...one of the most highly
regarded and expertly designed C++ library projects in the
world.
— Herb Sutter and Andrei
Alexandrescu, C++
Coding Standards
Copyright © 2004, 2005 Arkadiy Vertleyb, Peder Holt
Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt )
Table of Contents
Today many template libraries supply object generators to simplify object creation
by utilizing the C++ template argument deduction facility. Consider std::pair
.
In order to instantiate this class template and create a temporary object of
this instantiation, one has to supply template parameters, as well as parameters
to the constructor:
std::pair<int, double>(5, 3.14159);
To avoid this duplication, STL supplies the std::make_pair
object generator. When it is used, the types of template parameters are deduced
from supplied function arguments:
std::make_pair(5, 3.14159);
For the temporary objects it is enough. However, when a named object needs to be allocated, the problem appears again:
std::pair<int, double> p(5, 3.14159);
The object generator no longer helps:
std::pair<int, double> p = std::make_pair(5, 3.14159);
It would be nice to deduce the type of the object (on the left) from the expression it is initialized with (on the right), but the current C++ syntax does not allow for this.
The above example demonstrates the essence of the problem but does not demonstrate its scale. Many libraries, especially expression template libraries, create objects of really complex types, and go a long way to hide this complexity behind object generators. Consider a nit Boost.Lambda functor:
_1 > 15 && _2 < 20
If one wanted to allocate a named copy of such an innocently looking functor, she would have to specify something like this:
lambda_functor< lambda_functor_base< logical_action<and_action>, tuple< lambda_functor< lambda_functor_base< relational_action<greater_action>, tuple< lambda_functor<placeholder<1> >, int const > > >, lambda_functor< lambda_functor_base< relational_action<less_action>, tuple< lambda_functor<placeholder<2> >, int const > > > > > > f = _1 > 15 && _2 < 20;
Not exactly elegant. To solve this problem (as well as some other problems),
the C++ standard committee is considering a few additions to the standard language,
such as typeof/decltype
and auto
(see http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1607.pdf).
The typeof
operator (or decltype
, which is a slightly different flavor
of typeof
) allows one to determine
the type of an expression at compile time. Using typeof
,
the above example can be simplified drastically:
typeof(_1 > 15 && _2 < 20) f = _1 > 15 && _2 < 20;
Much better, but some duplication still exists. The auto
type solves the rest of the problem:
auto f = _1 > 15 && _2 < 20;
The purpose of the Boost.Typeof library is to provide a library-based solution, which could be used until the language-based facility is added to the Standard and becomes widely available.