欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • BBT-L-61-C图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • BBT-L-61-C
  • 数量15000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921

产品型号BBT3420的Datasheet PDF文件预览

BBT3420  
®
Data Sheet  
September 14, 2005  
FN7481.1  
Quad 2.488-3.1875Gbps/Channel Transceiver  
1 Features  
• Receive signal detect and 16 levels of transmission  
medium equalization  
• Four channels of transmitter and receiver with serial data  
transfer rates of 2.488-3.1875Gbps/channel with full rate  
and half-rate operations  
• CML transmit outputs with four levels of pre-emphasis  
• Loopback  
• Up to 12.75Gbps data rate at full duplex  
- Per-channel serial Tx-to-Rx and Rx-to-Tx parallel  
internal loopback modes  
• User-controlled dual-speed operation (per channel) 2.488-  
3.1875Gbps or 1.244-1.59Gbps  
• Single-ended/differential input Reference clock  
• IEEE 802.3ae-2002 10 GE and 10 GFC compliant  
- XAUI, XGMII, and MDC/MDIO interfaces  
• Double Data-Rate (DDR) mode, also optional SDR (Single  
Data Rate) on transmitter  
• XGMII format 10-bit parallel input/output data  
- Supports HSTL 1.8V and 2.5V SSTL_2  
• Support both source-centered and source-simultaneous  
clocking  
• Long Run Length (512 bit) frequency lock ideal for  
proprietary encoding schemes Transmit byte clock  
schemes  
- One Transmit Byte Clock (TBC) for each channel, or  
one TBC for all four channels  
• Extensive configuration via 802.3-compliant MDC/MDIO  
serial interface  
• 8bit/10bit Encoding/Decoding per channel with selectable  
parallel input/output data sizes  
- Support optional 8b/10b encoder/decoder bypass  
operation  
• Received clock schemes  
- Receive data aligned to local reference clock, to  
recovered clock for each channel, or to recovered clock  
for Channel A only  
• Integrated Equalization and Pre-emphasis  
• De-skewing and channel-to-channel alignment options  
• Low power, 250mW per channel typical  
• Supports Built-In Self Test (BIST) and IEEE 1149.1 JTAG  
• On-chip 25series output terminations (XGMII side)  
• Standard 0.18µm 1.8V CMOS technology  
• 3.3V tolerant I/O  
• Meets jitter requirements with significant margin  
• Comma detection and synchronization, byte alignment  
• Tx/Rx rate matching via IDLE insertion/deletion  
Switch Card  
Serial 10 Gigabit  
10GBASE-R  
Custom ASIC  
nPower BBT 3420  
Transceiver  
&
nPower BBT 3420  
Transceiver  
XAUI  
Optical  
nPower BBT 3420  
Transceiver  
XGMII  
XAUI  
XGMII  
Up to 40"  
Transponder  
MAC Functions  
Switch  
Fabric  
WDM 10 Gigabit  
10GBASE-LX4  
Custom ASIC  
WDM  
Optical  
nPower BBT 3420  
Transceiver  
&
nPower BBT 3420  
Transceiver  
XAUI  
nPower BBT 3420  
Transceiver  
XGMII  
XAUI  
XGMII  
Up to 40"  
MAC Functions  
Transponder  
FIGURE 1-1. EXAMPLE BACKPLANE AND LINE CARD APPLICATIONS  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2004, 2005. All Rights Reserved  
1
All other trademarks mentioned are the property of their respective owners.  
BBT3420  
MDIO Protocol  
Engine  
JTAG  
TAP  
MDIO Register File & Common Logic  
REFP(N.C.)  
REFN(N.C.)  
RREF(N.C.)  
Internal  
Nodes  
RFCP  
RFCN  
20X or 10X  
SSTL or HSTL  
Input  
Transmit Clock  
Generator  
Reference  
VREF  
HS_TX_CLK  
REF_CLK  
TD[9:0]  
TBC  
TDA[9:0]  
TCA  
TXAP  
TXAN  
TX+  
TX-  
Channel A  
RD[9:0]  
RDA[9:0]  
RCA  
RXAP  
RXAN  
RX+  
RX-  
RBC  
SIGDET  
CODE  
HS_TX_CLK  
REF_CLK  
TD[9:0]  
TBC  
TDB[9:0]  
TXBP  
TXBN  
TX+  
TX-  
TCB  
Channel B  
RD[9:0]  
RDB[9:0]  
RCB  
RXBP  
RXBN  
RX+  
RX-  
SIGDET  
RBC  
CODE  
HS_TX_CLK  
REF_CLK  
TD[9:0]  
TBC  
TDC[9:0]  
TXCP  
TXCN  
TX+  
TX-  
TCC  
Channel C  
RD[9:0]  
RDC[9:0]  
RCC  
RXCP  
RXCN  
RX+  
RX-  
SIGDET  
RBC  
CODE  
HS_TX_CLK  
REF_CLK  
TD[9:0]  
TBC  
TDD[9:0]  
TXDP  
TXDN  
TX+  
TX-  
TCD  
Channel D  
RD[9:0]  
RDD[9:0]  
RCD  
RXDP  
RXDN  
RX+  
RX-  
SIGDET  
RBC  
CODE  
PSYNC  
CODE  
SIGNAL  
DETECT  
LOGIC  
SIG_DET  
FIGURE 1-2. BBT3420 BLOCK DIAGRAM  
2
BBT3420  
CODE  
BISTEN  
PLP  
BIST  
Pattern  
HS_TX_CLK  
Generator  
TX FIFO  
&
8B/10B  
Encoder  
&
TX+  
TX-  
Error and  
Orderset  
Detector  
TD[9:0]  
TBC  
DDR  
Input  
AKR  
Registers  
Pre-empahsis  
Generator  
Clock and  
Data  
100 Ohm  
Termination,  
Equalizer,  
Signal  
RX FIFO  
Deskew  
Logic  
DDR  
Output  
RD[9:0]  
RBC  
RX+  
RX-  
10B/8B  
Decoder  
Recovery  
Registers  
Detect  
BIST  
SIGDET  
Pattern  
Analyzer  
SLP  
REF_CLK  
FIGURE 1-3. FUNCTIONAL BLOCK DIAGRAM OF A SINGLE CHANNEL  
the BBT3420 to accommodate proprietary encoded data  
links.  
2 General Description  
The BBT3420 is a quad 8-bit/10-bit parallel-to-serial and  
serial-to-parallel transceiver device ideal for high-bandwidth  
interconnection between line cards, serial backplanes, or  
optical modules, over interconnect media such as Printed  
Circuit Board (PCB) FR-4 traces or copper cables.  
On each channel, the transmitter accepts up to 10-bit wide  
parallel SSTL_2 or HSTL Class I/O (Figure 2-1) data, which  
is then serialized into high-speed NRZ (Non-Return to Zero)  
serial streams. The effective serial output impedance is  
nominally 150differential.  
Each independent transceiver channel in BBT3420 is  
capable of operating at 2.488-3.1875Gbps at full-rate, and  
1.244-1.59375Gbps at half-rate. The four on-chip  
transceivers shown in Figure 1-2 can also be configured as  
a single 10 Gigabit Attachment Unit Interface (XAUI), for  
both 10G Ethernet and 10G Fiber Channel or proprietary  
backplane interfaces, providing up to 12.75Gbps of data  
throughput at full duplex. The BBT3420 also supports the 10  
Gigabit Media Independent Interface (XGMII) on the parallel  
interfaces. The device can be used as an XGMII Extended  
Sublayer (XGXS) device to support longer PCB traces  
between optical transceiver modules and switch fabrics, as  
shown in Figure 1-1.  
The BBT3420 transceiver can be configured via pins and  
through the Management Data Input/Output (MDIO)  
interface specified in IEEE 802.3 Clause 22 or Clause 45.  
The device supports both the 5-bit PHY address for Clause  
22 and the 5-bit port address for Clause 45. The four device  
addresses for Clause 45 are user selectable. The device  
also supports the Built-in Self Test (BIST) and IEEE 1149.1  
(JTAG) for self-test purposes including serial and parallel  
loopback under either external pin or MDIO control, and  
Pseudo Random Bit Sequence (PRBS) generation and  
verification.  
The BBT3420 is assembled in a 289-pin 19mm x 19mm  
HSBGA package. The device can operate with a single 1.8V  
supply and dissipates only 250mW per channel.  
As shown in Figure 1-3, each transceiver channel in  
BBT3420 contains a serializer, a deserializer, an 8b/10b  
encoder and decoder, as well as elastic buffers that provide  
the interface for serial data transmission and data recovery.  
Both the receive equalization and the transmit pre-emphasis  
are provided on each of the channels to maximize  
VTT=VDDQ/2  
performance. In addition, a programmable receive FIFO in  
each channel aligns all incoming serial data to the local clock  
domain, adding or removing IDLE sequences as needed.  
This in return will eliminate the need for multiple clock  
domains for the interfaced ASIC device to the transceiver.  
50  
Zo=50Ω  
VREF= VDDQ/2  
Each transceiver channel can also be configured to operate  
as a non-encoded 10-bit transceiver, allowing long strings of  
consecutive 1's or 0's (up to 512 bits). This feature enables  
FIGURE 2-1. SSTL_2/HSTL CLASS I I/O  
3
BBT3420  
represents an IDLE character. The default value of this  
3.0 Detailed Functional Description  
3.1 Transmit Parallel Input Modes  
register is 07’h. The register can be programmed to any 8-bit  
value excluding the already defined (control) values shown  
in Table 3-1.  
The parallel side of each of the channels in BBT3420 may  
operate in either a 10-bit mode or a XGMII 9-bit mode. The  
parallel input mode selection is controlled by the CODE pin  
(Table 4-6) and the CODECENA bit in the MDIO register at  
address 11’h in Clause 22 format (Table 3-16) and/or C000’h  
in Clause 45 format (Table 3-32). In order to program the  
device for XGMII 9-bit mode, the CODE pin should be set  
HIGH and the CODECENA bit set to 1’b. For the 10-bit  
Mode setting, either the CODE pin should be set to LOW or  
the CODECENA bit should be set to 0’b.  
When both the TRANS_EN bit (Clause 22 Address 10’h in  
Table 3-15 or Clause 45 Address C001’h in Table 3-33) and  
the AKR_EN bit (Clause 22 Address 1D’h in Table 3-28 or  
Clause 45 Address C001’h in Table 3-33) are set to 1, or  
when the XAUI_EN bit is set, the IDLE character data  
pattern will be sequenced into /A/, /K/, and /R/ codes (IEEE  
802.3ae-2002 specified). Alternatively, if neither of the  
AKR_EN or XAUI_EN bits are set, the XGMII IDLE and the  
/K/ code will both be transmitted as the XAUI /K/ code, and  
the /A/ and /R/ control codes will be transmitted as XAUI /A/  
and /R/ codes respectively. The 8b/10b encoding patterns  
are described in Table 3-1. For valid operation, the XGMII  
and XAUI Lane 0 signals should be connected to the  
BBT3420 Channel A pins.  
3.1.1 10-BIT MODE  
In the 10-bit mode the 8b/10b Codec is disabled, and the  
externally encoded data are latched in the DDR input  
registers in increments of 10 bits. In this case, the user is  
responsible for generating and applying the proper input in  
the form of ordered sets, data, and correct ‘comma’ group  
signals, to ensure data coherence. The LSB (TDX[0]) is  
shifted out first on the serial side, and the MSB (TDX[9]) is  
shifted out last.  
When the XAUI_EN bit is set to 1, if a local/remote fault is  
received on the XAUI inputs, it will be passed as ||LF|| or  
||RF|| Sequence Ordered_sets respectively, i.e.,  
/K28.4/D0.0/D0.0/D1.0(D2.0)/. Local fault is declared when  
any of the following conditions are detected:  
3.1.2 XGMII 9-BIT (8 BITS PLUS K CONTROL BIT) MODE  
In the XGMII 9-bit mode, the unencoded data are latched in  
the DDR input registers in 9 bits at a time. The lower 8 bits  
1. No signal is detected in any one of four channels.  
2. No valid comma is detected in any one or more of the four  
(TD[A..D][7:0]) are byte-wide data or control values, and the  
channels.  
th  
9
bit (TD[A..D][8]) is the "K" bit used to select special  
3. When all the channels are not deskewed.  
control characters for link management. In this mode, the  
When the XAUI_EN bit is set to 1, if a local/remote fault  
K28.4/D0.0/D0.0/D1.0(D2.0)/ is written to the XGMII transmit  
interface for XAUI transmission, the ||LF|| or ||RF|| Sequence  
Ordered_set is transmitted according to the IEEE 802.3ae-  
2002 randomizing algorithm. Any other Sequence  
th  
10 bit (TD[A..D][9]) is used for disparity error or code  
violation. The 8b/10b Codec is enabled, and converts the  
data and the valid control values.  
The XGMII IDLE Code Register (Clause 22 Address 1B’h or  
Clause 45 Address C003’h) controls the data pattern that  
Ordered_set will also be transmitted in the same way.  
TABLE 3-1. VALID 8B/10B ENCODER PATTERNS  
TRANSMITTING SERDES  
TRANS_EN AKR_EN BIT  
SERIAL  
SERIAL  
CODE  
NOTES and  
K-BIT  
TD DATA  
BIT (Note 1)  
(Note 1)  
CHARACTER  
DESCRIPTION  
0
1
0-FF’h  
X
0
1
X
X
0
1
0
1
0
1
0
1
X
See 802.3-2002 Table36-1  
Invalid code  
Valid Data Value  
= XGMII IDLE reg.  
(Note 2) (default 07’h)  
/K/  
K28.5  
Comma (Sync)  
/A/ /K/ /R/  
/K/  
IEEE802.3ae 48.2.4.2 algorithm  
Comma (Sync)  
1
1
1
1
BC  
7C  
1C  
FB  
X
X
X
X
K28.5  
K28.3  
K28.0  
K27.7  
/A/ /K/ /R/  
/A/  
IEEE802.3ae 48.2.4.2 algorithm  
Align  
/A/ /K/ /R/  
/R/  
IEEE802.3ae 48.2.4.2 algorithm  
Alternate Idle (Skip)  
IEEE802.3ae 48.2.4.2 algorithm  
Start  
/A/ /K/ /R/  
/S/  
4
BBT3420  
TABLE 3-1. VALID 8B/10B ENCODER PATTERNS (Continued)  
TRANSMITTING SERDES  
TRANS_EN AKR_EN BIT  
SERIAL  
SERIAL  
CODE  
NOTES and  
K-BIT  
TD DATA  
BIT (Note 1)  
(Note 1)  
CHARACTER  
DESCRIPTION  
1
FD  
3C  
5C  
9C  
DC  
FC  
F7  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
/T/  
/F/  
K29.7  
K28.1  
K28.2  
K28.4  
K28.6  
K28.7  
K23.7  
K30.7  
Terminate  
1
Extra comma  
1
Signal Ordered_Set marker  
Sequence Ordered_Set marker  
1
/Q/  
1
1
Repeat gives False Comma  
1
1
1
FE  
/E/  
Error Code  
Error Code  
(all others)  
Invalid code  
NOTES:  
1. If the XAUI_EN bit is set, the BBT3420 acts as though both the TRANS_EN and AKR_EN bits are set.  
2. The XGMII IDLE character is set by the XGMII IDLE register, address 1B’h/C003’h (see Table 3-26), default value 07’h, combined with the K  
bit (XGMII value 107’h).  
channel is latched with its corresponding TBC pin TC[A-D]  
independently. Note that PSYNC will also force trunking of  
the Receive Byte Clocks (see below). Alternatively, the  
TC[A-D] inputs may be driven from a common source, such  
as the local reference clock.  
3.2 Transmit Byte Clock  
3.2.1 FULL- AND HALF-RATE MODE  
Since the BBT3420 normally employs Double Data Rate  
(DDR) timing, the local reference clock requirement is  
lowered to 124.4-159.375MHz. The Transmit Byte Clock  
(TBC) must be frequency-synchronous with the local  
reference clock. For any channel set to Half-Rate Clock  
Mode by the MDIO/MDC register 1F’h (for Clause 22) and/or  
C008’h (for Clause 45), see Table 3-30, the TBC must be  
provided at half the ref clock frequency, unless the TX_SDR  
bit is set in the MDIO register C001’h (Clause 45, Table 3-  
33) and/or 1D’h (Clause 22, Table 3-28).  
3.3 Transmit FIFO  
A 4-byte-deep input FIFO is used to accommodate any TBC  
or data drift. The initial pointer value is 2 bytes, which can  
accommodate ±2 byte skew between channels, as well as  
drift between the TBC and the reference clock. When the  
FIFO depth is at one, the transmit data is ready for output on  
the next TXC.  
3.2.2 SOURCE-CENTERED AND -SIMULTANEOUS  
MODE  
3.4 Serializer  
The serializer accepts 10-bit transmission characters and  
converts them from a parallel format to a serial bit stream at  
2.488-3.1875Gbps. The system designer is expected to treat  
such signals on the PCB as transmission lines and to use a  
controlled impedance and suitable termination.  
For ease of ASIC timing, the BBT3420 provides the option  
for the TBC to be source-simultaneous or source-centered.  
In source-simultaneous mode, the ASIC is not required to  
adjust the TBC signal to the center of the data window. The  
internal latch clock of the BBT3420 is set to +5 serial bit  
times after the rising edge of the clock (TBC or RefClock)  
when the chip is reset. In source-centered mode, the  
BBT3420 expects stable data, with proper setup/hold time  
with respect to the TBC from the ASIC. The specific clocking  
mode is selectable by the MDIO/MDC register bit SC_TBC  
at address 11’h in Clause 22 format, Table 3-16, and/or  
C001’h in Clause 45 format, Table 3-33.  
3.5 Pre-emphasis  
In order to compensate for the loss of the high-frequency  
signal components through PCB or cable, four levels of  
programmable pre-emphasis have been added to all serial  
transmit channels. This maximizes the data eye opening at  
the receiver inputs and enhances the bit error rate  
performance of the system. The MDIO Register at Address  
1C’h (for Clause 22) and/or C005’h (for Clause 45) (see  
Table 3-27) controls the level of pre-emphasis. Note that the  
formula used to determine the pre-emphasis valuse is NOT  
the same as that used in the IEEE 802.3ak-2004  
3.2.3 TRUNKING MODE  
The TBC source for each channel is determined by the  
trunking mode setting of the PSYNC pin. When trunking is  
turned on (PSYNC high), all four channels are latched by the  
Channel A TBC on pin TCA. In non-trunking mode, each  
specification for this parameter.  
5
BBT3420  
3.7.2 Loss of Signal (LOS)  
TABLE 3-2. PRE-EMPHASIS CONTROL  
Loss of signal is an indication of gross signal error  
CLAUSE 22  
CLAUSE 22  
conditions. It is not an indication of signal coding health. It  
may be caused by poor connections, insufficient voltage  
swings, or out-of-range signal frequency. If any of these  
conditions occurs, the SIG_DET pin will be de-asserted. In  
addition, the MDIO MF_CTRL register bits (Address 10’h for  
Clause 22 format, Table 3-15, and/or C001’h for Clause 45  
format, Table 3-33) can be set to have the MF[A-D] pins  
provide per-channel indication of Loss of Signal conditions,  
the threshold being set by the MDIO LOS_CONTROL  
register bits at Address 1D’h for Clause 22 format and/or  
C001’h for Clause 45 format, Table 3-28 and/or Table 3-33  
respectively. The LOS indication is also available directly in  
the MDIO status registers, Address 01’h in Clause 22 format,  
see Table 3-9, and/or Address C009’h in Clause 45 format,  
see Table 3-31. The combination of all four drives the  
SIG_DET pin (see Table 4-6), and contributes to the  
RX_FAULT bit in the IEEE Status Register 2 at address  
(00)08’h (Table 3-14) and the LOCAL_FLT bit in Register  
0001’h, 1 in Table 3-10 (Clause 45 only).  
ADDRESS 1C’h OR ADDRESS 1C’h OR  
CLAUSE 45  
CLAUSE 45  
PRE-EMPHASIS  
VALUE =  
ADDRESS C005’h ADDRESS C005’h  
BIT 15  
BIT 14  
(V  
/V )-1  
PPOUT PP  
0
0
1
1
0
1
0
1
No Pre-Emphasis  
0.18  
0.38  
0.75  
1
0
0
1
Vpp  
Vppout  
As mentioned previously, LOS is designed as an indicator.  
The listed LOS threshold is for reference only, it is not  
designed to measure signal amplitude. Under nominal  
operation conditions, the actual LOS threshold is at a signal  
swing (single-ended peak-peak) lower or around the  
datasheet specified threshold. For a low LOS threshold  
setting, LOS may never be asserted due to noise.  
Bit  
Bit  
Bit  
Time  
Time  
Time  
FIGURE 3-1. PRE-EMPHASIS OUTPUT ILLUSTRATION  
3.6 Output Select – Serial Loopback  
In normal mode, the serialized transmission TD[A..D][9..0]  
data will be placed on TX[A..D]P/N. When serial loopback is  
activated, Tx[AÖD] is internally looped back to Rx[AÖD]  
respectively.  
3.7.3 Clock and Data Recovery  
The line rate receive clock is extracted from the transition-  
rich 10-bit coded serial data stream independently on each  
channel. The data rate of the received serial bit stream for  
XAUI should be 3.125Gbps ±100ppm to guarantee proper  
reception (and similarily for other data rates). The receive  
clock locks to the input within 2µs after a valid input data  
stream is applied. The received data is de-serialized and  
byte-aligned.  
3.7 Receiver  
The receiver detects and recovers the serial clock and data  
from the received data stream. After acquiring bit  
synchronization, the BBT3420 normally searches the serial  
bit stream for the occurrence of a comma character to obtain  
byte synchronization (byte alignment). The receiver then  
performs channel alignment and clock compensation, as  
desired. These are each discussed in the sections below.  
The CDR unit will inherently acquire synchronization,  
provided the signal level is adequate, and the frequency is  
within the specified range of the local reference clock. If  
synchronization is lost due to an invalid signal (e.g.  
disconnect, out of range voltage swing, out of range  
frequency, etc.), then the high-speed receive clock will free  
run frequency-locked to the transmit clock.  
3.7.1 Input Equalization and Transmission Line  
Termination  
An equalizer has been added to each receiver input buffer,  
which boosts high-frequency edge response. The boost  
factor can be selected from 0 to F’h through MDIO. The  
MDIO register at address 1C’h (Clause 22), and/or C005’h  
(Clause 45), see Table 3-27, controls the boost value of the  
equalizer functions. A nominal 100on-chip transmission-  
line termination resistor is integrated with the input equalizer,  
eliminating the requirement of an external termination  
resistor. This greatly improves the effectiveness of the  
termination, providing the best possible signal integrity.  
3.7.4 Byte Alignment (code-group alignment)  
Unless the CDET bits of the MDIO Register at address 10’h  
(Table 3-15, Clause 22) and/or C000’h (Table 3-32, Clause  
45) are turned off, the Byte Alignment Unit is activated. The  
Byte Alignment Unit searches the coded incoming serial  
stream for a sequence defined in IEEE 802.3-2002  
subclause 36.2.4.8 as a “comma”. A comma is the sequence  
“0011111” or “1100000” and is uniquely located in a valid  
8b/10b coded data stream, appearing as the start of some  
6
BBT3420  
control symbols, including the /K/ IDLE. Any proprietary  
encoding scheme used should either incorporate these  
codes, or arrange byte alignment differently. Comma  
disparity action can be controlled via the CDET bits. Upon  
detection of a comma, the Byte Alignment Unit shifts the  
incoming data to align the received data properly in the 10-  
bit character field. Two possible algorithms may be used for  
byte alignment. The default is to byte-align on any comma  
pattern. Although quick to align, and normally very reliable,  
this method is susceptible to realignment on certain single-  
bit errors or on successive K28.7 characters. The alternative  
algorithm is that specified in the IEEE802.3ae-2002 clause  
48 specification, and is much less susceptible to error.  
Algorithm selection is controlled via MDIO register bit  
PCS_SYNC_EN at address 1D’h (Clause 22, Table 3-28)  
and/or C000’h (Clause 45, Table 3-32), unless overridden by  
the XAUI_EN bit in the same registers. The recovered  
receive clocks may be stretched (never slivered) during byte  
alignment, but up to a full code group may be deleted or  
modified while aligning the "comma" code group correctly to  
the edges of the RefClock.  
3.7.5 Data Decoding  
The serial bit stream must be ordered "abcdeifghj" with "a"  
being the first bit received and "j" the last. With the 10b/8b  
XGMII decoder enabled, the decoded data is ordered  
"ABCDEFGHK" with "A" being the LSB. The decoding of  
valid 10b patterns is shown in Table 3-3 below. If the  
TRANS_EN bit or XAUI_EN bit (the MDIO Registers at  
Clause 22 addresses 10’h and 1D’h, see Table 3-15 and  
Table 3-28), and/or Clause 45 address C001’h, see Table 3-  
33) are set, all incoming XAUI IDLE patterns will be  
converted to the XGMII IDLE pattern set by the control  
register at address 1B’h (Clause 22 format) and/or C003’h  
(Clause 45 format), with a default value 107’h, the standard  
XGMII IDLE code (see Table 3-26). If neither bit is set, the  
incoming IDLE codes will all be decoded to the appropriate  
XGMII control code values. The first full column of IDLEs  
after any column containing a non-IDLE will be stored in the  
elasticity FIFO, and all subsequent full IDLE columns will  
repeat this pattern, until another column containing a non-  
IDLE is received.  
If the BBT3420 XAUI_EN bit is set or the PCS_SYNC_EN  
and DSKW_SM_EN bits are set, and the device has  
detected a ‘Local Fault’ (see Table 3-10, Table 3-14, Table 3-  
28 and/or Table 3-32 & Table 3-33), the XGMII output will  
consist of the Sequence control character in channel A  
(XAUI lane 0) and data characters of 0x00 in channels B & C  
(lanes 1 and 2) plus a data character of 0x01 in channel D  
(lane 3), the IEEE-defined ||LF|| Sequence Ordered_Set.  
7
BBT3420  
TABLE 3-3. VALID 10b/8b DECODER PATTERNS  
RECEIVING SERDES  
SERIAL CODE,  
CHARACTER  
TRANS_EN  
BIT (Note 2)  
NOTES  
E-BIT  
K-BIT  
RD DATA  
DESCRIPTION  
Valid Data  
X
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0-FF’h  
Same Data Value as Transmitted  
Default 107’h  
/K/ (Sync) K28.5  
= XGMII IDLE (Note 3)  
0
BC  
Comma (Note 1)  
Default 107’h  
/A/ (Align) K28.3  
/R/ (Skip) K28.0  
1
= XGMII IDLE (Note 3)  
0
7C  
Align (Note 1)  
1
= XGMII IDLE (Note 3)  
Default 107’h  
0
1C  
FB  
FD  
3C  
5C  
9C  
DC  
FC  
F7  
Alternate Idle (Note 1)  
Start  
/S/ K27.7  
/T/ K29.7  
K28.1  
X
X
X
X
X
X
X
X
X
X
Terminate  
Extra comma  
/F/ K28.2  
/Q/ K28.4  
K28.6  
Signal Ordered_Set marker  
Sequence Ordered_Set marker  
K28.7  
Two will have caused byte realignment  
K23.7  
/E/ K30.7  
Any other  
NOTES:  
FE  
Error  
= XGMII ERROR reg.(Note 3)  
Error Code, Default 1FF’h, see Table 3-19  
1. First incoming IDLE only, subsequent IDLEs in that block repeat first received code.  
2. If the XAUI_EN bit is set, the BBT3420 acts as though the TRANS_EN bit is set.  
3. The XGMII IDLE character is set by the XGMII IDLE register, address 1B’h/C003’h (see Table 3-26), default value 07’h, combined with the K bit.  
The XGMII ERROR code is similarly set by the XGMII ERROR register, address 16’h/C002’h (see Table 3-19)  
/S/ code), which defines the beginning of the packet, or the  
presence of the IEEE 802.3ae-defined /A/ character, for  
channel alignment (controlled by MDIO Register 19’h in  
Clause 22 format and/or C000’h in Clause 45 format, see  
Table 3-24 and/or Table 3-32). When this alignment data is  
detected in all four channels, the trunking channel-alignment  
operation is performed, and will be held until another such  
transition or /A/ character is detected again on any channel.  
To maintain channel alignment, such transitions or /A/  
characters should occur on all four channels simultaneously  
(i.e. within the span of the FIFO). During channel  
3.8 Receive FIFO  
The Receive FIFO performs two functions:  
1. Channel Alignment  
2. Clock Compensation  
3.8.1 CHANNEL ALIGNMENT (DESKEW)  
Trunking, also known as deskewing, means the alignment of  
packet data across multiple channels. 8 byte of RXFIFO is  
dedicated for channel alignment.  
During high-speed transmission, different active and passive  
elements in the links may impart varying delays in the four  
channels. In trunking mode, multiple channels share the  
same clock (local reference or recovered clock A), which is  
used for outputting data on the parallel bus.  
realignment, up to four code groups may be deleted,  
repeated or garbled on any channel.  
The deskew state machine is enabled by setting the  
DSKW_SM_EN bit (Clause 22 Address 1D’h see Table 3-28;  
Clause 45 Address C000’h see Table 3-32) to 1. The  
deskew algorithm is implemented according to IEEE spec.  
802.3ae. Note that when DSKW_SM_EN is set to 1, the  
CAL_EN bit (Clause 22 Address 19’h see Table 3-24;  
Clause 45 Address C000’h see Table 3-32) is ignored. When  
As defined by IEEE 802.3ae-2002, packets must start on  
channel A (equivalent to Lane 0 in the IEEE 802.3ae-2002  
specification). Deskewing is accomplished by monitoring the  
contents of the FIFOs to detect the boundary between IDLE  
sequences and any non-IDLE data (including data and the  
8
BBT3420  
the DSKW_SM_EN bit is set to 0, channel deskew can still  
be enabled by setting CAL_EN, but the deskew action will be  
carried out without hysteresis.  
error or code error. In the event of a disparity error, the  
decoded value is passed to the parallel output [8..0], and bit  
9 is asserted to indicate the error. If it is a coding error, the  
decoded value presented is a programmable error byte  
(default=K30.7). Therefore the value for bit 0-8 is  
The user has the option to disable trunking, or enable  
trunking across 4 channels, under control of the PSYNC pin  
(Table 4-6) and the RCLKMODE bits in the MDIO Registers  
at address 18’h in Clause 22 format and/or C000’h in Clause  
45 format (see Table 3-21 and/or Table 3-32). In trunking  
mode, the channels may have phase differences, but they  
are expected to be frequency synchronous. In non-trunking  
mode, each received serial stream need only be within  
±100ppm of 3.125Gbps (or 1.56125) Gbps. Note that  
trunking mode is only possible if 8b/10b Coding is activated,  
and all channels have the same half-rate setting (Table 3-  
30).  
1,1111,1110’b. Bit 9 is asserted to indicate the error.  
This transceiver does not support the even/odd character  
mode specific to 1000Base-X operations. Byte alignment  
with comma is achieved with a 10-bit period. As a result, a  
comma received at any odd or even byte location, but at the  
proper byte boundary, will not cause any byte realignment.  
3.10.2 10-BIT MODE  
If the 8b/10b Codec is inactive, disparity error and coding  
violation errors do not apply. System designers must ensure  
that the data stream is DC-balanced and contains sufficient  
transition density for proper operation, including  
3.8.2 CLOCK COMPENSATION  
In addition to deskew, the Receive FIFO also compensates  
for clock differences. Since the received serial stream can,  
under worst-case conditions, be off by up to ±200ppm from  
the local clock domain (both can be up to ±100ppm from  
nominal), the received data must be adjusted to the local  
frequency. The received data can be aligned in one of three  
ways, under control of the PSYNC pin (Table 4-6) and the  
RCLKMODE bits in MDIO Register 18’h in Clause 22 format  
and/or C000’h in Clause 45 format (see Table 3-21 and/or  
Table 3-32):  
synchronization. The required density depends on the  
frequency difference between the received data and the  
local reference clock, and the incoming signal jitter tolerance  
requirement. For a frequency difference of ±100ppm, and a  
transition-free data pattern of 500 successive 1’s or 0’s, the  
total build-up of CDR timing error is 0.1 UI. If this pattern is  
followed by a pattern of normal density, the reduction of jitter  
tolerance will usually be acceptable, though if such long no-  
transition patterns are common, the jitter buildup could be  
cumulative. In a fully synchronous system, where there are  
no consistent frequency differences, these effects are of  
course reduced.  
1. Local Reference Clock (trunking mode)  
2. Recovered Clock for each channel (non-trunking mode)  
3. Recovered Clock for Channel A (trunking mode)  
3.10.3 OUTPUT SELECT – PARALLEL LOOPBACK  
In normal mode, the serial input data RX[A..D]P/N data will  
be placed on the parallel receive outputs RD[A..D][9..0].  
When parallel loopback is activated, the internal parallel  
output is routed to the parallel input (including clock) for  
every channel. The RD[A..D][9..0] pins may be disabled if  
desired, whether in parallel output mode or not, by using the  
IPON bit of the MDIO Register at address 011’h (Clause 22  
see Table 3-16) and/or address C001’h (Clause 45, see  
Table 3-33).  
Another 8 bytes of RXFIFO are dedicated for clock  
compensation. The FIFOs achieve clock tolerance by  
identifying any of the IDLE patterns in the XAUI input (/K/, /A/  
or /R/ as defined by the IEEE 802.3ae-2002 standard) in the  
received data and then adding or dropping IDLEs as  
needed. The Receive FIFO does not store the actual IDLE  
sequences received but generates the number of IDLEs  
needed to compensate for clock tolerance differences. See  
also Table 3-3 on page 8.  
3.9 Error Recovery  
Errors in the high-speed links can be separated into two  
types, Loss of Signal and Coding Error violations. These are  
handled differently by the Error Recovery system in the  
BBT3420.  
3.10 Disparity Error & Coding Violation  
3.10.1 XGMII 8 BIT MODE  
If 8b/10b encoding/decoding is turned on, the BBT3420  
expects to receive a properly encoded serial bit stream. If  
the received data contains an error, the transceiver will  
report it as described below:  
The received bits 0-7 represent the 8b/10b decoded value,  
bit 8 represents the K value and bit 9 indicates a disparity  
9
BBT3420  
TABLE 3-4. MDIO MANAGEMENT FRAME FORMATS  
Clause 22 Format (from Table 22-10 in IEEE Std 802.3-2002)  
Opern  
Read  
Write  
PRE  
1....1  
1....1  
ST  
01  
01  
OP  
10  
PHYAD  
PPPPP  
PPPPP  
REGAD  
RRRRR  
RRRRR  
TA  
Z0  
10  
DATA  
IDLE  
DDDDDDDDDDDDDDDD  
DDDDDDDDDDDDDDDD  
Z
Z
01  
Clause 45 Format (from Table 45-64 in IEEE 802.3.ae-2002)  
Opern  
PRE  
1....1  
1....1  
1....1  
1....1  
ST  
00  
00  
00  
00  
OP  
00  
01  
11  
PRTAD  
PPPPP  
PPPPP  
PPPPP  
PPPPP  
DEVAD  
DDDDD  
DDDDD  
DDDDD  
DDDDD  
TA  
10  
10  
Z0  
Z0  
ADDRESS/DATA  
IDLE  
Addrs  
Write  
AAAAAAAAAAAAAAAA  
DDDDDDDDDDDDDDDD  
DDDDDDDDDDDDDDDD  
DDDDDDDDDDDDDDDD  
Z
Z
Z
Z
Read  
Read Inc  
10  
• ADDRESS (Clause 45); this 16-bit address specifies the  
register address for subsequent Clause 45 read or write  
operations. A Read Increment operation will post-  
increment the value.  
3.11 Serial Management Interface  
The BBT3420 implements both the Management Interface  
defined in IEEE 802.3 Clause 22, and that defined in Clause  
45. This two-pin interface allows serial read/write of the  
internal control registers and consists of the MDC clock and  
MDIO data terminals. The PADR[4..0] pins are used to select  
the address to which a given BBT3420 device responds.  
The remainder of the MDIO frame and access details  
depend on the respective formats. The BBT3420  
automatically detects which format is being used on a frame-  
by-frame basis, based on the second START bit. The two  
formats are shown in Table 3-4, together with the references  
to the respective IEEE 802.3 specifications. The fields are as  
follows:  
• IDLE; this condition flags the end of the frame. Since the  
IEEE specification calls for a pullup on the MDIO line, this  
effectively provides the MMD with a ‘1’ character, which  
can be the beginning of the next PREamble.  
TABLE 3-5. DEVAD DEVICE ADDRESS SETUP TABLE  
DEVAD  
VALUE  
IEEE  
MFD  
MFC  
DEFAULT  
DEFINITION  
1
1
DEVAD = 5  
(000101’b)  
11’b  
DTE XS (XGXS  
Device)  
1
0
0
0
1
0
DEVAD = 4  
(00100’b)  
PHY XS (XGXS  
Device)  
• PRE, the Preamble field: at least 32 consecutive ‘1’ bits.  
The BBT3420 will accept any number 32.  
DEVAD = 31  
(11111’b)  
Vendor Specific  
• ST, the Start of Frame; for Clause 22, <01>; for Clause 45,  
<00>.  
DEVAD = 30  
(11110’b)  
Vendor Specific  
• OP, the Operation code; for Clause 22, Read and Write  
operations are defined, all other values are invalid; for  
Clause 45, additional operations to send the 16-bit  
(indirect) register address, and to read data and (then)  
increment the stored address are added.  
3.12 Clause 22 PHY Addressing  
The PADR[4..0] hardware address pins control the PHYAD  
value, allowing use of up to 31 BBT3420 (or other  
compatible) devices on any MDC/MDIO line pair. Each  
device may contain up to 32 registers, some of which are  
defined by the IEEE standard, the others being Vendor-  
defined. The Clause 22-accessible registers are listed in  
Table 3-6.  
• PHYAD/PRTAD; the PHYsical (Clause 22) or PoRT  
(Clause 45) hardware ADdress; this 5-bit address must  
match the PADR pins on the BBT3420.  
• REGAD, REGister ADdress (Clause 22); this 5-bit address  
specifies the register address. Replaced by the 16-bit  
address value in Clause 45 format.  
3.13 Clause 45 PHY Addressing  
• DEVAD, DEVice ADdress (Clause 45); this 5-bit address  
specifies which MMD at any given port is being  
addressed. See Table 3-5 and section 3.13 for the  
possible values the BBT3420 will respond to.  
The PADR[4..0] hardware address pins control the PRTAD  
(Port Address) value, each port normally consisting of a  
series of MDIO Managed Devices (MMDs). Each of the up to  
31 Ports may include up to 31 different devices, of which the  
current specification defines 6 types, and allows vendor  
specification of two others. The native-mode BBT3420  
corresponds to two of the defined types; it can be either a  
PHY XS (DEVAD = 4) or a DTE XS (DEVAD = 5), but may  
also be used as part of another defined type, or as a  
• TA, the TurnAround; allows time to avoid contention for a  
read operation on the MDIO line.  
DATA; the 16 bit data values to be written to or being read  
from the BBT3420.  
10  
BBT3420  
RETIMER function. The device may be set to respond to any  
registers for PHY XS and DTE XS devices (they may be  
accessed identically through any of the implemented DEVAD  
one of four DEVAD values, (4, 5, 30 or 31) by controlling the  
level on the MFC and MFD pins at the end of reset. These  
pins are normally outputs, but become inputs when RSTN is  
active, and so may be pulled to the desired value by  
moderate value resistors (~5k), which will not affect the  
normal operation of the pins when outputs. The value on  
these pins will be latched at the rising edge of RSTN. The  
coding is shown in Table 3-5. A weak pullup is built into  
these pins, so that if unwired, they will default to DEVAD = 5.  
See Table 6-13 and Figure 6-9 for the timing of these  
signals. The Clause 45-accessible registers are listed in  
Table 3-7. These register addresses are independent of the  
DEVAD value, including the ‘Vendor Defined’ DEVAD values  
30 & 31; thus registers 30.8 & 31.8 include the RX_FAULT  
and TX_FAULT bits.  
15  
address values), and 11 of the 32k (2 ) allowed Vendor  
Specific registers. The latter have been placed in the block  
beginning at C000’h so as to avoid the areas currently  
defined as for use by the XENPAK module and similar MSA  
devices, to facilitate use of the BBT3420 in systems using  
such modules and/or devices.  
In order to align the registers and bits as closely as possible  
to the new IEEE Clause 45 standard, while maintaining  
compatibility with previous versions of the part before the  
Clause 45 interface was defined, which used only the  
Clause 22 interface, the control and status bits are differently  
distributed among the registers in the two formats. The  
Clause 22 registers are listed in Table 3-6, and the Clause  
45 registers in Table 3-7.  
16  
Each individual device may have up to 2 (65,536)  
registers. The BBT3420 implements 11 of the IEEE-defined  
TABLE 3-6. MDIO REGISTERS IN CLAUSE 22 FORMAT  
MII REGISTERS  
DESCRIPTION  
ADDRESS  
00’h  
NAME  
DEFAULT  
2040’h  
800F’h (Note 2) RO  
R/W  
DETAILS  
Table 3-8  
Control  
Status  
Reset, Enable serial loop back mode.  
Device Present & LOS  
R/W  
01’h  
Table 3-9  
02:3’h  
04’h  
ID Code  
Manufacturer and Device OUI & IDs  
10Gbps Ability  
01839C5V’h  
0001’h  
RO  
RO  
See (Note 1)  
Table 3-11  
Table 3-12  
Table 3-13  
Table 3-14  
Table 3-15  
Table 3-16  
Table 3-17  
Table 3-18  
Table 3-19  
Table 3-20  
Table 3-21  
Table 3-24  
Table 3-25  
Table 3-26  
Table 3-27  
Table 3-28  
Table 3-29  
Table 3-30  
Speed Ability  
IEEE Devices  
Vendor Devices  
Fault Status  
05’h  
Devices in Package, Clause 22 capable  
Vendor Specific Devices in Package  
Transmit & Receive Fault  
0021’h (Note 3) RO  
0000’h (Note 3) RO  
06’h  
08’h  
8000’h (Note 2) RO/LH  
10’h  
Misc. Control 1  
Misc. Control 2  
Channel, Comma, TX Idle, MF controls  
Code, Comma, Codec, TCx controls  
00C0’h  
0140’h  
0000’h  
0000’h  
0FF’h  
R/W  
R/W  
R/W  
RO  
11’h  
12’h  
Special Control Register DC Offset & RC[A:D] phase shift control  
13’h  
Resvd2  
Spare Status  
16’h  
ERROR  
Sets XGMII ERROR Code  
Controls Serial & Parallel Loopback  
Receive Clock Mode  
R/W  
R/W  
R/W  
R/W  
17’h  
Loop Back  
Receive Clock  
Symbol  
0000’h  
0001’h  
000F’h  
18’h  
19’h  
IDLE, Alignment and Elasticity Control  
Error Flags  
1A’h  
Errors  
0000’h (Note 2) RO  
1B’h  
1C’h  
1D’h  
1E’h  
1F’h  
XGMII IDLE  
Boost/Pre-emp  
Misc. Control 3  
Internal Test  
Half Rate  
XGMII-side IDLE Code  
Boost and Pre-emphasis Control  
0007’h  
0000’h  
0000’h  
AAAA’h  
0000’h  
R/W  
R/W  
R/W  
R/W  
R/W  
V
, LOS, RC timing, /A/K/R/  
DDQ  
Half-rate clock mode enable  
NOTES:  
1. ‘V’ is a version number. See under “3.15 JTAG” on page 22 for a note about the version number.  
2. Read value depends on status signal values. Value shown indicates ‘normal’ operation.  
3. Read value depends on DEVAD setting, see Table 3-5 and Figure 6-9 for details.  
11  
BBT3420  
TABLE 3-7. MDIO REGISTERS IN CLAUSE 45 FORMAT  
MII REGISTERS  
ADDRESS  
0000’h  
0001’h  
0002:3’h  
0004’h  
0005’h  
0006’h  
0008’h  
0018’h  
C000’h  
C001’h  
C002’h  
C003’h  
C004’h  
C005’h  
C006’h  
C007’h  
C008’h  
C009’h  
C00A’h  
C00B’h  
C00F’h  
NOTES:  
NAME  
XGXS Control 1  
XGXS Status 1  
ID Code  
DESCRIPTION  
Reset, Enable serial loop back mode.  
Fault, Link Status  
DEFAULT  
R/W  
R/W  
DETAILS  
Table 3-8  
2040’h  
0004’h (Note 2)  
01839C5V’h  
0001’h  
RO LL  
RO  
Table 3-10  
See (Note 1)  
Table 3-11  
Table 3-12  
Table 3-13  
Table 3-14  
Table 3-23  
Table 3-32  
Table 3-33  
Table 3-19  
Table 3-26  
Table 3-20  
Table 3-27  
Table 3-25  
Table 3-29  
Table 3-30  
Table 3-31  
Table 3-17  
Table 3-18  
Table 3-34  
Manufacturer and Device OUI & IDs  
10Gbps Ability  
Speed Ability  
IEEE Devices  
Vendor Devices  
XGXS Status 2  
10G Lane Status  
Misc. Control 1  
Misc. Control 2  
ERROR  
RO  
Devices in Package, Clause 22 capable  
Vendor Specific Devices in Package  
Device Present, Local Fault  
0021’h(3)  
0000’h(3)  
8000’h (Note 2)  
100F’h (Note 2)  
072F’h  
RO  
RO  
RO  
Receive Channels Aligned, Synched  
RO  
V
, RC, Code, Comma, Stt Mach  
DDQ  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RO  
BIST, LOS, XAUI, TX, MF controls  
Sets XGMII ERROR Code  
XGMII-side IDLE Code  
0010’h  
0FF’h  
XGMII IDLE  
Loop Back  
0007’h  
Controls Serial & Parallel Loopback  
Boost and Pre-emphasis Control  
Error Flags  
0000’h  
Boost/Pre-emp  
Errors  
0000’h  
0000’h (Note 2)  
AAAA’h  
Special Function  
Half Rate  
MUST be left at Default Value  
Half-rate clock mode enable  
LOS Channel Status  
R/W  
R/W  
RO LH  
R/W  
RO  
0000’h  
LOS Status  
00F0’h (Note 2)  
0000’h  
Special Control Register DC Offset & RC[A:D] phase shift control  
Reserved  
Soft Reset  
Spare Status  
0000’h  
Reset (non-MDIO)  
0000’h  
R/W SC  
4. ‘V’ is a version number. See JTAG on page 25 for a note about the version number.  
5. Read value depends on status signal values. Value shown indicates ‘normal’ operation.  
6. Read value depends on DEVAD setting, see Table 3-5 and Figure 6-9 for details.  
12  
BBT3420  
constructed. The underlying register bits are the same, and  
3.14 MDIO Registers  
may be read or written indiscriminately in either format  
(except for a few bits that are not accessible via the Clause  
22 format).  
In the following tables, the Clause 45 addresses are given  
after the Clause 22 address in the table header, where the  
registers coincide in structure, but the addresses differ.  
Separate tables are given for registers and bits differently  
TABLE 3-8. IEEE XGXS CONTROL 1 REGISTER  
MII REGISTER 0, ADDRESSES = 00’h & 0000’h  
SETTING DEFAULT R/W  
1 = reset 0’b R/W SC  
BIT  
NAME  
DESCRIPTION  
15  
Reset  
Self-clearing reset. Writing 1 to this bit will reset the  
whole chip, including the MDIO registers.  
0 = reset done  
1 = enable  
14  
13  
12  
11  
LOOP_EN  
SPEEDSEL0  
Reserved  
0’b  
1’b  
R/W  
RO  
Enable serial loopback mode.  
Writes ignored  
1 = 10Gbps  
LOPOWER  
Reserved  
1 = Low Power  
0’b  
R/W  
No Low Power Mode, ignored  
10:7  
6
SPEEDSEL1  
SPEEDSEL  
Reserved  
1 = 10Gbps  
0 = 10Gbps  
1’b  
0’h  
RO  
RO  
Writes ignored  
Writes ignored  
5:2  
1:0  
TABLE 3-9. IEEE XGXS STATUS 1 REGISTER (CLAUSE 22)  
MII REGISTER 1, ADDRESS = 01’h  
BIT  
NAME  
SETTING  
DEFAULT  
10’b  
R/W  
DESCRIPTION  
15:14  
Device present 10 = Device  
present  
RO  
Indicates that a device is present at this device address  
13  
12  
LOS_D  
LOS_C  
LOS_B  
LOS_A  
Reserved  
Internal  
1 = Signal less 0’b  
RO/LH  
Loss Of Signal for RX Inputs of each of 4 channels; signal  
less than LOS_CONTROL value (see Table 3-28 and/or  
Table 3-33) (Note 1)  
than threshold  
0 = Signal  
0’b  
0’b  
0’b  
00’h  
F’h  
greater than  
threshold  
11  
10  
9:4  
3:0  
NOTE:  
RO  
RO  
Internal Function (ignore)  
1. Please refer to section “3.7.2 Loss of Signal (LOS)” on page 6 for a more detailed description.  
TABLE 3-10. IEEE XGXS STATUS 1 REGISTER (CLAUSE 45)  
MII REGISTER 1, ADDRESS = 0001’h  
BIT  
NAME  
SETTING  
DEFAULT  
00’h  
R/W  
DESCRIPTION  
15:8  
7
Reserved  
RO  
RO  
LOCAL_FLT 1 = Local Fault  
Reserved  
0’b  
Derived from Register 0008’h  
6:3  
2
RX_LINK  
LoPwrAble  
Reserved  
1 = XGXS Link up  
Low Power Ability  
1’b  
0’b  
RO LL  
RO  
XAUI Receive Link Status  
1
Does not support Low Power  
0
13  
BBT3420  
TABLE 3-11. IEEE SPEED ABILITY REGISTER  
MII REGISTER 4, ADDRESSES = 04’h & 0004’h  
BIT  
NAME  
Reserved  
10G_Able  
SETTING  
DEFAULT  
000’h  
1’b  
R/W  
DESCRIPTION  
15:1  
0
RO  
RO  
1 = 10Gbps Able  
10GE Capable  
TABLE 3-12. IEEE DEVICES IN PACKAGE REGISTER  
MII REGISTER 5, ADDRESSES = 05’h & 0005’h  
BIT  
NAME  
SETTING  
DEFAULT  
000’h  
R/W  
DESCRIPTION  
15:7  
6
Reserved  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
TC  
TC present  
0’b  
Device ignores DEVAD 6 (TC not present)  
Device responds to DEVAD 5  
Device responds to DEVAD 4  
Device ignores DEVAD 3  
5
DTE XS  
PHY XS  
PCS  
1 = DTE XGXS  
1 = PHY XGXS  
1 = PCS  
P (Note 1)  
4
P (Note 1)  
3
0’b  
0’b  
0’b  
1’b  
2
WIS  
1 = WIS  
Device ignores DEVAD 2  
1
PMD/PMA  
1 = PMD/PMA  
Device ignores DEVAD 1  
0
Cls 22 Regs 1 = MDIO Clause 22  
Device responds to Clause 22  
NOTE:  
1. Value depends on DEVAD setting; see Table 3-5. 1 = responds, 0 = does not respond.  
TABLE 3-13. VENDOR SPECIFIC DEVICES IN PACKAGE REGISTER  
MII REGISTER 6, ADDRESSES = 06’h & 0006’h  
BIT  
NAME  
Vend Spec  
Reserved  
Ext. Cls 22  
Reserved  
SETTING  
DEFAULT  
S (Note 1)  
0’b  
R/W  
DESCRIPTION  
15  
14  
13  
1 = V S D present  
RO  
RO  
RO  
RO  
Vendor Specific Device Present in Package  
0’b  
No extended Clause 22 registers in Package  
12:0  
000’h  
NOTE:  
1. Value depends on DEVAD setting; see Table 3-5. 1 = responds, 0 = does not respond.  
TABLE 3-14. IEEE XGXS STATUS2 REGISTER  
MII REGISTER 8, ADDRESSES = 08’h & 0008’h  
BIT  
15:14  
NAME  
SETTING  
DEFAULT  
R/W  
DESCRIPTION  
Device present 10 = Device present 10’b  
Reserved  
RO  
Indicates a device is present at this device address  
13:12  
11  
TX_FAULT  
RX_FAULT  
Reserved  
1 = Tx Local Fault  
0’b  
RO LH  
(Note 1)  
Transmit Fault Detector. Always 0  
10  
1 = Rx Local Fault  
0’b  
RO LH  
(Note 1)  
Derived from Reg. 0024’h, Byte Sync and Alignment bits (not  
accessible via Clause 22), and 01’h/C009’h Loss Of Signal bits  
9:0  
NOTE:  
2. These bits are latched high on any fault condition detected. They are reset low upon being read.  
14  
BBT3420  
TABLE 3-15. MISCELLANEOUS CONTROL REGISTER 1 (CLAUSE 22)  
MII REGISTER 16, ADDRESS = 10’h  
BIT  
15:8  
NAME  
Reserved  
CDET[1:0]  
SETTING  
DEFAULT  
R/W  
DESCRIPTION  
7:6  
Bit 7 controls positive comma detection, 11’b  
Bit 6 controls negative comma detection  
0’b=disable  
R/W  
Comma Detect Select. These bits enable detection of  
positive, negative, or both positive and negative  
disparities of comma, or disable detection of either.  
1’b=enable  
5:4  
3
Reserved  
TRANS_EN 1=enable  
0=disable  
0’b  
R/W  
R/W  
Enables transceiver to translate an "IDLE" pattern in the  
XGMII data (matching the value of register 1B’h) to and  
from the XAUI IDLE /K/ comma character or /A/, /K/ & /R/  
characters. Overridden by XAUI_EN; see Table 3-28  
2:0  
MF_CTRL  
0 = BIST_ERR  
00’b  
Control the functions of multi-function pins MF[A-D].  
RC[A:D] is recovered clock for each channel [A:D].  
1 = LOS  
2 = Reserved  
3 = RC[A:D]  
4 = TXFIFO_ERR  
5 = AFIFO_ERR  
6 = EFIFO_ERR  
TABLE 3-16. MISCELLANEOUS CONTROL REGISTER 2 (CLAUSE 22)  
MII REGISTER 17, ADDRESS = 11’h  
BIT  
NAME  
SETTING  
DEFAULT  
R/W  
R/W  
DESCRIPTION  
23  
15  
SHRT_BIST 1 = Short BIST Loop pattern 0’b  
0 = Long BIST Loop pattern  
Short is 13458 Byte pattern, Long is 2 -1 Byte Pattern (plus  
9 /K/ "Comma" bytes)  
14:13  
12  
Reserved  
BIST_EN  
1 = enable BIST Pattern  
0 = disable  
0’b  
1’b  
R/W  
R/W  
Built In Self Test (BIST) may also be enabled by the BIST_EN  
pin or via the JTAG system.  
11:9  
8
Reserved  
IPON  
1=enable  
0=disable  
Internal Parallel Output Enable  
7
6
Reserved  
CODECENA 1=enable if CODE pin hi  
0=disable  
1’b  
0’b  
R/W  
R/W  
Internal 8b/10b Codec enable/disable  
5
SC_TBC  
1=source sync  
Timing of incoming Transmit Byte Clock (TBC) to transmit  
data  
0=source center  
4:0  
Reserved  
15  
BBT3420  
TABLE 3-17. SPECIAL CONTROL REGISTER  
MII REGISTER 18 & 49162, ADDRESSES = 12’h & C00A’h  
BIT  
15  
NAME  
SETTING  
DEFAULT  
R/W  
R/W  
DESCRIPTION  
EQ_DC_D  
1=DC offset correction disable. 0’b  
0=DC offset correction enable.  
Channel D receive differential input DC offset correction  
disable/enable.  
14  
13  
12  
EQ_DC_C  
EQ_DC_B  
EQ_DC_A  
1=DC offset correction disable. 0’b  
0=DC offset correction enable.  
R/W  
R/W  
R/W  
Channel C receive differential input DC offset correction  
disable/enable.  
1=DC offset correction disable. 0’b  
0=DC offset correction enable.  
Channel B receive differential input DC offset correction  
disable/enable.  
1=DC offset correction disable. 0’b  
0=DC offset correction enable.  
Channel A receive differential input DC offset correction  
disable/enable.  
11:8  
7:4  
3
Reserved  
Reserved  
0’b  
1=invert phase, 0=default phase 0’b  
1=invert phase, 0=default phase 0’b  
1=invert phase, 0=default phase 0’b  
1=invert phase, 0=default phase 0’b  
RCD_Invert  
RCC_Invert  
RCB_Invert  
RCA_Invert  
R/W  
R/W  
R/W  
R/W  
Invert RCD clock phase (RCD shift by 180 degrees)  
Invert RCC clock phase (RCC shift by 180 degrees)  
Invert RCB clock phase (RCB shift by 180 degrees)  
Invert RCA clock phase (RCA shift by 180 degrees)  
2
1
0
TABLE 3-18. SPARE STATUS REGISTER  
MII REGISTER 19 & 49163, ADDRESSES = 13’h & C00B’h  
BIT  
15:0  
NAME  
SETTING  
DEFAULT  
R/W  
DESCRIPTION  
Reserved  
TABLE 3-19. XGMII ERROR CODE REGISTER  
MII REGISTER 22 & 49154, ADDRESSES = 16’h & C002’h  
DEFAULT R/W DESCRIPTION  
BIT  
NAME  
Reserved  
ERROR  
SETTING  
15:9  
8:0  
N/A  
1FF’h  
R/W  
Error Code. These bits allow the ERROR character to be programmed.  
Overridden by XAUI_EN, see Table 3-28 and/or Table 3-33  
TABLE 3-20. LOOP BACK CONTROL REGISTER  
MII REGISTER 23 & 49156, ADDRESSES = 17’h & C004’h  
BIT  
NAME  
Reserved  
SLP_D  
SLP_C  
SLP_B  
SETTING  
DEFAULT  
R/W  
DESCRIPTION  
15:12  
11  
10  
9
1=enable  
0=disable  
0’h  
R/W  
Internal Serial Loop Back Enable. These bits enable the loopback function  
for serial data for each individual channel. When high, they route the  
internal output of the Serializer to the input of the clock recovery block.  
8
SLP_A  
7:4  
3
Reserved  
PLP_D  
PLP_C  
PLP_B  
1=enable  
0=disable  
0’h  
R/W  
Internal Parallel Loop Back Enable. These bits enable the loopback  
function for parallel data for each individual channel. When high, it routes  
the internal output of the Deserializer to the parallel input of each channel.  
2
1
0
PLP_A  
16  
BBT3420  
TABLE 3-21. RECEIVE CLOCK MODE REGISTER (CLAUSE 22)  
MII REGISTER 24, ADDRESS = 18’h (CLAUSE 22)  
BIT  
15:2  
1:0  
NAME  
SETTING  
DEFAULT R/W  
DESCRIPTION  
Reserved  
RCLKMODE Depends on RETIMER and 01’b  
PSYNC pins (Table 4-6).  
R/W  
Received Clock Mode. These two bits, together with the PSYNC  
and RETIMER pins, select which clock the received data is aligned  
to.  
See settings in Table 3-22.  
TABLE 3-22. RCLKMODE BIT SETTINGS = 18’h.1:0 (CLAUSE 22) or C000’h.6:5 (CLAUSE 45)  
PIN NAME, LOGIC LEVEL  
REGISTER  
CHANNEL  
RCLKMODE BITS, and PIN VALUES, to  
RECEIVE DATA CLOCK ALIGNMENT  
RETIMER  
PSYNC  
BIT SETTING ALIGNMENT  
0
0
X
X
1
1
1
0
1
0
1
0
1
X
XX  
No  
Local Reference Clock  
XX  
Yes  
No  
Local Reference Clock  
11’b  
11’b  
10’b  
10’b  
0X’b  
Local Reference Clock  
Yes  
No  
Local Reference Clock  
Recovered Clock for each individual channel  
Recovered Clock for Channel A  
Recovered Clock for Channel A  
Yes  
Yes  
TABLE 3-23. PCS ALIGNMENT AND SYNC STATUS REGISTER (CLAUSE 45)  
MII REGISTER 24, ADDRESS = 18’h (CLAUSE 45)  
BIT  
NAME  
SETTING  
DEFAULT  
R/W  
DESCRIPTION  
15:13  
Reserved  
12  
Chan_ALIGN 1 = aligned  
0’b (Note 1)  
0’b  
RO  
RO  
Four channels are aligned  
11  
Test_P_Able  
Reserved  
SYNC_D  
SYNC_C  
SYNC_B  
SYNC_A  
0
No IEEE802.3 test patterns (but see BIST discussion)  
10:4  
3
1 = channel  
0’b (Note 1)  
0’b (Note 1)  
0’b (Note 1)  
0’b (Note 1)  
RO  
RO  
RO  
RO  
Reflects the PCS_SYNC byte alignment state machine  
condition; not valid if not enabled (see Table 3-28 and/or  
Table 3-32)  
synchronized  
0 = channel not  
synchronized  
2
1
0
NOTE:  
1. These bits contribute to the Receive Local Fault bit RX_FAULT in the IEEE XGXS Status2 Register (see Table 3-14). Also, these bits will reflect  
the input signal status if DSKW_SM_EN is enabled.  
TABLE 3-24. SYMBOL AND ELASTICITY CONTROL (CLAUSE 22)  
MII REGISTER 25, ADDRESS = 19’h  
BIT  
15:4  
NAME  
Reserved  
SETTING  
DEFAULT  
R/W  
DESCRIPTION  
3
IDLE_D_EN  
1=enabled, 0=disabled 1’b  
1=enabled, 0=disabled 1’b  
R/W  
Enables IDLE vs. nonIDLE detection for Channel Alignment and  
Elasticity operations.  
2
1
ELST_EN  
R/W  
R/W  
Enable the elastic function of the receiver buffer  
A_ALIGN _DIS 1=enabled, 0=disabled 1’b  
Receiver aligns data on incoming "/A/" characters (K28.3). If disabled  
(default), receiver aligns data on IDLE to nonIDLE transitions (if bit 3  
set). Overridden by XAUI_EN, see Table 3-28  
0
CAL_EN  
1=enabled, 0=disabled 1’b  
R/W  
Enable de-skew calculator of receiver buffer. (see Channel Alignment  
discussion)  
17  
BBT3420  
TABLE 3-25. ERROR FLAGS  
MII REGISTER 26 & 49158, ADDRESSES = 1A’h & C006’h  
BIT  
NAME  
CNTM_ERR  
CNTS_ERR  
Reserved  
SETTING  
DEFAULT  
0’b  
R/W  
DESCRIPTION  
15  
14  
1 = error, 0 = no error  
1 = error, 0 = no error  
RO  
RO  
Error flag of receiver buffer (deskew misalignment)  
Error flag of receiver buffer (offset sum error)  
0’b  
13:8  
7
BIST_ERR_D 1 = error  
0’b  
0’b  
0’b  
0’b  
RO  
RO  
RO  
RO  
Error flags for BIST system.  
0 = no error  
6
BIST_ERR_C  
BIST_ERR_B  
BIST_ERR_A  
Reserved  
5
4
3:0  
TABLE 3-26. XGMII-SIDE IDLE CODE  
MII REGISTER 27 & 49155, ADDRESSES = 1B’h & C003’h  
BIT  
NAME  
SETTING  
DEFAULT  
R/W  
DESCRIPTION  
15:8  
7:0  
Reserved  
XG_IDLE  
07’h  
R/W  
IDLE pattern on XGMII data buses for translation to/from  
XAUI IDLEs  
TABLE 3-27. EQUALIZATION AND PRE-EMPHASIS CONTROL  
MII REGISTER 28 & 49157, ADDRESSES = 1C’h & C005’h  
BIT  
NAME  
SETTING  
DEFAULT  
0’h  
R/W  
DESCRIPTION  
15:14  
PRE_EMP  
0’h = no pre-emp  
R/W  
Configure the level of pre-emphasis (nominal levels  
indicated)  
1’h = 0.18 pre-emp  
2’h = 0.38 pre-emp  
3’h = 0.75 pre-emp  
13:4  
3:0  
Reserved  
EQ_COEFF 0’h = no hf boost in equalizer.  
F’h = boost is maximum  
0’h  
R/W  
Configuration of the equalizer  
TABLE 3-28. MISCELLANEOUS CONTROL REGISTER 3 (CLAUSE 22)  
MII REgister 29, ADDRESS = 1D’h  
BIT  
NAME  
Reserved  
SETTING  
DEFAULT  
R/W  
DESCRIPTION  
15  
14  
XAUI_EN  
1 = enable  
0 = disable  
0’b  
R/W  
Enables all XAUI features per 802.3ae-2002. It is equivalent to  
setting the following configuration bits (but does not change  
the actual value of the corresponding MDIO registers’ bits):  
TRANS_EN (reg 10’h bit3)  
AKR_EN (reg1D’h bit2)  
A_ALIGN _DIS: 0’b (reg19’h bit1)  
PCS_SYNC_EN (reg1D’h bit10)  
DSKW_SM_EN (reg1D’h bit13)  
ERROR Code = 1FE’h (reg 16’h)  
13  
DSKW_SM_EN  
0=disable  
1=enable  
0’b  
R/W  
R/W  
Enable De-skew state machine control (Note 1). Forced  
enabled by XAUI_EN. May not operate correctly unless the  
PCS_SYNC_EN bit is also set.  
12:11  
10  
Reserved  
00’b  
0’b  
Always write to 00’b  
PCS_SYNC_EN  
0=disable  
1=enable  
Enable 8b/10b PCS coding synchronized state machine  
(Note 1) to control the byte alignment (IEEE ëcode-group  
alignment’) of the high speed deserializer  
18  
BBT3420  
TABLE 3-28. MISCELLANEOUS CONTROL REGISTER 3 (CLAUSE 22) (Continued)  
MII REgister 29, ADDRESS = 1D’h  
BIT  
NAME  
TX_SDR  
SETTING  
1 = SDR  
0 = DDR  
DEFAULT  
R/W  
R/W  
DESCRIPTION  
9
8
7
0’b  
Single data rate on XGMII interface of transmitter.  
V
_ASNS_EN 0=enable  
1=disable  
0’b  
R/W  
R/W  
R/W  
Automatically detect V  
power supply level and adjust  
DDQ  
DDQ  
parallel output buffer driving strength.  
HSTL_DRIVE  
0=enable  
1=disable  
0’b  
Increase parallel output buffer driving strength (if autosense  
disabled).  
6:4  
LOS_CONTROL  
0’h = 160mV  
1’h = 240mV  
2’h = 200mV  
3’h = 120mV  
000’b  
Set the threshold voltage for the Loss Of Signal (LOS)  
detection circuit. Nominal levels are listed for each control  
value. Note 2  
P-P  
P-P  
P-P  
P-P  
4’h = 80mV  
P-P  
else = 160mV  
P-P  
3
2
SC_RBC  
AKR_EN  
1=source sync  
0’b  
0’b  
R/W  
R/W  
Timing of outgoing Receive Byte Clock (RBC) to Receive data  
0=source center  
1 = enable random  
A/K/R  
0 = /K/ only  
Enable pseudo-random A/K/R (Note 1) in Inter Packet Gap  
(IPG) on transmitter side (vs. /K/ only)  
1
SOFT_RESET  
Reserved  
Write 1 to initiate.  
0’b  
R/W SC Reset the entire chip except MII register settings  
0
NOTES:  
1. These state machines are implemented according to 802.3ae-2002 clause 48.  
2. Please refer to section “3.7.2 Loss of Signal (LOS)” on page 6 for a more detailed description.  
TABLE 3-29. SPECIAL TEST FUNCTION CONTROL REGISTER  
MII REGISTER 30 & 49159, ADDRESSES = 1E’h & C007’h  
BIT  
NAME  
SETTING  
DEFAULT  
R/W  
R/W  
DESCRIPTION  
15:0  
reserved  
AAAA’h  
Internal Function. DO NOT ALTER THIS REGISTER in BBT3420  
TABLE 3-30. HALF RATE CLOCK CONTROL REGISTER  
MII REGISTER 31 & 49160, ADDRESSES = 1F’h & C008’h  
BIT  
NAME  
SETTING  
DEFAULT  
0’h  
R/W  
DESCRIPTION  
15:4  
reserved  
R/W  
R/W  
R/W  
R/W  
R/W  
3
2
1
0
HALF_RATED  
HALF_RATEC  
HALF_RATEB  
HALF_RATEA  
1’b = half rate clock  
1’b = half rate clock  
1’b = half rate clock  
1’b = half rate clock  
0’b  
0’b  
0’b  
0’b  
Channel D is running at half-rate clock speed  
Channel C is running at half-rate clock speed  
Channel B is running at half-rate clock speed  
Channel A is running at half-rate clock speed  
19  
BBT3420  
TABLE 3-31. LOS STATUS REGISTER (CLAUSE 45)  
MII REGISTER 49161, ADDRESS = C009’h  
BIT  
15:8  
NAME  
Reserved  
Internal  
LOS_D  
LOS_C  
LOS_B  
SETTING  
DEFAULT  
R/W  
DESCRIPTION  
7:4  
F’h  
RO  
Internal Function (ignore)  
3
1 = Signal less than  
threshold  
0 = Signal greater  
than threshold  
0’b  
0’b  
0’b  
0’b  
RO/LH  
(Note 1)  
Loss Of Signal for RX Inputs of each of 4 channels; signal less  
than LOS_CONTROL value (see Table 3-28 and/or Table 3-33)  
(Note 2)  
2
1
0
LOS_A  
NOTES:  
1. These bits are latched high on any LOS condition detected. They are reset low on being read.  
2. Please refer to section“3.7.2 Loss of Signal (LOS)” on page 6 for a more detailed description.  
TABLE 3-32. MISCELLANEOUS CONTROL REGISTER 1 (CLAUSE 45)  
MII REGISTER 49152, ADDRESS = C000’h  
BIT  
NAME  
SETTING  
DEFAULT  
00’b  
R/W  
DESCRIPTION  
Always write to 00’b  
15:14 Reserved  
13  
12  
11  
V
_ASNS_EN 0=enable  
1=disable  
0’b  
R/W  
Automatically detect V  
power supply level and  
DDQ  
DDQ  
adjust parallel output buffer driving strength.  
HSTL_DRIVE  
SC_RBC  
0=enable  
1=disable  
0’b  
0’b  
1’b  
11’b  
R/W  
R/W  
R/W  
R/W  
Increase parallel output buffer driving strength (if  
autosense disabled).  
1=source sync  
0=source center  
Timing of outgoing Receive Byte Clock (RBC) to  
Receive data  
10  
9:8  
CODECENA  
CDET[1:0]  
1=enable if CODE pin hi  
0=disable  
Internal 8b/10b Codec enable/disable  
Bit 7 controls positive comma  
detection, Bit 6 controls negative  
comma detection  
0’b=disable  
1’b=enable  
Comma Detect Select. These bits enable detection  
of positive, negative, or both positive and negative  
disparities of comma, or disable detection of either.  
7
DSKW_SM_EN  
0=disable  
1=enable  
0’b  
0’b  
R/W  
R/W  
Enable De-skew state machine control (Note 1) .  
Overridden enabled by XAUI_EN; see Table 3-28  
and/or Table 3-33. May not operate correctly unless  
the PCS_SYNC_EN bit is also set.  
6:5  
4
RCLKMODE  
See Table 3-22 for a description of  
these bits, and their interaction with  
the PSYNC and RETIMER pins.  
Received Clock Mode. These two bits, together with  
the PSYNC and RETIMER pins, select which clock  
the received data is aligned to.  
PCS_SYNC_EN  
0=disable  
1=enable  
Enable 8b/10b PCS coding synchronized state  
machine (Note 1) to control the byte alignment (IEEE  
ëcode-group alignment’) of the high speed  
deserializer. Overridden enabled by XAUI_EN; see  
Table 3-28 and/or Table 3-33.  
3
2
1
IDLE_D_EN  
ELST_EN  
1=enabled  
0=disabled  
1’b  
1’b  
1’b  
R/W  
R/W  
R/W  
Enables IDLE vs. NON-IDLE detection for channel  
alignment.  
1=enabled  
0=disabled  
Enable the elastic function of the receiver buffer  
A_ALIGN _DIS  
1=disabled  
0=enabled  
Receiver aligns data on incoming "\/A/" characters  
(K28.3). If disabled (default), receiver aligns data on  
IDLE to non-IDLE transitions (if bit 3 set). Overridden  
enabled by XAUI_EN; see Table 3-28 and/or Table 3-  
33.  
20  
BBT3420  
TABLE 3-32. MISCELLANEOUS CONTROL REGISTER 1 (CLAUSE 45) (Continued)  
MII REGISTER 49152, ADDRESS = C000’h  
BIT  
NAME  
CAL_EN  
SETTING  
DEFAULT  
1’b  
R/W  
R/W  
DESCRIPTION  
0
1=enabled  
0=disabled  
Enable de-skew calculator of receiver buffer  
NOTE:  
1. These state machines are implemented according to 802.3ae-2002 clause 48.  
TABLE 3-33. MISCELLANEOUS CONTROL REGISTER 2 (CLAUSE 45)  
MII REGISTER 49153 ADDRESS = C001’h  
BIT  
NAME  
SETTING  
DEFAULT  
R/W  
R/W  
DESCRIPTION  
23  
15  
SHRT_BIST 1 = Short BIST Loop pattern 0’b  
0 = Long BIST Loop pattern  
Short is 13458 Byte pattern, Long is 2 -1 Byte Pattern (plus 9  
/K/ "Comma" bytes)  
14:13  
12  
Reserved  
BIST_EN  
1 = enable BIST Pattern  
0 = disable  
0’b  
0’b  
R/W  
R/W  
Built In Self Test (BIST); may also be enabled by the BIST_EN  
pin or via the JTAG system.  
11  
XAUI_EN  
1 = enable  
0 = disable  
Enables all XAUI features per 802.3ae-2002. It is equivalent to  
setting the following configuration bits (but does not change the  
actual value of the corresponding MDIO registers’ bits):  
TRANS_EN (reg C001’h)  
AKR_EN (reg1D’h/C001’h)  
A_ALIGN_DIS: 0’b (reg19’h/C001’h)  
PCS_SYNC_EN (reg1D’h/C001’h)  
DSKW_SM_EN (reg1D’h/C001’h)  
ERROR Code = 1FE’h (reg 16’h)  
10:8  
LOS_Control 0’h = 160mVp-p  
1’h = 240mVp-p  
000’b  
R/W  
Set the threshold voltage for the Loss Of Signal (LOS)  
detection circuit. Nominal levels are listed for each control  
value. (Note 2)  
2’h = 200mVp-p  
3’h = 120mVp-p  
4’h = 80mVp-p  
else = 160mVp-p  
7
6
SC_TBC  
AKR_EN  
1=source sync  
0’b  
0’b  
R/W  
R/W  
Timing of incoming Transmit Byte Clock (TBC) to transmit data  
0=source center  
1 = enable pseudo-random  
A/K/R  
0 = /K/ only  
Enable pseudo-random A/K/R (Note 1) in Inter Packet Gap  
(IPG) on transmitter side (vs. /K/ only)  
5
TRANS_EN 1=enable  
0=disable  
0’b  
R/W  
This bit enables the transceiver to translate an IDLE pattern in  
the XGMII data (matching the value of register 1B’h) to and  
from the XAUI IDLE /K/ comma character or /A/, /K/ & /R/.  
Overridden by XAUI_EN,  
see bit 11  
4
IPON  
1=enable  
0=disable  
1’b  
R/W  
R/W  
R/W  
Internal Parallel Output Enable  
3
TX_SDR  
MF_CTRL  
1 = SDR  
0 = DDR  
0’b  
Single data rate on XGMII interface of transmitter.  
2:0  
0 = BIST_ERR  
1 = LOS  
2 = Reserved  
3 = RC[A:D]  
4 = TXFIFO_ERR  
5 = AFIFO_ERR  
6 = EFIFO_ERR  
00’b  
Control the functions of multi-function pins MF[A-D].  
RC[A:D]: recovered clock for each channel [A:D].  
NOTES:  
1. These state machines are implemented according to 802.3ae-2002 clause 48.  
2. Please refer to section “3.7.2 Loss of Signal (LOS)” on page 6 for a more detailed description.  
21  
BBT3420  
TABLE 3-34. SOFT RESET CONTROL REGISTER 3 (CLAUSE 45)  
MII REGISTER 49167, ADDRESS = C00F’h  
BIT  
NAME  
SETTING  
DEFAULT  
R/W  
R/W SC  
DESCRIPTION  
15  
SOFT_RESET  
Write 1 to initiate. 0’b  
Reset the entire chip except MII register  
settings  
14:0  
Reserved  
3.15 JTAG  
3.15.2 BIST Operation  
Five pins – TMS, TCK, TDO, TRST, and TDI – support IEEE  
Standard 1149.1 JTAG testing. The JTAG test capability has  
been implemented on all signal pins except the high-speed  
differential output and input terminals. The following  
boundary scan operation codes are supported:  
The Built-In Self Test (BIST) function will only operate  
correctly if the Encoder/Decoder is enabled (the CODE pin,  
see Table 4-6, is high, and the CODECENA bit, see Table 3-  
16 and/or Table 3-32, is set), trunking is turned off to avoid  
loss of characters to channel alignment, by taking the  
PSYNC pin low (also see Table 3-22 and/or Table 3-32), and  
the pseudo-random AKR generation is disabled via the  
AKR_EN bit, see Table 3-28 and/or Table 3-33. The Pseudo-  
Random Bit Sequence (PRBS) pattern generator puts out an  
TABLE 3-35. JTAG OPERATIONS  
INSTRUCTION  
CODE  
0000  
0001  
0010  
0011  
0100  
1111  
Extest  
23  
8-bit byte-wide pattern, whose length is either 2 -1 bytes, or  
Sample/Preload  
HighZ  
13458 bytes, depending on the value of the SHRT_BIST bit;  
see Table 3-16 and/or Table 3-33. Either the BIST_EN bit  
(Table 3-16 and/or Table 3-33) or the BISTEN pin (see  
Table 4-6 on page 26) causes each Serial Transmitter to put  
out a sequence of several commas (typically 9), followed by  
the PRBS pattern as 8-bit data, the sequence then repeating  
indefinitely, and causes each Serial Receiver to search its  
incoming bit stream for the same pattern. Once the comma  
group has set the byte alignment, the BIST error detector will  
be enabled, and the decoded pattern will then be checked.  
Any bit error will set the error detector for the corresponding  
channel. These detectors may be monitored via the MF[A:D]  
pins (see Table 4-6) and via the MDIO system (see Table 3-  
25). The detectors may be reset by using SOFT_RESET  
Clamp  
ID Code  
Bypass  
UDR0  
1000  
1001  
1010  
UDR1  
RunBIST  
3.15.1 Manufacturers ID  
The Manufacturers ID Code returned when reading the ID  
Code from the JTAG pins is as follows:  
23  
(see Table 3-28 and/or Table 3-34). The full 2 -1 byte  
pattern takes approximately 27ms at 3.125Gbps. Note that  
certain characterization tests (including generated jitter) can  
be performed using the PRBS generator, with the 8b/10b  
Encoder/Decoder disabled, since this will generate a greater  
variety of Inter Symbol Interference (ISI) patterns than  
encoded data. However, the checking circuitry will not  
accept the data as error-free, since the raw pattern will  
contain many false apparent comma patterns, causing  
frequent byte realignments, etc.  
V0005351’h,  
Where ‘V’ is an internal 4-bit version number. Consult the  
Contact Information resources on Page 44 for information as  
to the meaning of the revision number.  
22  
BBT3420  
4 Pin Specifications for BBT3420  
The BBT3420 device is packaged in a 289-pin HSPBGA. The terminals are grouped in tables by functionality.  
TABLE 4-1. CLOCK PINS  
PIN#  
J3, J2  
A10  
NAME  
RFCP/RFCN  
TCA  
TYPE  
Input  
Input  
DESCRIPTION  
Differential Reference Input Clock  
Transmit Data Clock, Channels A. The data on TDA(0 - 9) islatched on the rising  
and falling edges of TCA. When PSYNC is high, TCA acts as the transmit clock for  
all channels.  
F16, M16, U10  
A11  
TCB, TCC,  
TCD  
Input  
Output  
Output  
Transmit Data Clock, Channels B - D. When PSYNC is low, the data on TDx(0 - 9)  
is latched on the rising and falling edges of the transmit clocks. When PSYNC is  
high, these pins are ignored.  
RCA  
Receive Data Clock, Channels A. The data on RDA(0 - 9) is output on the rising and  
falling edges of RCA. When PSYNC is high, RCA acts as the receive clock for all  
channels.  
F17, M17, U11  
RCB, RCC,  
RCD  
Receive Data Clock, Channels B - D. When PSYNC is low, the data on RDx(0 - 9)  
is output on the rising and falling edges of the receive clocks. When PSYNC is high,  
these pins are undefined.  
TABLE 4-2. SERIAL SIDE DATA PINS  
PIN#  
NAME  
TYPE  
DESCRIPTION  
D5, D6, F4, G4, M4, L4, P5, TXAP/TXAN  
Output  
Transmit Differential Pairs, Channel A - D. CML high-speed serial outputs.  
P6  
TXBP/TXBN  
TXCP/TXCN  
TXDP/TXDN  
B5, B6, F2, G2, M2, L2,T5, T6 RXAP/RXAN  
RXBP/RXBN  
Input  
Receive Differential Pairs, Channel A - D. CML high-speed serial inputs.  
RXCP/RXCN  
RXDP/RXDN  
TABLE 4-3. PARALLEL SIDE DATA PINS  
TYPE DESCRIPTION  
PIN#  
NAME  
C8, B8, A8, E9, D9, C9,  
E10, D10  
TDA(0-7)  
Input  
Transmit Data Pins, Channel A. Parallel data on this bus is clocked on the rising and  
falling edges of TCA.  
C10  
TDA8  
Input  
Transmit Data/ K-code Flag, Channel A. When CODE is low, this pin is the 9th bit of an  
8b10b-encoded/10b-encoded byte to be transmitted. When CODE is high, this pin acts  
as the K-character generator indicator. When high, this pin causes the data on TDA(0-  
7) to be encoded into a K-character. Data on this pin is clocked on the rising and falling  
edges of TCA.  
B10  
TDA9  
Input  
Transmit Data Pin, Channel A. When CODE is low, this pin is the 10th bit of an 8b/10b-  
encoded byte. When CODE is high, this pin is undefined. Data on this pin is clocked on  
the rising and falling edges of TCA.  
C11, B11, E12, D12,  
C12, C13, B13, A13  
RDA(0-7)(0-7)  
RDA8  
Output  
Output  
Receive Data Pins, Channel A. Parallel data on this bus is valid on the rising and falling  
edges of RCA.  
B14  
Receive Data/ K-code Flag, Channel A. When CODE is low, this pin is the 9th bit of a  
received 8b/10b-encoded byte. When CODE is high, this pin acts as the K-character  
flag. When high, this indicates the data on RDA(0-7) is a valid K-character. Data on this  
pin is valid on the rising and falling edges of RCA.  
A14  
RDA9  
Output  
Receive Data Pin/ Error Detect, Channel A. When CODE is low, this pin is the 10th bit  
of an 8b/10b-encoded byte. When CODE is high, this pin goes high to signify the  
occurrence of either a parity error or an invalid code word during the decoding of the  
received data. Data on this pin is valid on the rising and falling edges of RCA.  
23  
BBT3420  
TABLE 4-3. PARALLEL SIDE DATA PINS (Continued)  
PIN#  
NAME  
TYPE  
DESCRIPTION  
F13, F14, F15, G13,  
G15, G16, H13, H15  
TDB(0-7)  
Input  
Transmit Data Pins, Channel B. When PSYNC is low, parallel data on this bus is clocked  
on the rising and falling edges of TCB. When PSYNC is high, data on this bus is clocked  
on the rising and falling edges of TCA.  
H16  
TDB8  
TDB9  
Input  
Input  
Transmit Data/ K-code Flag, Channel B. When PSYNC is low, data on this pin is clocked  
on the rising and falling edges of TCB. When PSYNC is high, data on this pin is clocked  
on the rising and falling edges of TCA. When CODE is low, this pin is the 9th bit of an  
8b/10b-encoded byte to be transmitted. When CODE is high, this pin acts as the K-  
character generator indicator. When high, this pin causes the data on TDB(0-7) to be  
encoded into a K-character.  
J13  
Transmit Data Pin, Channel B. When PSYNC is low, data on this pin is clocked on the  
rising and falling edges of TCB. When PSYNC is high, data on this pin is clocked on the  
rising and falling edges of TCA. When CODE is low, this pin is the 10th bit of an 8b/10b-  
encoded byte. When CODE is high, this pin is undefined.  
C14, C15, C16, C17,  
D13, D15, D16, E13  
RDB(0-7)  
RDB8  
Output  
Output  
Receive Data Pins, Channel B. When PSYNC is low, parallel data on this bus is valid on  
the rising and falling edges of RCB. When PSYNC is high, data on this bus is valid on  
the rising and falling edges of RCA.  
E15  
Receive Data/ K-code Flag, Channel B. When PSYNC is low, data on this pin is valid on  
the rising and falling edges of RCB. When PSYNC is high, data on this pin is valid on the  
rising and falling edges of RCA. When CODE is low, this pin is the 9th bit of a received  
8b/10b-encoded byte. When CODE is high, this pin acts as the K-character flag. When  
high, this indicates the data on RDB(0-7) is a valid K-character.  
E16  
RDB9  
Output  
Receive Data Pin/ Error Detect, Channel B. When PSYNC is low, data on this pin is valid  
on the rising and falling edges of RCB. When PSYNC is high, data on this pin is valid on  
the rising and falling edges of RCA. When CODE is low, this pin is the 10th bit of an  
8b/10b-encoded byte. When CODE is high, this pin goes high to signify the occurrence  
of either a parity error or an invalid code word during the decoding of the received data.  
M13, M14, M15, L13,  
L15, L16, K13, K15  
TDC(0-7)  
TDC8  
Input  
Input  
Transmit Data Pins, Channel C. When PSYNC is low, parallel data on this bus is clocked  
on the rising and falling edges of TCC. When PSYNC is high, data on this bus is clocked  
on the rising and falling edges of TCA.  
K16  
Transmit Data/ K-code Flag, Channel C. When PSYNC is low, data on this pin is clocked  
on the rising and falling edges of TCC. When PSYNC is high, data on this bus is clocked  
on the rising and falling edges of TCA. When CODE is low, this pin is the 9th bit of an  
8b/10b-encoded byte to be transmitted. When CODE is high, this pin acts as the K-  
character generator indicator. When high, this pin causes the data on TDC(0-7) to be  
encoded into a K-character.  
J15  
TDC9  
RDC(0-7)  
RDC8  
Input  
Output  
Output  
Transmit Data Pin, Channel C. When PSYNC is low, data on this pin is clocked on the  
rising and falling edges of TCC. When CODE is low, this pin is the 10th bit of an 8b/10b-  
encoded byte. When CODE is high, this pin is undefined.  
R14, R15, R16, R17,  
P13, P15, P16, N13  
Receive Data Pins, Channel C. When PSYNC is low, parallel data on this bus is valid on  
the rising and falling edges of RCC. When PSYNC is high, data on this bus is valid on  
the rising and falling edges of RCA.  
N15  
Receive Data/ K-code Flag, Channel C. When PSYNC is low, data on this pin is valid on  
the rising and falling edges of RCC. When PSYNC is high, data on this pin is valid on  
the rising and falling edges of RCA. When CODE is low, this pin is the 9th bit of a  
received 8b/10b-encoded byte. When CODE is high, this pin acts as the K-character  
flag. When high, this indicates the data on RDC(0-7) is a valid K-character.  
N16  
RDC9  
Output  
Input  
Receive Data Pin/ Error Detect, Channel C. When PSYNC is low, data on this pin is  
clocked on the rising and falling edges of TCC. When CODE is low, this pin is the 10th  
bit of an 8b/10b-encoded byte. When CODE is high, this pin goes high to signify the  
occurrence of either a parity error or an invalid code word during the decoding of the  
received data.  
R8, T8, U8, N9, P9, R9,  
N10, P10  
TDD(0-7)  
Transmit Data Pins, Channel D. When PSYNC is low, parallel data on this bus is clocked  
on the rising and falling edges of TCD. When PSYNC is high, data on this bus is clocked  
on the rising and falling edges of TCA.  
24  
BBT3420  
TABLE 4-3. PARALLEL SIDE DATA PINS (Continued)  
PIN#  
NAME  
TYPE  
DESCRIPTION  
R10  
TDD8  
Input  
Transmit Data/ K-code Flag, Channel D. When PSYNC is low, data on this pin is clocked  
on the rising and falling edges of TCD. When PSYNC is high, data on this bus is clocked  
on the rising and falling edges of TCA. When CODE is low, this pin is the 9th bit of an  
8b/10b-encoded byte to be transmitted. When CODE is high, this pin acts as the K-  
character generator indicator. When high, this pin causes the data on TDD(0-7) to be  
encoded into a K-character.  
T10  
TDD9  
Input  
Transmit Data Pin, Channel D. When PSYNC is low, data on this pin is clocked on the  
rising and falling edges of TCD. When PSYNC is high, data on this bus is clocked on the  
rising and falling edges of TCA. When CODE is low, this pin is the 10th bit of an 8b/10b-  
encoded byte. When CODE is high, this pin is undefined.  
R11, T11, N12, P12,  
R12, R13, T13, U13  
RDD(0-7)  
RDD8  
Output  
Output  
Receive Data Pins, Channel D. When PSYNC is low, parallel data on this bus is valid on  
the rising and falling edges of RCD. When PSYNC is high, data on this bus is valid on  
the rising and falling edges of RCA.  
T14  
Receive Data/ K-code Flag, Channel D. When PSYNC is low, data on this pin is valid on  
the rising and falling edges of RCD. When PSYNC is high, data on this pin is valid on  
the rising and falling edges of RCA. When CODE is low, this pin is the 9th bit of a  
received 8b/10b-encoded byte. When CODE is high, this pin acts as the K-character  
flag. When high, this indicates the data on RDD(0-7) is a valid K-character.  
U14  
RDD9  
Output  
Receive Data Pin/ Error Detect, Channel D. When PSYNC is low, data on this pin is valid  
on the rising and falling edges of RCD. When CODE is low, this pin is the 10th bit of an  
8b/10b-encoded byte. When CODE is high, this pin goes high when to signify the  
occurrence of either a parity error or an invalid code word during the decoding of the  
received data.  
TABLE 4-4. JTAG INTERFACE  
PIN#  
NAME  
TYPE  
DESCRIPTION  
B3  
TDI  
Input  
JTAG Input Data  
(w/pullup)  
Output  
A2  
B2  
TDO  
TMS  
JTAG Output Data  
JTAG Mode Select  
Input  
(w/pullup)  
A3  
A1  
TCLK  
Input  
JTAG Clock  
JTAG Reset  
(w/pulldown)  
TRSTN  
Input  
(w/pullup)  
TABLE 4-5. MANAGEMENT DATA INTERFACE  
PIN#  
NAME  
MDIO  
TYPE  
I/O  
DESCRIPTION  
U3  
U2  
Management Address/Data I/O  
Management Interface Clock  
MDC  
Input  
Input  
R1, T1, T3, T2, R2  
PADR(0-4)  
Management Address (PHYAD for Clause 22, PRTAD for Clause 45). See also  
MFD & MFC in next table for DEVAD control in Clause 45.  
25  
BBT3420  
TABLE 4-6. MISCELLANEOUS PINS  
PIN#  
NAME  
TYPE  
DESCRIPTION  
P1  
CODE  
Input  
(w/pullup)  
Encode Enable, When CODE is high, the 8b/10b encoder and decoder are enabled,  
provided the CODECENA bit is set, see Table 3-16 and/or Table 3-32. When CODE  
is low, the encoder and decoder are disabled, and the Parallel side handles raw 10b  
data.  
A16, B16, T16, U16  
MF[A:D]  
PSYNC  
Output (MFC Multi-function I/O's, Channels [A:D]. The functions of these pins are enabled via the  
and MFD are MDIO. Currently defined functions are:² FIFO_ERR for each channel, for TX, Align  
inputs w/pullup and Elasticity FIFOs. LOS (Loss of Signal) for each channel,² RC[A:D]: Recovered  
during reset). clock outputs ² COMMA_DET (K28.5 character detected) for each channel, and²  
BIST_ERR (Built-In Self Test Pseudo Random Bit Stream Test Status) for each  
channel. The default condition for these pins is BIST_ERR. See Table 3-15 and/or  
Table 3-33 for further details. MFC and MFD are also used as inputs during reset, to  
control the MDIO interface DEVAD value, see Table 3-5.  
C1  
Input  
Channel Synchronization Enable. When PSYNC is high, all transmit data is latched  
(w/pulldown) on the rising and falling edges of TCA, all receive data is valid on the rising and falling  
edges of RCA.  
B1  
RSTN  
Input  
Chip Reset (FIFO Clear)  
C3, D3, P3, R3  
LPEN(A-D)  
Input  
Loop Enable, Channels A-D. When high, the serial output for each channel is looped  
(w/pulldown) back to its input.  
D1  
U1  
P2  
SIG_DET  
Output  
SIG_DET. This pin is asserted when all four Signal Detectors detect signal levels  
above the threshold (see Table 3-28 and/or Table 3-33).  
RSVN/  
RETIMER  
Input  
(w/pullup)  
Active Low If low, the BBT3420 acts as a Retimer device, rather than a transceiver  
(SerDes) device.  
BISTEN  
Input  
Built-In Self Test Enable--Active High. When high, enables internal 23-bit PRBS test  
(w/pulldown) function.  
TABLE 4-7. VOLTAGE SUPPLY AND REFERENCE PINS  
PIN#  
NAME  
TYPE  
Input  
Input  
DESCRIPTION  
J17  
C2  
V
Parallel Side Input Voltage Reference  
REF  
REFP  
When REFP pin is tied to V  
, MF[A-D] are the receiver  
DDQ  
complementary clock outputs MFA = RCANMFB = RCBNMFC =  
RCCNMFD = RCDN When REFP pin is left as no-connect or tied to  
low, MF[A-D] are the multi-function I/O's as defined in Table 4-6  
D2  
J1  
REFN  
RREF  
Input  
Input  
No Connect Terminal (internal inactive resistor for test purposes.)  
Additional Resistor Terminal (N.C.)  
A9, A12, A15, A17, D8, D11, D14, D17, G14, G17,  
J14, J16, L14, L17, P8, P11, P14, P17, U9, U12,  
U15, U17  
V
Supply  
Control and Parallel Input/Output Supply Voltage  
DDQ  
D4, D7, E4, H1, H4, J4, K1, K4, N4, P4, P7  
VDD  
Supply  
Internal (Core) Supply  
A5, A6, A7, C5, C6, F1, F3, G1, G3, L1, L3, M1,  
M3, R5, R6, U5, U6, U7  
VDDA Analog Supply Analog Supply. Should be decoupled from VDD  
B9, B12, B15, B17, E5, E6, E7, E8, E11, E14, E17,  
H2, H3, H5, H14, H17, J5, K2, K3, K5, K14, K17,  
N5, N6, N7, N8, N11, N14, N17, T9, T12, T15, T17  
GND Ground Ground for Core, Control and Parallel Input/Outputs.  
A4, B4, B7, C4, C7, E1, E2, E3, F5, G5, L5, M5,  
N1, N2, N3, R4, R7, T4, T7, U4  
GNDA Analog Ground Analog Ground. Should be connected to GND at one point.  
F6, F7, F8, F9, F10, F11, F12, G6, G7, G8, G9,  
G10, G11,G12, H6, H7, H8, H9, H10, H11, H12,  
J6, J7, J8, J9, J10, J11, J12, K6, K7, K8, K9, K10,  
K11, K12, L6, L7, L8, L9, L10, L11, L12, M6, M7,  
M8, M9, M10, M11, M12  
T-GND  
Ground  
Thermal Grounds. Electrically tied to Ground, but used to improve  
thermal transfer to mounting medium (PCB).  
26  
BBT3420  
4.1 Pin Diagram for BBT3420 (Top View)  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
17 VDDQ GND RDB3 VDDQ GND RCB VDDQ GND VREF GND VDDQ RCC GND VDDQ RDC3 GND VDDQ 17  
16 MFA MFB RDB2 RDB6 RDB9 TCB TDB5 TDB8 VDDQ TDC8 TDC5 TCC RDC9 RDC6 RDC2 MFC MFD 16  
15 VDDQ GND RDB1 RDB5 RDB8 TDB2 TDB4 TDB7 TDC9 TDC7 TDC4 TDC2 RDC8 RDC5 RDC1 GND VDDQ 15  
14 RDA9 RDA8 RDB0 VDDQ GND TDB1 VDDQ GND VDDQ GND VDDQ TDC1 GND VDDQ RDC0 RDD8 RDD9 14  
13 RDA7 RDA6 RDA5 RDB4 RDB7 TDB0 TDB3 TDB6 TDB9 TDC6 TDC3 TDC0 RDC7 RDC4 RDD5 RDD6 RDD7 13  
T-  
T-  
T-  
T-  
T-  
T-  
T-  
12 VDDQ GND RDA4 RDA3 RDA2  
11 RCA RDA1 RDA0 VDDQ GND  
10 TCA TDA9 TDA8 TDA7 TDA6  
RDD2 RDD3 RDD4 GND VDDQ 12  
GND VDDQ RDD0 RDD1 RCD 11  
TDD6 TDD7 TDD8 TDD9 TCD 10  
TDD3 TDD4 TDD5 GND VDDQ 9  
GND GND GND GND GND GND GND  
T- T- T- T- T- T- T-  
GND GND GND GND GND GND GND  
T- T- T- T- T- T- T-  
GND GND GND GND GND GND GND  
T- T- T- T- T- T- T-  
GND GND GND GND GND GND GND  
T- T- T- T- T- T- T-  
GND GND GND GND GND GND GND  
T- T- T- T- T- T- T-  
GND GND GND GND GND GND GND  
T- T- T- T- T- T- T-  
GND GND GND GND GND GND GND  
9
8
7
6
VDDQ GND TDA5 TDA4 TDA3  
TDA2 TDA1 TDA0 VDDQ GND  
VDDA GNDA GNDA VDD GND  
VDDA RXAN VDDA TXAN GND  
GND VDDQ TDD0 TDD1 TDD2  
8
GND VDD GNDA GNDA VDDA 7  
GND TXDN VDDA RXDN VDDA 6  
5
4
3
2
VDDA RXAP VDDA TXAP GND GNDA GNDA GND GND GND GNDA GNDA GND TXDP VDDA RXDP VDDA 5  
GNDA GNDA GNDA VDD VDD TXBP TXBN VDD VDD VDD TXCN TXCP VDD VDD GNDA GNDA GNDA 4  
TCLK TDI LPENA LPENB GNDA VDDA VDDA GND RFCP GND VDDA VDDA GNDA LPENC LPEND PADR2 MDIO  
BIST  
3
2
TDO TMS REFP REFN GNDA RXBP RXBN GND RFCN GND RXCN RXCP GNDA  
SIG_  
PADR4 PADR3 MDC  
EN  
1 TRSTN RSTN PSYNC  
GNDA VDDA VDDA VDD RREF VDD VDDA VDDA GNDA CODE PADR0 PADR1 RSVN 1  
DET  
D
A
B
C
E
F
G
H
J
K
L
M
N
P
R
T
U
FIGURE 4-1. BBT3420 PACKAGE PIN OUT DIAGRAM  
27  
BBT3420  
5 Package Dimensions  
All linear dimensions in the below mechanical drawing of the BBT3420 package are in millimeters.  
FIGURE 5-1. HSBGA-289 PACKAGE DIMENSIONS  
28  
BBT3420  
6 Electrical Characteristics  
6.1 Absolute Maximum Ratings  
TABLE 6-1. ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
SYMBOL  
UNITS  
V
MIN  
-0.5  
-0.5  
-0.5  
-0.5  
-50  
MAX  
4.6  
V
Parallel I/O Power Supply Voltage  
DDQ  
, V  
V
Other Power Supply Voltages  
CML DC Input Voltage  
V
2.5  
DDA DD  
V
V
V
+ 0.5  
DD  
INCML  
V
HSTL/SSTL_2 DC Input Voltage  
CML Output Current  
V
5.5  
INXSTTL  
OUTCML  
I
mA  
mA  
°C  
°C  
°C  
V
I
HSTL/SSTL_2 Output Current  
Storage Temperature  
50  
150  
125  
220  
1500  
OUXSTTL  
T
-65  
-55  
STG  
T
Junction Temperature  
J
T
V
Soldering Temperature (10s)  
Maximum Input ESD (HBM)  
SOL  
ESD  
-1500  
These ratings are those which if exceeded may cause permanent damage to the device. Operation at these or any other conditions in excess of  
those listed under Operating Conditions below is not implied. Continued exposure to these ratings may reduce device reliability.  
6.2 Operating Conditions  
All specifications assume T = 0°C to +70°C, V  
= V  
DDA  
= 1.8 ± 0.1V, V = 2.5 ± 0.2V, unless otherwise specified.  
DDQ  
A
DD  
TABLE 6-2. RECOMMENDED OPERATING CONDITIONS  
SYMBOL  
PARAMETER  
Core and Serial I/O Power Supply Voltages  
Parallel I/O Power Supply Voltage  
Ambient Operating Temperature  
UNITS  
MIN  
1.7  
+1.7  
0
NOM  
MAX  
1.9  
V
& V  
V
V
1.8  
DDA  
DD  
V
2.7  
DDQ  
T
°C  
25  
70  
A
TABLE 6-3. THERMAL RESISTANCES  
PARAMETER  
Thermal Resistance, Junction to Case  
Thermal Resistance, Case to Ambient  
SYMBOL  
UNIT  
°C/W  
°C/W  
TYP  
14  
MAX  
θ
JC  
θ
19  
CA  
TABLE 6-4. SERIAL PIN I/O ELECTRICAL SPECIFICATIONS  
SYMBOL  
PARAMETER  
UNITS  
mV  
MIN  
200  
TYP  
MAX  
V
Peak-To-Peak Differential Voltage Input Requirement (Note 1)  
P-PIN  
V
Peak-To-Peak Differential Voltage Output Amplitude  
O
mV  
1000  
1300  
1800  
P-POUT  
(Z = 100differential load) no Pre-emphasis  
NOTE:  
1. Applies for DC balanced data such as XAUI 8B/10B data. For data with long run lengths such as PRBS, DC offset compensation circuitry must  
be turned off. The device default is for DC offset compensation circuitry to be turned on. See Table 3-17.  
TABLE 6-5. PARALLEL PIN I/O CHARACTERISTICS, SSTL_2 (Class I, see Figure 2-1)  
SYMBOL  
PARAMETER  
UNITS  
MIN  
2.3  
TYP  
2.5  
MAX  
2.7  
V
Supply Voltage  
V
V
V
V
DDQ  
V
Reference Voltage  
1.15  
1.25  
1.35  
REF  
V
Termination Voltage  
dc input logic high  
V
- 0.04  
V
V
+ 0.04  
REF  
TT  
REF  
REF  
V
V
+ 0.18  
V
+ 0.3  
DDQ  
IH(dc)  
REF  
29  
BBT3420  
TABLE 6-5. PARALLEL PIN I/O CHARACTERISTICS, SSTL_2 (Class I, see Figure 2-1)  
SYMBOL  
PARAMETER  
UNITS  
MIN  
TYP  
MAX  
V
dc input logic low  
ac input logic high  
ac input logic low  
V
V
V
V
V
V
V
-0.3  
V
V
- 0.18  
IL(dc)  
REF  
V
)
V
+ 0.35  
REF  
IH((ac  
V
- 0.35  
IL(ac)  
REF  
V
dc output logic high (I  
= 7.6mA)  
V
- 0.62  
- 0.5  
OH  
OH  
DDQ  
V
dc output logic low (I = 7.6mA)  
0.54  
OL  
OL  
ac output logic high (I  
V
= 8mA)  
V
DDQ  
OH(ac)  
OH  
V
ac output logic low (I = 8mA)  
OL  
0.5  
OL(ac)  
TABLE 6-6. PARALLEL PIN I/O CHARACTERISTICS, HSTL (V  
= 1.8V ±0.1 V) (Class I, see Figure 2-1)  
DDQ  
SYMBOL  
PARAMETER  
UNITS  
MIN  
1.7  
TYP  
1.8  
MAX  
1.9  
V
Supply Voltage  
V
V
V
V
V
V
V
V
V
V
V
DDQ  
V
Reference Voltage  
Termination Voltage  
dc input logic high  
dc input logic low  
ac input logic high  
ac input logic low  
dc output logic high (I  
0.83  
0.9  
1.07  
REF  
V
V
x 0.5  
DDQ  
TT  
V
V
V
V
V
+ 0.1  
V
+ 0.3  
DDQ  
IH(dc)  
REF  
-0.3  
V
V
- 0.1  
IL(dc)  
REF  
V
+ 0.2  
IH(ac)  
REF  
DDQ  
DDQ  
V
V
- 0.2  
IL(ac)  
REF  
V
= 8 mA)  
- 0.4  
- 0.5  
V
+ 0.3  
OH(dc)  
OH  
DDQ  
V
dc output logic low (I = 8 mA)  
OL  
0.4  
OL(dc)  
V
ac output logic high (I = 8 mA)  
OH  
OH(ac)  
V
ac output logic low (I = 8 mA)  
OL  
0.5  
OL(ac)  
TABLE 6-7. OTHER DC ELECTRICAL SPECIFICATIONS  
PARAMETER  
SYMBOL  
, C  
UNITS  
MIN  
V x 0.7  
DDQ  
TYP  
V
Control Input High Voltage Range  
V
= 1.8  
= 2.5V  
= 1.8  
V
IH TL  
DDQ  
V
V
1.7  
DDQ  
V , C  
IL TL  
Control Input Low Voltage Range  
V
V
-0.3  
DDQ  
= 2.5V  
DDQ  
V
, C  
OH TL  
Status Output High Voltage Level IOH = -1mA  
Status Output Low Voltage Level IOL = 1mA  
Input High Current (Magnitude), VIN = 2.4V  
Input Low Current (Magnitude), VIN = 0.5V  
Total Core Supply Current (includes high-speed  
V
V
V
- 0.4  
DDQ  
V
, C  
OL TL  
0
I
, C  
IH TL  
µA  
µA  
mA  
I , C  
IL TL  
I
+ I  
600  
DD  
DDA  
I/Os), T = 25°C  
A
I
I/O Supply Current, T = 25°C (no loading)  
mA  
mA  
TBD  
TBD  
DDQ-NL  
A
I
I/O Supply Current, T = 25°C (50load)  
DDQ  
A
30  
BBT3420  
6-3 Timing Characteristics  
All specifications assume T = 0°C to +70°C, V  
= V  
DDA  
= 1.8 ± 0.1V, V  
= 2.5 ± 0.2V, unless otherwise specified.  
A
DD  
DDQ  
TABLE 6-8. TRANSMIT PARALLEL INTERFACE TIMING (see Figure 6-1 & Figure 6-2)  
SYMBOL  
PARAMETER  
MIN  
0.4  
TYP  
MAX  
UNIT  
ns  
T
Setup Time  
Hold Time  
SU  
T
0.4  
ns  
HOLD  
(codec)  
TT  
LAT  
Transmitter latency with encoder enabled  
Transmitter latency with encoder disabled  
65  
55  
70  
65  
UI  
TT  
LAT  
(raw)  
UI  
TABLE 6-9. RECEIVE PARALLEL INTERFACE TIMING (see Figure 6-3 through Figure 6-6)  
SYMBOL  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Bits  
ns  
RT  
Bit Sync Time  
2500  
SYNC  
T
Time data valid before the rising edge or falling edge  
of the alignment clock  
0.96  
0.96  
DVCC  
T
Time data valid after the rising or falling edge of the  
alignment clock  
ns  
CCDV  
RT  
(codec)  
Receiver latency with encoder enabled  
Receiver latency with encoder disabled  
Input skew between channels in trunking mode1  
55  
45  
125  
115  
±3  
195  
185  
UI  
LAT  
RT  
(raw)  
Bits  
LAT  
RT  
Bytes  
SKEWIN  
NOTE:  
1. RT  
is defined as input skew to BBT3420 high speed input receiver.  
SKEWIN  
TABLE 6-10. REFERENCE CLOCK REQUIREMENTS  
SYMBOL  
PARAMETER  
Ref clock frequency range (Note 1)  
Ref clock frequency offset  
MIN  
124.4  
-100  
45  
TYP  
MAX  
159.375  
100  
UNIT  
MHz  
ppm  
%
1/T  
REFCLK  
T
JREF  
Refduty  
Ref clock duty cycle  
50  
55  
NOTE:  
1. System requirements are normally much more restrictive, typically ±100ppm. This specification refers to the range over which the BBT3420 will  
operate.  
TABLE 6-11. TRANSMIT SERIAL DIFFERENTIAL OUTPUT TIMING (see Figure 6-12)  
SYMBOL  
PARAMETER  
MIN  
TYP  
100  
100  
MAX  
130  
130  
15  
4
T
Rise time (20%-80%)  
Fall time (20%-80%)  
ODR  
T
ODF  
T
Channel to Channel Differential Skew (Note 1)  
Random Jitter (RMS, 1100 pattern) (Note 2)  
OCCDS  
2.488Gbps  
3.125Gbps  
2
2.5  
2.5  
4
3.1875Gbps  
4
TX  
JIT  
Total Jitter (RMS, encoded BIST pattern)  
2.488Gbps  
8
3.125Gbps (Note 3)  
3.1875Gbps  
6
8
8
NOTES:  
1. Parameter is guaranteed by design.  
2. Strictly the 1010 pattern causes a small additional non-random jitter, so that the true random jitter is slightly less than that shown.  
3. Max jitter for CJPAT pattern is around 10ps.  
31  
BBT3420  
TABLE 6-12. SERIAL DIFFERENTIAL INPUT TIMING REQUIREMENTS (see Figure 6-12)  
SYMBOL  
PARAMETER  
Deterministic Jitter (Notes 1, 2)  
Total jitter tolerance  
MIN  
0.7  
TYP  
MAX  
UNIT  
UI  
T
DJ  
T
0.88  
UI  
JI  
NOTES:  
-12  
1. Jitter specifications include all but 10  
2. Near end driven by BBT3420 Tx.  
of the jitter population.  
TABLE 6-13. RESET AND DEVAD FROM MFD, MFC TIMING (see Figure 6-9)  
SYMBOL  
PARAMETER  
MIN  
10  
2
TYP  
MAX  
UNIT  
µs  
T
RSTN Active width  
RESET  
T
T
T
Setup from MFD, MFC to RSTN  
Hold from RSTN to MFD, MFC  
Delay from RSTN to MFD/C Valid  
µs  
RSTDVS  
RSTDVH  
RSTMFV  
1
T
T
REFCLK  
2
REFCLK  
TABLE 6-14. MDIO INTERFACE TIMING (from IEEE802.3ae-2002) (see Figure 6-10)  
SYMBOL  
PARAMETER  
BBT3420 MDIO out delay from MDC  
Setup from MDIO in to MDC  
MIN  
0
TYP  
MAX  
UNIT  
ns  
T
300  
MDCD  
T
10  
10  
50  
20  
ns  
MDS  
T
Hold from MDC to MDIO in  
ns  
RSTDVH  
T
Clock Period MDC (Note 1)  
400  
160  
ns  
RSTMFV  
MDC Clock HI or LO time (Note 1)  
ns  
NOTE:  
1. The BBT3420 will accept a much higher MDC clock rate and shorter HI and LO times than the IEEE802.3ae specification (section 22.2.2.11)  
requires. Such a faster clock may not be acceptable to other devices on the interface.  
TABLE 6-15. RESET AND BISTEN TIMING (see Figure 6-11)  
SYMBOL  
PARAMETER  
MIN  
10  
2
TYP  
MAX  
UNIT  
T
RSTN Active width  
µs  
RESET  
T
Delay from RSTN to BISTEN  
T
T
T
RSTBIST  
REFCLK  
REFCLK  
REFCLK  
T
BISTEN Inactive width  
20  
BRST  
T
Delay from BISTEN to valid ERR (MFA-D) Value  
BRVD  
32  
BBT3420  
6.4 Timing Diagrams  
FIGURE 6-1. TRANSMITTER PARALLEL TIMING  
FIGURE 6-2. TRANSMITTER LATENCY  
FIGURE 6-3. RECEIVER PARALLEL DATA TIMING  
33  
BBT3420  
FIGURE 6-4. RECEIVER LATENCY  
FIGURE 6-5. BYTE SYNCHRONIZATION  
FIGURE 6-6. CHANNEL ALIGNMENT OPERATION  
34  
BBT3420  
FIGURE 6-7. DIFFERENTIAL SIGNAL TIMING  
FIGURE 6-8. RESET AND BIST ENABLE TIMING  
FIGURE 6-9. SETTING DEVAD AT END OF RESET  
35  
BBT3420  
FIGURE 6-10. MDIO INTERFACE TIMING  
FIGURE 6-11. BIST ERROR FLAG TIMING  
Unit Interval (UI)  
Vpp (single-ended)  
Vcm  
Total Jitter  
Eye Width  
FIGURE 6-12. EYE DIAGRAM DEFINITION AND TIMING  
36  
BBT3420  
tOCCDS  
TX[A:D]P/N  
TX[A:D]P/N  
FIGURE 6-13. CHANNEL-TO-CHANNEL DIFFERENTIAL SKEW  
Additional register settings may be desirable in certain  
Applications Information  
DTE XGXS (XGMII-to-XAUI) Setup  
One of many applications of the BBT3420 is utilizing it as a  
10Gigabit Ethernet DTE XGXS device. The following  
discussion focuses on configuring the BBT3420 to operate  
as a DTE XGXS device. It also assumes the default register  
setting after a hard reset.  
environments. If the incoming XAUI signals have traveled  
some distance from their source (or if the source provides a  
weak signal), it will usually be advisable to use the equalizer  
to improve the signal integrity. Similarly, if the transmitted  
XAUI signals are to travel a significant distance, pre-  
emphasis may be desirable. Both these can be changed  
from their default values (0’h) via register 1C’h/C005’h. It  
may also be found desirable to alter the LOS detector  
threshold, using register 1D’h/C001’h.  
The MFC and MFD pins have internal pull-up resistors  
(approx. 50k), therefore no external resistor is needed to  
configure the BBT3420 to DEVICE ADDRESS 5 (see  
Table 3-5). The CODE and PSYNC pins should be pulled HI  
Recommended Analog Power and Ground Plane  
Splits  
(to V  
), and BISTEN and LPENA-D pulled LOW (to  
DDQ  
The BBT3420 high-speed analog circuits as well as high-  
speed I/O draw power from the analog power (VDDA) and  
analog ground GNDA pins/balls (pins or balls will be used  
inter-changeably through out this document). In order for the  
BBT3420 to achieve best performance, the VDDA and  
GNDA shall be kept as “quiet” as possible.  
GND); all these pins except PSYNC have internal pulls to  
these values.  
Some of the default register settings need to be changed, for  
XGMII-to-XAUI operation. The register addresses are  
described with the Clause 22 address followed by the  
Clause 45 address. The default value of the A_ALIGN_DIS  
bit of the Symbol and Elasticity Control MII Register  
(19’h/C000’h) will cause channel alignment to occur on IDLE  
to non-IDLE transitions across all four channels. This can be  
changed to channel alignment on /A/ (K28.3) characters by  
setting this bit to a zero, to conform to the XAUI  
specification. The internal (XGMII) Error character should be  
set to 1FE’h by writing FE’h to 16’h/C002’h. The pseudo-  
random XAUI IDLE /A/K/R/ generator should be enabled by  
setting the AKR_EN bit in register 1D’h/C001’h. To allow  
complete regeneration of the Inter Packet Gap (IPG), it is  
desirable to set the TRANS_EN bit in register 10’h/C001’h.  
For the best XAUI-conforming performance, it is also  
advisable to set the PCS_SYNC_EN and DSKW_SM_EN  
bits in register 1D’h/C000’h.  
The VDDA voltage requirement of the BBT3420 is 1.8V. The  
ripple noise on the VDDA voltage rail shall be as low as  
possible for best jitter performance. Therefore, in the layout,  
VDDA shall be decoupled from the main supply of 1.8V by  
means of a cut out in the power plane. The 1.8V power to  
VDDA is supplied through a ferrite bead (capable of 1A is  
recommended). The cut out spacing shall be at least 20mil.  
A “quiet” analog ground also enhances the jitter performance  
of the BBT3420 as well. A similar cut out in the ground plane  
is recommended. Analog ground (GNDA) shall be tied to  
digital ground (GND) through a ferrite bead (capable of at  
least 1A is recommended).  
Recommended Power Supply Decoupling  
For BBT3420, the decoupling for V  
all be handled individually.  
V
and V must  
DDA DD  
DDQ  
All the above listed register settings can be overridden,  
effectively forcing the BBT3420 to the desired conditions, by  
setting the XAUI_EN bit in register 1D’h/C001’h.  
VDDA (1.8V) provides power to the analog circuits as well as  
the high speed I/Os. The analog power supply VDDA must  
have impedance less than 0.4from around 50kHz to  
37  
BBT3420  
1GHz. This can be achieved by using one 22µF (1210 case  
Ordering Information  
size, CERAMIC), nine 0.1µF (0402 case size, ceramic), and  
nine 0.01µF (0402 case size, ceramic) capacitors in parallel.  
The 0.01µF and 0.1µF 0402 case size capacitors must be  
placed right next to the VDDA balls as close as possible.  
Note that the 22µF capacitor must be of 1210 case size, and  
it must be ceramic for lowest ESR possible. The 0.01µF  
must be of case size 0402, this offers the lowest ESL to  
achieve low impedance towards the GHz range. Also, note  
that the ground of these capacitors must be connected to  
GNDA.  
ORDER PART  
NUMBER  
PRODUCT  
FREQUENCY  
PACKAGE  
BBT3420  
2.488-3.1875Gbps  
BGA-289  
BBT3420-SN  
VDD (1.8V) is the power rail for the core logic circuit. For the  
VDD, at least six 0.1µF (0402 case size), six 0.01µF (0402  
case size) and a 10µF (tantalum) capacitor are  
recommended. Place the 0.01µF and 0.1µF capacitors as  
close to the VDD balls as possible.  
V
(1.8V or 2.5V) is the power rail for all the low speed  
DDQ  
I/O drivers; at least ten 0.01µF (0402 case size), ten 0.1µF  
(0402 case size) capacitors are recommended. Place the  
0.01µF and 0.1µF capacitors as close to the V  
possible.  
balls as  
DDQ  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
38  
配单直通车
BBT3420-SN产品参数
型号:BBT3420-SN
是否Rohs认证: 不符合
生命周期:Obsolete
零件包装代码:BGA
包装说明:19 X 19 MM, MO-102, HSBGA-289
针数:289
Reach Compliance Code:not_compliant
HTS代码:8542.39.00.01
风险等级:5.78
JESD-30 代码:S-PBGA-B289
JESD-609代码:e0
长度:19 mm
湿度敏感等级:3
功能数量:1
端子数量:289
最高工作温度:70 °C
最低工作温度:
封装主体材料:PLASTIC/EPOXY
封装代码:BGA
封装等效代码:BGA289,17X17,40
封装形状:SQUARE
封装形式:GRID ARRAY
峰值回流温度(摄氏度):240
电源:1.8,2.5 V
认证状态:Not Qualified
座面最大高度:2 mm
子类别:Other Telecom ICs
标称供电电压:1.8 V
表面贴装:YES
技术:CMOS
电信集成电路类型:TELECOM CIRCUIT
温度等级:COMMERCIAL
端子面层:Tin/Lead (Sn/Pb)
端子形式:BALL
端子节距:1 mm
端子位置:BOTTOM
处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:19 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!