = [ p(€1:6) d€1, corresponds to the Schur complement/gfs = A¢ ¢, in A¢, e, This calculation essentially passes
information constraints from the variable being removéd, onto it's adjacent nodes, adding shared information betwthese variables.
We see, then, that a consequence of marginalization is tpelgtmn of the information matrix.

[15]. This property follows from the factorization of a geakGaussian density
p (&) xexp{—3¢ A +n'E}
= H exp{—% ()\izfiz - 772‘5@')} : HGXP{—%&‘)W@}
|
= H Wi(&) - H Wi5(&is &)
-
where

\I’z(fz) = exp{—% ()\1157,2 - 7725@)}
W&, &) = exp{—5&;65 }

are the node and edge potentials, respectively, for thegponding undirected graph. Random variable
pairs with zero off-diagonal elements in the informationtmxa(i.e. \;; = 0) have an edge potential
U, (&,&5) = 1, signifying the absence of a link between the nodes reptiegetine variables. Conversely,
non-zero shared information indicates that there is a liking the corresponding nodes with the strength
of the edge proportional t;;. In turn, as the link topology for an undirected graph explicaptures the
conditional dependencies among variables, so does thastewf the information matrix. The presence of
off-diagonal elements that are equal to zero then impliasttie corresponding variables are conditionally
independent, given the remaining states.

It is interesting to note that one comes to the same concldsdmn a simple analysis of the conditioning
operation for the information form. Per Table I, conditiogia pair of random variableg, = [EZT 5}]1 on
the remaining stateg}, involves extracting thd ., sub-block from the information matrix. When there is
no shared information betweénand{ ;, A.. is block-diagonal as is its inverse (i.e. the covarianceinjat
Conditioned upor3, the two variables are uncorrelated and we can concludgtibgtare conditionally
independentp (£;,&, 1 8) =p (& | B)p (&1 B).

The fact that the information matrix characterizes the domthl independence relationships emphasizes
the significance of its structure. In particular, it is imfaot to make a distinction between elements that



are truly zero and those that are just small in comparisoritters. On that note, we return to the process
of marginalization, which modifies zeros in the informatimatrix, thereby destroying some conditional
indpendencies [10]. Consider a six state Gaussian randatoryé ~ N‘l(n,A), characterized by the
information matrix and GMRF depicted in the left-hand sideFegure 1. The canonical form of the
marginal densityp (é2.6) = [ p (E16) d&1 = N~ (1, A') follows from Table | witha = [&; &3 &4 & &6]
and 8 = &. The correction term in the Schur complemeﬂg,ﬁAgﬁlAﬁa, is non-zero only at locations
associated with variables directly linked with. This set, denoted am™ = {5, &3,&4,&5}, comprises
the Markov blanket for¢;. Subtracting the correction matrix modifies a humber ofieatin the A,
information sub-matrix, including some that were origipalero. Specifically, while no links exist between
&.5 In the original distribution, the variables im* become fully connected as a result of marginalizing
&1. Marginalization results in the population of the informat matrix, a characteristic that has important
consequences when it comes to applying the information torfeature-based SLAM.

[1l. FEATURE-BASED SLAM INFORMATION FILTERS

We employ a feature-based representation of the enviropnséoring the map as a collection of
geometric primitives, e.g. points and lines. The robot gp®sition and orientationk,, together with the
set ofn map featuresM = {m;, m,,..., m,}, comprise the state vecta§, = [xtT MT]T. In similar
fashion to [2], we take a first-order linearization of the rantand measurement models and treat the
uncertainty in the data as independent, white Gaussia®.nOise can then show that the posterior obeys

a Gaussian distribution:
p <£t | Zt? ut) = N(l"'b Zt) = N_l (nt7At)7 (3)

wherez' andu’ denote the history of observational data and motion coiplts, respectively. Through-
out the paper, we will refer to (3) as the SLAM posterior.

Applying the notation introduced by Thruet al. [13], the map is partitioned into two setd] =
{m™, m™}, based upon the structure of the information matrix. Theo$eictive featuresm™, consists
of the map elements with non-zero off-diagonal terms thd¢ them with the robot, whilen™ signifies
the passivefeatures that are conditionally independent of the vehpdse. In the example displayed in
the left-hand side of Figure 2, the active features are = {m;, m,, m3, m5} and the single passive
landmark ism~ = m,.

An Extended Information Filter (EIF) tracks the SLAM digttion through time projection and mea-
surement update steps in much the same way as the EKF. Thendemaf this section is devoted to a
detailed description of the canonical formulation to thpeecesses.

A. Measurement Update Step

Observations of landmarks are key to reducing the uncéyt@inthe estimates for the robot pose and
the map. The measurement model (4a) is a nonlinear funcfidheostate corrupted by white Gaussian
noise,v; ~ N (0,R). Equation (4b) is the first-order linearization about theamef the robot pose and
observed features with the Jacobi&h,evaluated at this mean.

Zi = h(Et) + vy (4a)
~h(p,) +H(E — @) + v (4b)

The process of updating the current distributipri£, | z'~!,u’) = N~*(5,,A,), to reflect a new
observation follows from Bayes’ rule,

p <£t | Ztv ut) X p(Zt | £t> p <£t | Zt_lv ut) ) (5)

where we exploit the conditional independence of the measents given the state. The EIF estimates
the canonical form of the new posterior via the update step:

p(& |2 u') =N (n, A)




A=A +H'R'H (6a)
n, =0, +H' R (2. — h (@) + Hpz,) (6b)
For a detailed derivation, the reader is referred to [13].
At any timestep, the robot typically makes a limited numbey,of relative observations to individual

landmarks. The measurement model is then a function onlhef/ehicle pose and this small subset of
map elementsm, andm; and, in turn, a majority of terms in the Jacobian (7) are zero.

oh |, B4/
8Xt 0 Bml 0
H=] : : (7)
—ahm DY ahm “ .. « ..
Oxt om; 0 0

The matrix outer-product in (6a}J"R'H is zero everywhere except at positions associated with the
vehicle pose and observed features. More specifically, th&ixmis populated at the;, m;, and m,
positions along the diagonal as well as at the off-diagowaitipns for the(x;, m;) and (x,, m;) pairs.

The addition of this matrix to the original information matonly modifies the terms exclusively related
to the robot and the observed landmarks. The update thernt@eisher strengthen existing constraints
between the vehicle and these features or to establish new (@e., make them active).

Due to the sparseness ldf computingl " R~'H involvesO(m?) multiplications. Assuming knowledge
of the mean for the robot pose and observed features forrbkarization, this matrix product is the most
expensive component of (6). Since the number of obsenationis limited by the robot’s field of view,
the EIF update time is bounded and does not grow with the dizeeomap. In general, though, we do
not have an estimate for the current mean and computing i€)iaequires an®(n?) matrix inversion.
The exception is when the measurement model is linear, ichwtise the mean is not necessary and the
update step is indeed constant-time.

B. Time Projection Step

The time projection step predicts the distribution overribe/ robot pose through what can be thought of
as a two step process. First, we augment the canonical fottmawiew random variable that represents the
new vehicle pose. We then marginalize over the old poseirigaws with the up-to-date state distribution.

1) State AugmentationA Markov model governs the motion of the robot and is, in gahex nonlinear
function (8a) of the previous pose and the control input. @ditive term,w, ~ N(O, Q), represents
a Gaussian approximation to the uncertainty in the modeé flist-order linearization about the mean
robot posey,,, follows in (8b) wherel' the Jacobian matrix.

Xt41 = f(Xt, ut+1) + Wy (8a)
=~ f(l"’a:,g? ut+1) + F(Xt — l’l’xt) + Wy (8b)

First, we grow the state vector to include the new robot pégrq,: x; x/.; M']T. The distribution
over¢, , follows from the current posteriop (¢, | z*, u’) = N ~'(n,, A;), through the factorization

p (ét-‘,—l | Zt7ut+1) =D (Xt+17£t | Zt;UtH) =p (Xeq1 | Xp, wpp1) p (ft | Zt, ut)

where we have exploited the Markov property. Accordinghg augmentation to the information matrix
and vector is shown by Eustie al. [21] to have the form given in (9). Notice that the new robos@o
shares information with the previous pose but not the mags iBhexemplified in the middle schematic
within Figure 2 by the fact that the only effect on the struetof the graphical model is the addition of
the x;,; node linked to that ok;. Givenx;, thex;,; pose is conditionally independent of the map as a
consequence of the Markov property.

p (Xtaxt—l—lv M | Zt, ut+1) = N_l(’f]t-i-la ]\t—i—l)
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Fig. 2. A graphical explanation for the inherent density loé information matrix due to the motion update step. Darkexdss in the
matrix imply larger magnitude. On the left are the Markowwmk and sparse information matrix prior to time projectiorwhich the robot
shares information with the active features,” = {m;, m>, m3, m5}. We augment the state with the new robot pose, which is lirdwyg

to the previous pose due to the Markovian motion model. Sykesgly, we marginalize ovex,, resulting in the representation shown on
the right. The removal ok; creates constraints between the robot and each map element,iwhich are now fully connected. Along with
filling in the information matrix, we see from the shadingtttize time projection step weakens many constraints, explaithe approximate
sparsity of the normalized information matrix.
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2) Marginalization: We complete the time projection step by marginaliziygfrom the posterior to
achieve the desired distribution ovgr,, = [x,, M']".

p (Xt+17M | thut+1) _ /p (Xt,Xt+1,M | thut—i-l) dx;

Xt

This brings us back to the expression for marginalizatiothencanonical form from Table | that we apply

here: )
p (€t+1 | 2, utH) = N_l(ﬁt-l—l? At+1)
_ . R R -1,
Ay = At2-?-l - A?Jlrl <At141r1> Aﬁl (10a)
R . -1
N1 = 'f’?—i-l - A?}rl (A%-lkl) "7%+1 (10b)

To better understand the consequences of this marginiahzate refer back to the discussion at the end
of §lI-B. Prior to marginalization, the old robot pose is linkezithe active featurean™, while the new
pose shares information only with. When we remove the old pose, though, a link is formed between
the new pose and each featurenint and this set itself becomes fully connected. The infornmatitrix
that was originally sparse is now populated as a consequainHa). In the scenario depicted in the
right-hand side of Figure 2, the only remaining zero entdesespond to the lone featurm,, which
will become connected to the robot upon the next observa#enPaskin [10] previously showed, the
time projection step, then, naturally leads to a dense mdébion matrix in online, feature-based SLAM.
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Fig. 3. A sequence of illustrations highlighting the berge6if breaking links between the robot and the map. If featureis first made
passive by removing the constraint to the old pose,then marginalizing ovek: will not link it to the other active features. This implies
that we can control the density of the information matrix bgimtaining a bound on the number of active features.

The density of the matrix affects the computational costiktprediction, specifically the marginal-
ization component. The correction term of the Schur complen(10a) is calculated as the outer product
with the off-diagonal submatrix for the old posé&;},. Computing the outer product is quadratic in the
number of nonzero elements within this submatrix and, edently, the number of map elements linked to
the old pose (i.e. the size @h™). As we have just mentioned, though, this number will onlgréase over
time with the size of the map. Thus, while it may be possibleffiziently incorporate new measurements
with an EIF, the price we pay is a quadratic complexity for thetion update step.

In its natural form, the EIF is no better thaf(n?) and doesn’t offer an alternative to the EKF in
addressing scalability issues. A closer look at the streotdi the information matrix, though, reveals that
an adapted form of the EIF may provide a solution. Returnm¢he example pictorialized in Figure 2,
note that, aside from populating the information matrix ttme projection step weakens the off-diagonal
links. This has been shown to result in a normalized inforomamatrix that is nearly sparse [24]. The
analysis of [10], [13], [14] reveals that, by approximatiiig matrix as being exactly sparse, it is possible
to achieve significant gains when it comes to both storagetiamel requirements. Specifically, a bound
on the number of links between the robot and the map allowsdéar constant-time implementation of
the time projection step and controls the fill-in of the imf@tion matrix resulting from marginalization.
The delicate issue isow to approximate the posterigs,(&, | z*, u’), with a sparse canonical form.

IV. SPARSIFICATION VIA ENFORCED CONDITIONAL INDEPENDENCE

The fill-in of the information matrix induced by the motiondgde step, together with its computational
complexity, are proportional to the number of links betwdles robot and the map. Unfortunately, while
these links may weaken, they never disappear and lead toeargemwving size of the active map [10].
In order to achieve a scalable SLAM information filter, we cheée break links with the robot, thereby
bounding the number of active landmarks. Adopting the immatsed in [13], we lef’, signify the bound
on the number of active map elements and lLigsgo denote the number of inter-landmark links in the
matrix.

As motivation, consider again the scenario depicted in féig2 in which four features are active.
Marginalizing outx; creates links among each elemeniirt, potentially violating thd”, bound. Instead,
Figure 3 demonstrates thatiifi; was first made passive, then the number of non-zero elemesdted
as a result of marginalization can be controlled.
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A. SEIF Sparsification

Recalling the conditional dependency implicit in the GMR#e SEIF breaks links between the robot
and a set of landmarks by replacing the SLAM posterior withistridution that approximates the
conditional independence between the pose and thesedsafDecompose the map into three disjoint
sets,M = {m’, m"™, m~}, wherem™ refers to the passive features that wimainpassive,m® are the
active landmarks that will benadepassive, andn™ denotes the active features that areemainactive.
The sparsification routine proceeds from a decompositiom®fSLAM posterior

P (Et | z", ut) =p (xt,mo,m+,m_)
=p(x | m’ m* m”)p(m’ m*, m") (11a)
:p<xt ‘ m07m+7m_ = ‘P)p<m07m+7m_) (11b)

where we have omitted the dependence upbrand u’ for notational convenience. In (11b), we are
free to condition on an arbitrary instantiation of the pasdeaturesm~ = ¢, due to the conditional
independence between the robot and these landmarks.

The SEIF deactivates landmarks by replacing (11) with arragdmation to the posterior that drops
the dependence of the robot posermaf:

pseir(€, | 2, u") = pseir(x;, m”, m*, m"™)
0+

:p(xt|m+,m_:go)p(m,m ,m_) (12)

While the expression in (11b) is theoretically exact, it Gslanger valid to condition upon a particular
value for the passive map elements while ignoring the degrerel uponm® as we have done in (12).
Given only a subset of the active map, the robot pose andveafestures areependentsuggesting that
the particular choice forp affects the approximation. In fact, the authors show in [EBjt setting the
passive features to any value other than their mean i.é u,,-) yields a mean ofﬁsap(&t | z, ut)
that differs from that of the original posterforp (€, | z!,u'). Furthermore, we will demonstrate that
by ignoring the dependence relationships in (12), the Skpkrsification strategy leads to inconsistent
covariance estimates.

B. Discussion on Overconfidence

An important consequence of the SEIF sparsification algerits that the resulting approximation to
the SLAM posterior significantly underestimates the uraiety in the state estimate. In this section, we
show that this inconsistency is a natural consequence obsing conditional independence between the
robot pose and the" subset of the map. To illustrate this effect, consider a g#ribree state Gaussian
distribution,

Ha 03 Pab0a0b  PacOal0c Na )\aa )\ab )\ac
pla,bc) =N | (| [pwoace 07 pecovoe| | =N |, [ A A Aie| |, (13)
e PacOaOc  PbcOb0c 03 Ne )\ac )\bc )\cc

that we would like to sparsify by forcing andb to be conditionally independent given
plabe)=plab]e)p(c) P25 plabe) =plale)pd|e)p(e). (14)
Recalling the discussion ifll-B, the approximation is implemented in the canonicalnfoby setting
A = 0. In the standard form, this is equivalent to treatingndb as being uncorrelated in(a,b | ¢).
The resulting approximation then follows as
2

Ha g, PacPbc0a0b Pac00a0c
ﬁ(av b, C) =N Ky | 5 | PacPbcOa0b Ug PbcOb0c . (15)
e PacOa0c PucOb0c 002

2The mean is preserved by the sparsification routine in [I®]esthey condition upogp = .~ and noty = 0 as is stated in the paper.
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Fig. 4. At timet, the robot observes four featurgsn:, mo, ms, ms}, three of which are already active, whitas is passive. The update
strengthens the shared information between vehicle pateran m., andms and adds a link tans as we indicate on the left. The next
time projection step forms a cligue among the robot and tfmsefeatures and populates the information matrix. The IESparsification
strategy avoids this effect by controlling the number ofvactandmarks and, in turn, the size of this clique.

In order for the approximation to be consistent, it is neagsand sufficient that the resulting covariance
matrix obey the inequality,

B 0 (pacpbc - pab) 0q0p 0
Y=Y = | (PacPbe — Pab) Talb 0 0f >0. (16)
0 0 0

A necessary condition for (16) to hold is that the determirafrthe upper-lef2 x 2 sub-block be non-
negative [26]. Clearly, this is not the case for evexyp,. # pw. Extending this insight to the SEIF
sparsification strategy sheds some light on why enforciegctinditional independence between the robot
pose and then® landmarks leads to overconfident state estimates.

V. EXACTLY SPARSEEXTENDED INFORMATION FILTERS

Recall that, as landmarks are added to the map, EIF SLAM ithgos create shared information with
the robot pose. Over time, these off-diagonal elementsanrtformation matrix may decay, but never to
zero. Together with the time projection step, this leadspoulated matrix as discussed in [10] and noted
earlier. The SEIF deals with this by substituting the SLAMstoior with an approximation in which the
vehicle is conditionally independent of much of the map. algorithm takes advantage of what is then
a sparse information matrix to achieve near constant-tifii@esncy. The drawback, though, is that the
SEIF yields overconfident state estimates as a result obappating conditional independencies.

We propose the Exactly Sparse Extended Information FEESHIF) as an alternative sparse information
matrix SLAM algorithm; one which imposes exact sparsity onttast to the approximate conditional
independencies enforced in SEIF. As we show, the result mgatationally efficient SLAM algorithm
that tracks a posterior distributiomEsaF(Et | 2!, ut), that is consistent with respect to that of the full
EKF/EIF.

A. ESEIF Sparsification

The general premise of ESEIF sparsification is straightfodwrather than deliberately breaking links
between the robot and map, we maintain sparsity by comgptheir initial formation. More specifically,
the ESEIF manages the number of active landmarks by firstinadizjng out the vehicle pose, essentially
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“kidnapping” the robot. The algorithm subsequently relzes the vehicle within the map based upon
new observations to a set of known landmarks. The set of fesitilnat were originally active have been
made passive and the set of landmarks used for relocalizédron the new active map.

Time Projection: (n/,A ) — (07, A7) ;
Measur ement Updat e (z; = {Zacive Zpassivel )
if Nacive + 1 (Zpassive) <T, then
Standard update(n; , A;) ©, (n A
Nactive = Nactive + 7 (Zpassive);
else
Partitionz, = {za,zﬁ} S.t.n(zﬁ) <TI,;

(i) Update usingz,: (n;,A;y) 2% (07, A;) ;

(i) Marginalize over the robot(#n; , A; ) — (97, A7) ;
(iii) Relocate the robot usings: (7;,A;) —= ( A

Nactive = n(zﬁ) ;
end

Algorithm 1. A description of the ESEIF algorithm. Note thitcive denotes the number of features which are currently active.

The ESEIF sparsification algorithm takes the form of a vemmbn the measurement update step and
is outlined in Algorithm 1. For a more detailed descriptiore consider a situation that would give rise
to the GMRF depicted in Figure 4. At timg suppose that the robot makes four observations of the
environment,Z, = {z1, z2, 73, z5 }, three of active features and one of a passive landmark:

Active:  z; = h(x,,m;), z, = h(x,, ms), z; = h(x,, mj5)

Passive: z3 = h(x,, m3).

Updating the current distributiom,(¢, | z'~!,u’), based upon all four measurements would strengthen the
off-diagonal entries in the information matrix pairing thebot with the three observed active features,
mi, m,, andm;. Additionally, the update would create a link to the passare@lmark,ms, the end result
being the information matrix and corresponding graphicatlel shown in the left-hand side of Figure 4.
Suppose that activatingi; would violate thel', bound. Aside from updating the filter and subsequently
implementing the SEIF sparsification rule, one strategyldine to simply disregard the observation of
the passive landmark entirely. This approach, though, isanceptable since the size of the map that we
can build is then dictated by tHe, bound. Alternatively, ESEIFs allow us to incorporate allaserement
data while simultaneously maintaining the desired degfesparsity.

In the ESEIF sparsification step, the measurement data igiguaed into two setsz, andzg, where
the first set of observations is used to update the filter aadsélcond is reserved for performing relocal-
ization. Several factors guide the specific allocation|uding the number and quality of measurements
necessary for relocalization. Of the four measurementisad@ in our example, group that of the passive
feature together with one of the active measurements foufitate,z, = {z;,z;}. The remaining two
observations will be used for relocalization; = {z.,z5}. With that said, we now describe the two
components of sparsification.

1) Posterior Update:We first perform a Bayesian update on the current distribuidg, |z, u’)
to incorporate the information provided by thg measurements:

p(& |27 ut) = N7 (Eime A) 2220 b (g, | {20 20 0l = N (Esm, AL, (A7)
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Fig. 5. A graphical description of the ESEIF sparsificatidnategy. At time ¢, the map is comprised of three active features,
m' = {m;, m2, ms}, and two passive featurema~ = {mj3, m4}, as indicated by the shaded off-diagonal elements in therrimdtion
matrix. The robot makes three observations of active lamkisndz:,z2,z5}, and one of a passive featurg;. In the first step of the
sparsification algorithm, shown in the left-most diagraime ESEIF updates the distribution based upon a subset of gasurements,

z. = {z1,23}. The result is a stronger constraint betwaen and the robot as well as the creation of a link witks, which we depict

in the middle figure. Subsequently, the ESEIF marginalia¢stioe vehicle pose, leading to connectivity among the adndmarks. The
schematic on the right demonstrates the final step of sgaatsifn in which the robot is relocated within the map basedhujine remaining

z3 = {22, 25} measurements. The result is a joint posterj@gap(gt | z*, ut), represented by an exactly sparse information matrix where
the size of the active map is controlled.

The p; (£t | {zt‘l,za},ut) posterior follows from the standard update equations (6XHe information
filter. The Jacobian matrix], is nonzero only at indices affiliated with the robot pose tredm; andmg
landmarks. As a result, the process strengthens the linkeeet the robot and the active featune,, and
creates shared information witlng, which was passive. The middle diagram of Figure 5 demotesira
this effect. With regards to the computational complexiggall that the update step is constant-time with,
in the nonlinear case, access to the mean estimate for tlo¢ poe as well as; andms.

2) Marginalization and RelocalizationNow that a new connection to the vehicle node has been added
to the graph, there are too many active features. The ESHEISifipation routine proceeds to marginalize
out the robot pose to achieve the distribution over the map,

pQ(Mt | {zt_l,za} ,ut) = /p1 (Et | {zt_l,za} ,ut)dxt

Xt
=N"! (Mt; My ]\t)
In order to make the derivation a little clearer, decompbsecinonical expression fpr (&, | {z'~, z,} , u’)
into the robot pose and map components,

b <£t | {Zt_lvza} 7ut) = N_l (ét?ﬁt?At)

_ n A ]\:B.’L' ]\.’L't
v fi] w [tz 1)

(18)

N Aty A
The information matrix for the marginalized distributidmen follows from Table I:

po(My [ {2} 20} u') = N7 (M i, Ay)

Ay = Aviar — M, (I\xtxt)_l Y (19a)

'f]t =Ny — ‘/_\1\/11‘15 (‘/_\l‘tl’t)_l ﬁxt' (lgb)
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This marginalization component of sparsification is corapiahally efficient. Inverting the robot pose
sub-matrix,A,,,, € RP*?, is a constant-time operation sinpeis fixed. The ESEIF then multiplies the
inverse byA,,,, € R™*?, the sub-block that captures the shared information betwiee robot and map.
With a bound on the number of active landmarks, a limited neimif £ rows are populated and the
matrix product isO(kp?). In (19a), we then post-multiply by the transpose(ik?p) time while, in
(19b) we post-multiply by, € RP*!, an O(kp) operation. With the valid assumption thats p, the
marginalization component of ESEIF sparsification is qaadriin the bounded number of active features
and, thus, constant-time.

The Ajra,(As,e,) "t A, outer product in the Schur complement (19a) is zero everygvbgcept for
the entries that pair the active features. Recalling ourezatiscussion on marginalization iil-B, this
establishes connectivity among the active features as we @h the right-hand side of Figure 5. Of
course, unlike the figure shows, we do not have a representtdr the robot pose, which brings us to
the next step.

We conclude sparsification by relocalizing the vehicle withhe map with the remaining; observations
of a set of features denoted by the random veatnr The expression for the new pose is a nonlinear
function of mg and the measurement data. We include an additive white @gaussise termw, ~
/\/(O, R) to account for model uncertainty and sensor noise, givsg o the expression in (20a). Equation
(20b) is the first order linearization with respect to the meactor for the observed featurgs,, , from
the map distribution (18). The Jacobian matfi,is sparse with nonzero entries only within the columns
associated with theng landmarks. In turn, (20b) requires only tmﬁ mean.

x; = g(mg,z3) + w, (20a)
~ §(fmy70) + G(m — f1,) + W, (20b)

We augment the map state with this new pages [x; M/ ]", and form the joint distribution,
pESEIF<Xt>Mt \ Zt711t) =p (x| mﬁazﬁ)p2 (Mt \ {Zt_l,Za} 7ut)7 (21)

where the factorization captures the conditional indepand between the pose and the remaining map
elements.

The problem of adding the robot pose is fundamentally theesasnadding a new feature to the map
or augmenting the state as part of the time prediction stgpdfe can then easily show that (22) is the
canonical parametrization foiesgr (€, | 2!, u').

pESEIF(Et | z', ut) =N <€t; n, ]\t)

« [ R —R7!G
At = _—GTR_l [\t + GTR—lG} (228-)
R~ g(ﬂ’m 7Z[3) - Gljl’
= T<_1 . t> ] (22b)
7 -G R (g(umﬁ, z5) — Gut)

As a consequence of the sparseness,ad majority of terms within the-R~'G = — (GTR—l)T blocks
of the information matrix that link the robot to the map areazeThe landmarks used for relocalization
are the only exception as we show in the right-hand diagramignre 5 with the robot linked to the
mg = {m,, m;} features but no others.

The ESEIF controls the information constraints betweernvédtecle and the map in a consistent manner
since it does not break (i.e. set to zero) undesired linkstelad, the filter marginalizes over the pose,
in effect, distributing the information encoded within #leelinks to features in the active magm,”. The
marginalization (19a) populates the information sub-mmassociated withm™, which then forms a clique
in the graph. This fill-in would otherwise occur as part of ttext time prediction step and, with the active
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map growing ever larger, would fully populate the matrixeTBSEIF avoids extensive fill-in by bounding
the number of active landmarks. When the active map reacpesdetermined size, the ESEIF “kidnaps”
the robot, sacrificing temporal information as well as a oglegd amount of fill-in. The algorithm then
relocalizes the vehicle, creating a new set of active featusince observations are typically confined to the
robot’s local environment, these features are spatiabigel The active map is built up from neighboring
landmarks until the next sparsification. As a result, the IES&rms marginalization cliques that resemble
submaps that are structured according to robot’s visyhdlitd the density of features in the environment.

B. Mean Recovery

The sparse information filter provides formaar constant-time SLAM implementation. The caveat is,
in part, a consequence of the fact that we no longer have itoegbe mean vector when the posterior
is represented in the canonical form. Naively, we can cdmphe entire mean vector ag = A, 'n,,
though the cost of inverting the information matrix is cubidhe number of states, making it intractable
even for small maps.

Instead, we pose the problem as one of solving the set ofrliegaations

Apy = m, (23)

and take advantage of the sparseness of the informationxméhere are a number of techniques that
iteratively solve such sparse, symmetric positive defisytetems of equations including conjugate gradient
descent [27] as well as relaxation-based algorithms sucBasss-Seidel [28] and, more recently, the
multilevel method proposed by [19]. The optimizations cétierobe performed over the course of multiple
time steps since, aside from loop closures, the mean veetdres slowly in SLAM. As a result, we can
bound the number of iterations required at any one time stép |

Oftentimes, we are only interested in a subset of the meah asaduring the time projection step,
which requires an estimate for the robot pose. We can thesid®npartial mean recovery [21] in which

we partition (23) as
Ay Al |1y ™
= 24
|:Abl Abb} {.U/b m (24)

where u, is the “local portion” that we want to solve for ang, is the “benign portion” of the map.
Given an estimate fop,, we can reduce (24) to an approximate solution for the loczédm

B = Az_zl ("71 - Albﬂb) . (25)

Due to the sparsity of\;, this formulation requires only a subset af, corresponding to the Markov
blanket for the local map. Assuming that we have an accurgtimate for the mean of this portion of
the benign map, (25) provides an efficient approximatiorhtormean that we are interested in.

C. Data Association

The successful implementation of any SLAM algorithm regsiithe ability to correctly match obser-
vations of the environment with the associated landmarkthénmap. The data association problem is
often addressed by choosing the feature that best explansmeasurement, subject to a threshold that
identifies spurious observations. For a particular cooedpnce, the likelihood follows from the marginal
distribution for the particular states associated withiieothesis (typically the robot pose,, and a single
landmark,m;), p (x;, m; | z'=1, u’). Unfortunately, the information form is not amenable to gorting
this marginal from the full joint posterior since, refegiback to Table I, the Schur complement requires
the inversion of a large matrix.

Consequently, the traditional approach to data assoniasianot an option for scalable information
filters. Instead, Thrumt al. [13] approximate the measurement likelihood from a coodal distribution
rather than the marginal. Specifically, the SEIF consideesMarkov blanket, MBx,, m;), for x, and
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m,; consisting of all states directly linked in the GMRF to eithe or m;. The SEIF first computes
the conditional distribution (x;, m;, MB(x;, m;) | M, z'~! u’) whereM’ denotes all state elements not
in {x;, m;, MB(x;, m;)}. This distribution is then marginalized over the MarkovriHat to achieve an
approximation to the desired marginal(x;, m; | M’, z'~! u’), which is used to determine the likelihood
of the hypothesis. The cost of conditioning Bff is negligible and does not depend on the size of the map.
Once most of the map has been conditioned away, the matrixghaverted as part of the subsequent
marginalization is now small, on the order of the size of tharlkdv blanket. The resulting distribution
has been successfully utilized for data association witfFSE29], though it has been demonstrated to
yield overconfident estimates for the likelihood of meameats [30].

The marginal is easily determined from the standard parmémagbn, described by the mean and sub-
blocks of the full covariance matrix corresponding tp and m;. Inverting the information matrix to
access the covariance, though, is equivalent to perforitiegnarginalization in the canonical form and
is, thus, impractical. Alternatively, Eusticd al. [30] propose an efficient method for approximating the
marginal that gives rise to a conservative measure for thpothesis likelihood. The technique stems
from posing the relationship\,>; = I, as a sparse system of linear equatiohg;,; = e;, where,;
and e; denote thei'™ columns of the covariance and identity matrices, respelgtivThey estimate the
robot pose joint-covariance,,.,, online by solving the system of equations with one of theatiee
algorithms mentioned for mean recovery. The algorithm doew this with a conservative estimate for
the feature covariance to achieve the representation éomairginal covariance. The marginal, which is
itself conservative, is then used for data association.

VI. RESULTS

This section explores the effectiveness of the ESEIF dlgoriin comparison to the SEIF and EKF
when applied to different forms of the SLAM problem. We firsegent the results of a controlled linear
Gaussian (LG) SLAM simulation that allows us to compare thesequences of the different sparsification
strategies relative to the “gold standard” Kalman Filtee.(the optimal Bayes estimator). We then discuss
the performance of the sparsified information algorithmsa gair of real-world, nonlinear SLAM problems
including the benchmark Sydney Park outdoor dataset wigepular in the SLAM community.

A. Linear Gaussian Simulation

In an effort to better understand the theoretical consetpgeaf enforcing sparsity in information filters,
we first study the effects of applying the different appragcin a controlled simulation. In this example,
the environment is comprised of a set of point features,témtaccording to a uniform distribution that
yields a desired density af.10 features per unit area. The robot moves translationallpralatg to a
linear, constant-velocity model and measures the relgtosation of a bounded number of neighboring
features. Both the measurements as well as the vehicle mate corrupted by additive white Gaussian
noise.

We implement the ESEIF and SEIF using their correspondiags#cation routines to maintain a bound
of I', = 10 active features. In the case of ESEIF sparsification, werveses many of the measurements
as possible for the relocalization component, to the exteat we do not violate thé', bound (i.e.
|z3| < T',). Additionally, we apply the standard Kalman filter that, tye linear Gaussian (LG) nature of
the simulation, is the optimal Bayesian estimator. Asiderirthe different sparsification routines, each
estimator is otherwise identical.

Our main interest in the LG simulation is to evaluate theaftd the different sparsification strategies
on the estimation accuracy. To that end, we perform a seffiddomte Carlo simulations, using two
formulations of the normalized estimation error square&KRS) [31] as a measure of filter consistency.
The first metric considers thglobal error between the unadulterated filter estimates for thécleehnd
feature positions and their ground truth positions. We oateihis score over several simulations and
plot the averages in Figures 6(a) and 6(b) for the vehicleasihgle landmark, respectively. Th&.5”
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Fig. 6. Plots of the normalized estimation error squared ENEmeasured based upon a series of Monte Carlo simulatiofisear
Gaussian SLAM. Thelobal errors associated with the estimates for (a) vehicle pode(lana single feature representative of the map are
computed by comparing the direct filter estimates with gdbtmith and provide a measure of global consistency. Thes pto{c) and (d)
correspond to thédocal error in the vehicle and feature estimates, respectivhbt follows from expressing the state relative to the first
feature added to the map. The horizontal threshold denb&g7t5” chi-square upper bound and serves as a test for the comsistéthe
different filters. For both the vehicle and the map, the dl@sawell as local ESEIF errors satisfy the chi-square liffilte same is true of
the local measure for the SEIF yet the global errors are feignitly greater and far exceed the chi-square bound.

chi-square upper limit for the series of simulations is deddy the horizontal threshold, which the KF
normalized errors largely obey. The SEIF vehicle pose asraeignificantly larger than that of the KF and
ESEIF, and exceeds the chi-square bound for most of the aiionl The same is true of the estimate
for the landmark positions. This behavior indicates thatFSEnaintain an absolute state estimate that is
inconsistent. In contrast, the ESEIF yields global errordobth the vehicle and map that are similar to the
KF and pass the chi-square test. This suggests that the ERSEAM distribution is globally consistent.

The second normalized error concerns the accuracy of tlaéivwelstate elements. We first reference
the vehicle and map positions relative to the first obsereadufe,x,,, via the compounding operation,
Xmi = OX,, D x; [2]. We then measure thiecal error by comparing the relative map estimates to the
root-shifted ground truth positions. The local error in #simates of the vehicle and the same feature as
in Figure 6(b) are shown in Figures 6(c) and 6(d), respegtitegether with thed7.5” chi-square bound.
Unlike the global estimates, the SEIF sparsification regunliocal errors that are nearly indistinguishable
from those of the KF. Furthermore, the SEIF appears to gatiwf chi-square test as the errors rarely
exceed the threshold. The local errors maintained by thdE&8IBo fall well below the chi-square limit. It
seems, then, that while SEIFs are globally inconsisteatsgarsification routine preserves the consistency
of the relative map relationships. The ESEIF, on the othedhmaintains a posterior that is both globally
and locally consistent.

The high global NEES scores for the SEIF are not so much a goesee of error in the vehicle and
map estimates as they are of the overconfidence of the SElfegetestimates. This becomes apparent
when the SEIF’s uncertainty estimates are compared aghmstue distribution maintained by the Kalman
Filter. We recover the map covariance from the informaticatrim and, for each landmark, compute the
log of the ratio of the covariance sub-block determinant® determinant of the KF sub-block. Since the
KF estimate represents the true distribution, log ratiss Eaan zero signify overconfidence while values
greater than zero imply conservative uncertainty estimatggure 7 presents a histogram plot of these
ratios for the two information filters. The SEIF uncertaittgunds for the global map are significantly
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Fig. 7. Histograms for the LG simulation describing the gllbmap uncertainty maintained by the (a) SEIF and (b) ESEIEocaspared
with that of the KF. For each feature, we compute the log ofrétie between the information filter covariance sub-bloekedminant and
the determinant for the actual distribution as given by tHe Kalues greater than zero imply conservative estimateshi® uncertainty
while log ratios less than zero indicate overconfidenceeNbat all of the SEIF estimates are overconfident while tludsthe ESEIF are
conservative.
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Fig. 8. The uncertainty attributed to the relative map estén for the (a) SEIF and (b) ESEIF expressed relative to phienal KF. The

uncertainty ratios are determined as before, in this casedbapon the local covariance estimates that follow from-sbdting the state
to the first feature added to the map. While still overconfidéme SEIF local uncertainty estimates are significantbysel to the values
maintained by the KF with the one exception being the reptasien of the original world origin in the relative map. TBSEIF, meanwhile,
produces relative map estimates that are conservative.

smaller than those of the KF, indicating that the SEIF pastes susceptible to overconfidence as a
consequence of the sparsification strategy. This agreds auit discussion ir§lV-B on the inherent

implications of enforcing sparsity by approximating cdiahal independence. In comparison, the ESEIF
maintains confidence estimates for each landmark that argeceative with respect to the Kalman Filter.

In similar fashion to the NEES score, when we transform thp netative to the first feature, we see in
Figure 8(a) that the SEIF and KF estimates for the local uatdy agree much more closely than do the
global estimates. The one exception is the representatiothé original world origin in the relative map,
which the SEIF assigns a higher measure of confidence. Quhi@lgh, the SEIF is far less overconfident
in the accuracy of its local estimates, which helps to explae reduced normalized error values we saw
earlier. Meanwhile, the histogram in Figure 8(b) demonstrdhat the ESEIF estimates for the local map
accuracy remain conservative relative to the true ditiobu

Figure 9 illustrates the computational benefits of the ES&i€r the KF. Plotted in Figure 9(a), the KF
update time grows quadratically with the number of statesohtrast, the ESEIF and SEIF updates remain
constant-time despite an increase in the state dimensitiie\Whis efficiency is inherent to information
filter updates, sparseness is beneficial for the predictiep, svhich is quadratic in size of the map for
non-sparse information filters. We see this benefit in Fid(l® as the prediction time is similar for all
three filters, with a gradual increase with the number ofuieest. Additionally, the memory requirements
for sparse matrices are considerably less than those ofdvariance matrix. Consider the density of
the three matrices that are ea&ht x 536 at the end of the simulation. The covariance matrix is fully-
populated, yep2” of the terms in the ESEIF information matrix are exactly zasois89” of the SEIF
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Fig. 9. A comparison of the performance of the ESEIF, SEIF KF for a LG simulation. The update times (a) for the ESEIF and
SEIF are nearly identical and remain constant with the gravftthe map. In contrast, the KF exhibits the well-known qaéid increase in
complexity. The prediction times (b) gradually increas¢hwihe map size and are similar for the three filters by virtiithe sparsity of the
information matrices. The plot in (c) reveals that the spargormation forms demand significantly less memory tham ftily-populated
covariance matrix.

matrix. Figure 9(c) plots the difference in the memory reeuoients as a function of the state dimension.

B. Experimental Validation

The linear Gaussian simulations allow us to explore thereteal implications of sparsification and
validate our claims that approximating the conditionakipendence of the robot and a set of map elements
leads to an inconsistent distribution. The results emglisicshow that the ESEIF provides a sparse
representation of the canonical Gaussian while simultasiggreserving consistency. Unfortunately, the
simulations are not representative of most real-world iappbns, which generally involve motion and
measurement models that are nonlinear and noise that i$Sagssian. To study the performance of the
ESEIF under these circumstances, we apply it to two nonlidatasets, along with the SEIF and standard
EKF.

Victoria Park Dataset

For the first real-world SLAM problem, we consider the benahknVictoria Park dataset courtesy of
E. Nebot of the University of Sydney [5]. The dataset is wydebpular in the SLAM community as a
testbed for different algorithms that address the scatalptoblem [5], [8], [13], [32]. In the experiment,

a truck equipped with odometry sensors and a laser rangerfdrives in a series of loops within Victoria
Park, Sydney, shown in Figure 10 along with a rough plot of @RS trajectory. We use a simple
perceptual grouping implementation to detect tree trumkated throughout the park among the laser
data, which is cluttered with spurious returns. We solve data association problem offline to ensure
that the correspondences are identical for each filter.

We apply the SEIF and ESEIF algorithms together with the Biich has been successfully applied
to the dataset in the past [5]. We limit the size of the actiaprto a maximum of’, = 10 features for
the two information filters. As with the LG simulation, we pk&a priority on the relocation step when
sparsifying the ESEIF, reserving as many tree observatienmssible (i.e. no more thar = 10) for the
sake of adding the vehicle back into the map. Any additioneasarements are used to update the filter
prior to marginalization. This helps to minimize the infleenof spurious observations on the estimate
for the relocated vehicle pose.
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Fig. 10. An overhead image of Victoria Park in Sydney, Adiralong with a rough plot of the GPS vehicle trajectory. Emwironment
is approximately 250 meters East to West and 300 meters Nor8outh.

The final SEIF and ESEIF maps are presented in Figures 11¢a) Hib), respectively, along with the
estimate for the robot trajectory. The ellipses denote lineetsigma uncertainty bounds estimated by the
two filters. As a basis for comparison, we plot the map geerdray the EKF, which is similar to results
published elsewhere. One sees that the feature positionages are similar for the three filters, yet the
SEIF exhibits a larger deviation from the EKF map than doesEBEIF. The most obvious distinction
between the two maps, though, is the difference in the etnaccuracy of the maps indicated by the
uncertainty ellipses. While not ground truth, the EKF resuépresent the baseline that the information
filters seek to emulate, yet many of the EKF feature estinfategutside the three-sigma SEIF uncertainty
bounds. This is particularly evident in the periphery as exeeal in the inset plot. The ESEIF confidence
regions, on the other hand, capture all of the EKF landmatiknates.

The difference becomes more apparent when we directly caripa@ uncertainty measures for each
feature. Figure 12(a) presents a histogram plot of the Itig tzetween the global feature covariance
determinants for the SEIF and ESEIF with respect to the EKErdenants. The SEIF global uncertainty
estimates are all smaller than those of the EKF while the ES#Stimates are larger. This is consistent
with the linear Gaussian simulation results and suggeststiie SEIF sparsification strategy results in an
overconfident SLAM posterior while the ESEIF produces aritlistion that is conservative with respect
to the EKF.

In similar fashion to the LG experiment, we observe conimngsbehavior for the relative map that
follows from root-shifting the state relative to the veleisl final pose. The SEIF map shown in Figure
11(c) and the ESEIF map plotted in Figure 11(d) are both peddntical to the relative EKF map.
Furthermore, the three-sigma relative uncertainty boundmtained by the two filters contain the EKF
position estimates. Nonetheless, the SEIF is still morefident than the EKF as the histogram in
Figure 12(b) indicates. Aside from the representation fa original world origin, though, the local
SEIF uncertainties are nearly identical to those of the EKIgether, this implies that the consistency
of the relative state distribution is less sensitive to tperaximations used in the SEIF sparsification.
Meanwhile, the ESEIF estimates for the relative uncenaiemain conservative with respect to the EKF.

Figure 13(a) compares the total time required for the timedjotion and measurement update steps
for the ESEIF and EKF. We do not include the SEIF performandenbte that it is similar to that of the
ESEIF. The ESEIF implementation employed partial meanvego(25), solving the full set of equations
only upon sparsification. The EKF is more efficient when thgrsasmall (less than 50 landmarks), a
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Fig. 11. Estimates for the vehicle trajectory and featursitfums along with the three sigma confidence bounds for tiotokia Park
dataset. The global maps generated by (a) the SEIF and (l§SEdF are similar to the EKF map. The SEIF uncertainty efiifyshough,
are significantly smaller than those of the ESEIF and, in mzases, do not include the EKF feature estimates. In (c) andédplot the
relative SEIF and ESEIF maps, respectively, that follownfrmot-shifting the state into the reference frame of theotddi its final pose.
The three relative maps are nearly identical and the SElEntmiaty bounds are not nearly as small, capturing each efEtkF position
estimates.

reflection of the ESEIF prediction time that is quadratichie humber of active features along with the
mean estimation cost. Yet, as the map grows larger, the gtiadmpdate of the EKF quickly dominates
the filtering time of the ESEIF, which varies with the numbéragtive features rather than the state
dimension.

The plot in Figure 13(b) displays the EKF and ESEIF memorypcations. In order to store the
correlations among the map and robot pose, the fully-popdIBKF covariance matrix requires quadratic
storage space. The ESEIF information matrix, though, issgpaith a bounded quantity of non-zero terms
that pair the vehicle and map and a linear number of links éebandmarks. As a result, we see that
the ESEIF storage requirement is linear in the size of the.map

Hurdles Dataset
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In the second experiment, a wheeled robot drives among 6K tnardles positioned at known locations
along the baselines of four adjacent tennis courts. Thecleebbserves nearby hurdles with a SICK laser
scanner and uses wheel encoders to measure pose velocitg fop the kinematic motion model.

We again apply the ESEIF, SEIF, and EKF SLAM algorithms. Theadssociation problem is solved
independently such that the correspondences are idefaicall three filters. The maximum number of
active landmarks for the three information filters is seflat= 10 hurdles. As with the Victoria Park
dataset, we prefer to relocalize the vehicle during spaatiin with as many measurements as possible
and use any surplus observations in the preceding update ste

We present the final map estimates for the ESEIF and SEIF uwré&it4 along with the EKF map and
the ground truth poses. The ellipses denote the three-sigroartainty bounds for the position of a leg
of each hurdle. Qualitatively, the maps for the informatfdters closely agree with the EKF estimates
as well as the true hurdle positions, however the same israetfor the global uncertainties. The SEIF
is again unique in that sparsification results in global viagety estimates that are too small to capture a
majority of the true hurdle positions, indicative of an aanfident SLAM posterior. Figure 14(b) shows
that SEIF estimates are more accurate upon root-shiftinigetdirst hurdle added to the map. The ESEIF
global and relative maps are comparable to those of the SEIFEKF as well as the ground-truth. Unlike
the SEIF, though, both the global and local ESEIF uncestadstimates are consistent with the EKF.

VIl. DISCUSSION

We have taken a closer look at the SEIF sparsification styadad, in particular, the consequences on
the uncertainty estimates. We presented an alternatiegigdon for maintaining sparsity and have shown
that it does not suffer from the same overconfidence. In #tien, we elaborate on our claims regarding
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Fig. 14. The final maps for the hurdles dataset generatedthét!SEIF and ESEIF compared with the EKF estimates and thendrtvuth
hurdle positions. The ellipses define the three-sigma taiogéy bounds on the location of the base leg of each hurdie. dnly exception
is the inset plot for the global ESEIF map where, for aesth&tasons, we plot the one-sigma uncertainty region. In @jkow the global

estimates given directly from the three filters while (b) tzims the relative maps transformed with respect to the Hingtlle added to the

map. As indicated in (a), the SEIF maintains global uncetyaestimates that are overconfident while the plot beloveats that the it
retains the local map structure. In comparison, the ESE¢Klyiestimates that are consistent with the EKF both for tbkad) and relative

maps.
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the consistency of the ESEIF. In addition, we draw compagsietween the ESEIF and the D-SLAM
algorithm [22], which similarly achieves sparsity whileegerving consistency.

A. Estimator Consistency

The results presented in the previous section empiricaahstrate that the SEIF global uncertainty
estimates are noticeably overconfident while the ESEIFabally and locally conservative. In the linear
Gaussian case, this is sufficient to conclude that the ESEdSepves the consistency of the SLAM
posterior for the local and global representations. On ftinerohand, as the ESEIF is based upon the
dual of the EKF, it is subject to the same convergence isssi¢BeaEKF for nonlinear applications [31].
While the results empirically demonstrate that the ESEIEdBservative with respect to the EKF, this
does not guarantee that the ESEIF SLAM posterior is comgisigh the true, non-Gaussian distribution.
Nonetheless, the algorithm allows us to capitalize on thepdational and storage benefits of a sparse
information form without incurring additional inconsisigy. The EKF has been successfully applied to a
wide range of real-world datasets and the ESEIF provideskalde means of achieving nearly identical
estimates.

B. Comparison with D-SLAM

In [22], Wanget al. propose a similar algorithm that maintains a sparse caabparametrization in a
consistent manner. The approach decouples SLAM into sepkarealization and map building problems
and addresses them concurrently with different estimaidie D-SLAM considers the map distribution,
p (M | z', u"), to be Gaussian and represents it in the canonical formeit tises an EIF to maintain the
information matrix and vector with updates based upon ikgddandmark measurements that have been
extracted from the robot’s observations of the environm&he EIF time projection step is trivial since
the robot pose is not contained in this distribution andum tthe information matrix is naturally sparse.
An estimate for the vehicle pose is determined from map ebsens by solving the kidnapped robot
problem at each time step. Additionally, D-SLAM implementstandard EKF SLAM process for the
robot’s local neighborhood that provides a second estimip®se. To account for unmodeled correlation
between the two estimates, they are fused with covariarieesgction [23] to achieve a conservative belief
over pose. By decoupling the problem in this way, D-SLAM talpies on an exactly sparse information
matrix without sacrificing consistency.

The key component to maintaining the sparseness of thenafiton matrix follows from the observation
that the time projection step for the robot pose causexifilBy periodically kidnapping and relocalizing
the robot, the ESEIF controls the population of the infoioratmatrix. The D-SLAM algorithm takes
this one step farther by essentially performing kidnappamgl relocalization at each time step. As a
result, they sacrifice nearly all information provided bye ttemporal constraints between successive
poses. Additionally, in order to preserve exact sparsitytifi®@ map distribution, the algorithm does not
incorporate any knowledge of the robot’s pose when buildngnaintaining the map. We believe the
D-SLAM estimator to be less optimal as it ignores markedlyrenmformation than the ESEIF, which
only occasionally disregards temporal links.

VIII. CONCLUSION

To summarize, the computational demands of the ExtendechdtaFilter limit its use in feature-based
SLAM to small environments. This problem is currently a hesearch topic in robotics and has lead to
a number of different algorithms that scale with larger mdpsparticular, the key observation that the
canonical SLAM distribution is relatively sparse has givese to scalable adaptations to the information
filter. The algorithms take advantage of the fact that, whas density of the information matrix is
bounded, estimation can be performed in near constant timespective of the number of landmarks.
The problem, though, is that while a majority of the elemantshe information matrix are relatively
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weak, the feature-based SLAM matrix is fully populated. dey to achieve the computational benefits
of the sparse form, the algorithms explicitly break thesakwvnks.

The Sparse Extended Information Filter sparsificationtesgyya approximates the conditional indepen-
dence between the robot and most of the map. We have exantweedonsequences of performing
inference based upon this approximation to the SLAM postefihe results demonstrate that the SEIF
estimates for the robot pose and map suffer from global isistency, yet they empirically preserve
relative relationships.

We have presented the Exactly Sparse Extended Informatitem &s an efficient feature-based SLAM
algorithm. The ESEIF maintains an exactly sparse inforomathatrix without incurring additional global
or local inconsistency. The paper has shown that occasyonarginalizing the robot pose from the
distribution and subsequently relocalizing the vehicl¢hii the map allows us to control the number of
active features and, in turn, the population of the infororaimatrix. The ESEIF then takes advantage
of the benefits of a sparse canonical parametrization whdetaining conservative robot pose and map
estimates.

We demonstrated the consistency of the ESEIF through assefieontrolled linear Gaussian simula-
tions. The algorithm was then applied to two different noeéir datasets including a benchmark SLAM
experiment. The results reveal that the ESEIF maintaimsasts nearly identical to those of the EKF with
savings in computation time and memory requirements. ThellESffers an improvement in scalability
while it maintains estimates that are both globalhyd locally conservative.
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