欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • BCW70LT1-LF
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • BCW70LT1-LF图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • BCW70LT1-LF
  • 数量4856 
  • 厂家ON/安森美 
  • 封装NA/ 
  • 批号23+ 
  • 原装现货,当天可交货,原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • BCW70LT1-LF图
  • 北京中其伟业科技有限公司

     该会员已使用本站16年以上
  • BCW70LT1-LF
  • 数量10324 
  • 厂家√ 欧美㊣品 
  • 封装贴◆插 
  • 批号16+ 
  • 特价,原装正品,绝对公司现货库存,原装特价!
  • QQ:2880824479QQ:2880824479 复制
  • 010-62104891 QQ:2880824479
  • BCW70LT1-LF图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • BCW70LT1-LF
  • 数量18800 
  • 厂家ON-安森美 
  • 封装SOT-23.贴片 
  • 批号▉▉:2年内 
  • ▉▉¥10一一有问必回一一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • BCW70LT1-LF图
  • 深圳市炎凯科技有限公司

     该会员已使用本站7年以上
  • BCW70LT1-LF
  • 数量1606 
  • 厂家ON 
  • 封装SOT23 
  • 批号24+ 
  • 原装现货
  • QQ:354696650QQ:354696650 复制
    QQ:2850471056QQ:2850471056 复制
  • 0755-89587732 QQ:354696650QQ:2850471056
  • BCW70LT1-LF图
  • 深圳市一线半导体有限公司

     该会员已使用本站16年以上
  • BCW70LT1-LF
  • 数量15000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921

产品型号BCW70LT1/D的Datasheet PDF文件预览

PNP Silicon  
http://onsemi.com  
MAXIMUM RATINGS  
Rating  
COLLECTOR  
3
Symbol  
Value  
–45  
Unit  
Vdc  
Collector–Emitter Voltage  
Emitter–Base Voltage  
V
V
CEO  
1
–5.0  
–100  
Vdc  
BASE  
EBO  
Collector Current — Continuous  
THERMAL CHARACTERISTICS  
Characteristic  
I
C
mAdc  
2
EMITTER  
Symbol  
Max  
Unit  
(1)  
Total Device Dissipation FR-5 Board  
P
225  
mW  
D
T
= 25°C  
3
A
Derate above 25°C  
1.8  
mW/°C  
°C/W  
Thermal Resistance,  
Junction to Ambient  
R
556  
θJA  
1
2
Total Device Dissipation  
Alumina Substrate,  
Derate above 25°C  
P
300  
mW  
D
(2)  
SOT–23 (TO–236AB)  
CASE 318  
T = 25°C  
A
2.4  
mW/°C  
°C/W  
STYLE 6  
Thermal Resistance,  
Junction to Ambient  
R
417  
θJA  
Junction and Storage Temperature  
T , T  
J stg  
55 to  
+150  
°C  
DEVICE MARKING  
1. FR–5 = 1.0 x 0.75 x 0.062 in.  
2. Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina  
H2x  
x = Monthly Date Code  
ORDERING INFORMATION  
Device  
BCW70LT1  
Package  
Shipping  
3000 Units/Reel  
SOT–23  
Preferred devices are recommended choices for future use  
and best overall value.  
Semiconductor Components Industries, LLC, 1999  
1
Publication Order Number:  
December, 1999 – Rev. 0  
BCW70LT1/D  
BCW70LT1  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Max  
Unit  
OFF CHARACTERISTICS  
Collector–Emitter Breakdown Voltage (I = –2.0 mAdc, I = 0)  
V
–45  
–50  
–5.0  
Vdc  
Vdc  
Vdc  
C
B
(BR)CEO  
Collector–Emitter Breakdown Voltage (I = –100 µAdc, V  
EB  
= 0)  
V
C
(BR)CES  
(BR)EBO  
Emitter–Base Breakdown Voltage (I = –10 µAdc, I = 0)  
V
E
C
Collector Cutoff Current  
I
CBO  
(V  
CB  
(V  
CB  
= –20 Vdc, I = 0)  
–100  
–10  
nAdc  
µAdc  
E
= –20 Vdc, I = 0, T = 100°C)  
E
A
ON CHARACTERISTICS  
DC Current Gain (I = –2.0 mAdc, V  
= –5.0 Vdc)  
h
FE  
215  
500  
–0.3  
C
CE  
Collector–Emitter Saturation Voltage (I = –10 mAdc, I = –0.5 mAdc)  
V
CE(sat)  
Vdc  
Vdc  
C
B
Base–Emitter On Voltage (I = –2.0 mAdc, V  
C
= –5.0 Vdc)  
V
–0.6  
–0.75  
CE  
BE(on)  
SMALL–SIGNAL CHARACTERISTICS  
Output Capacitance  
C
7.0  
10  
pF  
dB  
obo  
(I = 0, V  
= –10 Vdc, f = 1.0 MHz)  
E
CB  
Noise Figure  
(I = –0.2 mAdc, V  
N
F
= –5.0 Vdc, R = 2.0 k, f = 1.0 kHz, BW = 200 Hz)  
C
CE  
S
http://onsemi.com  
2
BCW70LT1  
TYPICAL NOISE CHARACTERISTICS  
(V  
= 5.0 Vdc, T = 25°C)  
CE  
A
10  
7.0  
5.0  
1.0  
7.0  
5.0  
BANDWIDTH = 1.0 Hz  
BANDWIDTH = 1.0 Hz  
R ≈ ∞  
R 0  
S
S
I = 1.0 mA  
C
I
C
= 10 µA  
3.0  
2.0  
300 µA  
100 µA  
30 µA  
1.0  
3.0  
2.0  
100 µA  
300 µA  
0.7  
0.5  
1.0 mA  
0.3  
0.2  
30 µA  
10 µA  
1.0  
0.1  
10 20  
50 100 200  
500 1.0 k 2.0 k 5.0 k 10 k  
10 20  
50 100 200  
500 1.0 k 2.0 k 5.0 k 10 k  
f, FREQUENCY (Hz)  
f, FREQUENCY (Hz)  
Figure 1. Noise Voltage  
Figure 2. Noise Current  
NOISE FIGURE CONTOURS  
(V  
= 5.0 Vdc, T = 25°C)  
CE  
A
1.0 M  
500 k  
1.0 M  
500 k  
BANDWIDTH = 1.0 Hz  
BANDWIDTH = 1.0 Hz  
200 k  
100 k  
50 k  
200 k  
100 k  
50 k  
20 k  
10 k  
20 k  
10 k  
0.5 dB  
0.5 dB  
5.0 k  
5.0 k  
1.0 dB  
1.0 dB  
2.0 k  
1.0 k  
500  
2.0 k  
1.0 k  
500  
2.0 dB  
2.0 dB  
3.0 dB  
3.0 dB  
5.0 dB  
200  
100  
200  
100  
5.0 dB  
200 300 500 700 1.0 k  
10  
20 30  
50 70 100  
200 300 500 700 1.0 k  
10  
20 30  
50 70 100  
I , COLLECTOR CURRENT (µA)  
C
I , COLLECTOR CURRENT (µA)  
C
Figure 3. Narrow Band, 100 Hz  
Figure 4. Narrow Band, 1.0 kHz  
1.0 M  
500 k  
10 Hz to 15.7 kHz  
200 k  
100 k  
50 k  
Noise Figure is Defined as:  
2
R
n S  
2
1 2  
2
e
n
4KTR  
4KTR  
I
S
20 k  
10 k  
NF  
20 log  
10  
S
0.5 dB  
e
n
= Noise Voltage of the Transistor referred to the input. (Figure 3)  
5.0 k  
2.0 k  
I
= Noise Current of the Transistor referred to the input.  
(Figure 4)  
1.0 dB  
2.0 dB  
n
1.0 k  
500  
–23  
K
= Boltzman’s Constant (1.38 x 10  
j/°K)  
T
= Temperature of the Source Resistance (°K)  
3.0 dB  
5.0 dB  
R
= Source Resistance (Ohms)  
200  
100  
S
20 30  
50 70 100  
200 300 500 700 1.0 k  
10  
I , COLLECTOR CURRENT (µA)  
C
Figure 5. Wideband  
http://onsemi.com  
3
BCW70LT1  
TYPICAL STATIC CHARACTERISTICS  
1.0  
0.8  
0.6  
0.4  
0.2  
0
100  
I = 400 µA  
T = 25°C  
PULSE WIDTH = 300 µs  
DUTY CYCLE 2.0%  
T = 25°C  
B
A
A
350 µA  
80  
60  
300 µA  
250 µA  
I
C
= 1.0 mA  
10 mA  
50 mA  
100 mA  
200 µA  
150 µA  
40  
20  
0
100 µA  
50 µA  
0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20  
0
5.0  
10  
V , COLLECTOR–EMITTER VOLTAGE (VOLTS)  
CE  
15  
20  
25  
30  
35  
40  
I , BASE CURRENT (mA)  
B
Figure 6. Collector Saturation Region  
Figure 7. Collector Characteristics  
1.4  
1.2  
1.6  
0.8  
0
T = 25°C  
J
*APPLIES for I /I h /2  
C B FE  
1.0  
0.8  
0.6  
0.4  
25°C to 125°C  
55°C to 25°C  
*
for V  
CE(sat)  
VC  
V
@ I /I = 10  
BE(sat) C B  
0.8  
1.6  
2.4  
V
BE(on)  
@ V = 1.0 V  
CE  
25°C to 125°C  
55°C to 25°C  
for V  
BE  
0.2  
0
VB  
V
@ I /I = 10  
CE(sat) C B  
0.1 0.2  
0.5 1.0 2.0  
5.0  
10  
20  
50 100  
0.1 0.2  
0.5 1.0 2.0  
5.0  
10 20  
50 100  
I , COLLECTOR CURRENT (mA)  
C
I , COLLECTOR CURRENT (mA)  
C
Figure 8. “On” Voltages  
Figure 9. Temperature Coefficients  
http://onsemi.com  
4
BCW70LT1  
TYPICAL DYNAMIC CHARACTERISTICS  
1000  
500  
V
= –3.0 V  
V
= 3.0 V  
CC  
CC  
700  
500  
300  
200  
I /I = 10  
I /I = 10  
C B  
T = 25°C  
C B  
= I  
I
B1 B2  
J
J
t
s
300  
200  
T = 25°C  
100  
70  
50  
100  
70  
50  
30  
20  
t
r
t
f
30  
20  
t @ V  
d BE(off)  
= 0.5 V  
10  
7.0  
5.0  
1.0  
10  
–1.0  
2.0 3.0  
5.0 7.0 10  
20 30  
50 70 100  
2.0 3.0  
–10  
20 30  
–100  
50 70  
5.0 7.0  
I , COLLECTOR CURRENT (mA)  
C
I , COLLECTOR CURRENT (mA)  
C
Figure 10. Turn–On Time  
Figure 11. Turn–Off Time  
500  
10  
7.0  
5.0  
T = 25°C  
J
T = 25°C  
J
V
CE  
= 20 V  
300  
200  
C
ib  
5.0 V  
3.0  
2.0  
100  
70  
C
ob  
50  
1.0  
0.5 0.7 1.0  
2.0 3.0  
5.0 7.0 10  
20 30  
50  
0.05 0.1 0.2  
0.5 1.0 2.0  
5.0  
10  
20  
50  
I , COLLECTOR CURRENT (mA)  
C
V , REVERSE VOLTAGE (VOLTS)  
R
Figure 12. Current–Gain — Bandwidth Product  
Figure 13. Capacitance  
1.0  
0.7  
0.5  
D = 0.5  
0.2  
0.3  
0.2  
0.1  
0.1  
0.07  
0.05  
FIGURE 16  
DUTY CYCLE, D = t /t  
1
2
0.05  
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
P
(pk)  
READ TIME AT t (SEE AN–569)  
1
θ
JA  
(pk)  
0.02  
0.01  
Z
T
= r(t) R  
– T = P  
A
θ
JA(t)  
Z
θ
JA(t)  
J(pk)  
0.03  
0.02  
t
1
SINGLE PULSE  
t
2
0.01  
0.01 0.02 0.05 0.1 0.2  
0.5 1.0 2.0  
5.0  
10 20  
50 100 200  
500 1.0 k 2.0 k 5.0 k 10 k 20 k  
100  
50 k  
t, TIME (ms)  
Figure 14. Thermal Response  
http://onsemi.com  
5
BCW70LT1  
4
10  
DESIGN NOTE: USE OF THERMAL RESPONSE DATA  
V
CC  
= 30 V  
A train of periodical power pulses can be represented by the model  
as shown in Figure 16. Using the model and the device thermal  
response the normalized effective transient thermal resistance of  
Figure 14 was calculated for various duty cycles.  
3
10  
I
CEO  
2
10  
To find Z  
, multiplythevalueobtainedfromFigure14bythe  
θJA(t)  
steady state value R  
.
1
θJA  
10  
I
CBO  
AND  
@ V  
Example:  
Dissipating 2.0 watts peak under the following conditions:  
= 1.0 ms, t = 5.0 ms (D = 0.2)  
I
= 3.0 V  
BE(off)  
0
10  
CEX  
t
1
2
Using Figure 14 at a pulse width of 1.0 ms and D = 0.2, the reading  
of r(t) is 0.22.  
–1  
10  
The peak rise in junction temperature is therefore  
–2  
10  
T = r(t) x P  
(pk)  
x R  
= 0.22 x 2.0 x 200 = 88°C.  
θJA  
For more information, see AN–569.  
–4 –2  
0
+20 +40 +60 +80 +100 +120 +140 +160  
T , JUNCTION TEMPERATURE (°C)  
0
0
J
Figure 15. Typical Collector Leakage Current  
http://onsemi.com  
6
BCW70LT1  
INFORMATION FOR USING THE SOT–23 SURFACE MOUNT PACKAGE  
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS  
Surface mount board layout is a critical portion of the  
total design. The footprint for the semiconductor packages  
must be the correct size to insure proper solder connection  
interface between the board and the package. With the  
correct pad geometry, the packages will self align when  
subjected to a solder reflow process.  
0.037  
0.95  
0.037  
0.95  
0.079  
2.0  
0.035  
0.9  
0.031  
0.8  
inches  
mm  
SOT–23  
SOT–23 POWER DISSIPATION  
The power dissipation of the SOT–23 is a function of the  
SOLDERING PRECAUTIONS  
pad size. This can vary from the minimum pad size for  
soldering to a pad size given for maximum power  
dissipation. Power dissipation for a surface mount device is  
The melting temperature of solder is higher than the rated  
temperature of the device. When the entire device is heated  
to a high temperature, failure to complete soldering within  
a short time could result in device failure. Therefore, the  
following items should always be observed in order to  
minimize the thermal stress to which the devices are  
subjected.  
Always preheat the device.  
The delta temperature between the preheat and  
soldering should be 100°C or less.*  
When preheating and soldering, the temperature of the  
leads and the case must not exceed the maximum  
temperature ratings as shown on the data sheet. When  
using infrared heating with the reflow soldering  
method, the difference shall be a maximum of 10°C.  
The soldering temperature and time shall not exceed  
260°C for more than 10 seconds.  
determined by T  
temperature of the die, R  
, the maximum rated junction  
, the thermal resistance from  
J(max)  
θJA  
the device junction to ambient, and the operating  
temperature, T . Using the values provided on the data  
A
sheet for the SOT–23 package, P can be calculated as  
D
follows:  
T
– T  
A
J(max)  
P
=
D
R
θJA  
The values for the equation are found in the maximum  
ratings table on the data sheet. Substituting these values  
into the equation for an ambient temperature T of 25°C,  
A
one can calculate the power dissipation of the device which  
in this case is 225 milliwatts.  
150°C – 25°C  
556°C/W  
When shifting from preheating to soldering, the  
maximum temperature gradient shall be 5°C or less.  
After soldering has been completed, the device should  
be allowed to cool naturally for at least three minutes.  
Gradual cooling should be used as the use of forced  
cooling will increase the temperature gradient and  
result in latent failure due to mechanical stress.  
Mechanical stress or shock should not be applied  
during cooling.  
P
=
= 225 milliwatts  
D
The 556°C/W for the SOT–23 package assumes the use  
of the recommended footprint on a glass epoxy printed  
circuit board to achieve a power dissipation of 225  
milliwatts. There are other alternatives to achieving higher  
power dissipation from the SOT–23 package. Another  
alternative would be to use a ceramic substrate or an  
aluminum core board such as Thermal Clad . Using a  
board material such as Thermal Clad, an aluminum core  
board, the power dissipation can be doubled using the same  
footprint.  
* Soldering a device without preheating can cause  
excessive thermal shock and stress which can result in  
damage to the device.  
http://onsemi.com  
7
BCW70LT1  
PACKAGE DIMENSIONS  
SOT–23 (TO–236AB)  
CASE 318–08  
ISSUE AF  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD  
FINISH THICKNESS. MINIMUM LEAD THICKNESS  
IS THE MINIMUM THICKNESS OF BASE  
MATERIAL.  
A
L
3
INCHES  
DIM MIN MAX  
MILLIMETERS  
S
C
B
MIN  
2.80  
1.20  
0.89  
0.37  
1.78  
MAX  
3.04  
1.40  
1.11  
0.50  
2.04  
0.100  
0.177  
0.69  
1.02  
2.64  
0.60  
1
2
A
B
C
D
G
H
J
0.1102 0.1197  
0.0472 0.0551  
0.0350 0.0440  
0.0150 0.0200  
0.0701 0.0807  
V
G
0.0005 0.0040 0.013  
0.0034 0.0070 0.085  
K
L
S
0.0140 0.0285  
0.0350 0.0401  
0.0830 0.1039  
0.0177 0.0236  
0.35  
0.89  
2.10  
0.45  
H
J
D
V
K
STYLE 6:  
PIN 1. BASE  
2. EMITTER  
3. COLLECTOR  
Thermal Clad is a trademark of the Bergquist Company  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
withoutfurthernoticetoanyproductsherein. SCILLCmakesnowarranty,representationorguaranteeregardingthesuitabilityofitsproductsforanyparticular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLCproductsarenotdesigned, intended, orauthorizedforuseascomponentsinsystemsintendedforsurgicalimplantintothebody, orotherapplications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorneyfees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
North America Literature Fulfillment:  
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support  
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)  
Toll Free from Hong Kong 800–4422–3781  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
Email: ONlit–asia@hibbertco.com  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549  
Phone: 81–3–5487–8345  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
Email: r14153@onsemi.com  
EUROPE: LDC for ON Semiconductor – European Support  
German Phone: (+1) 303–308–7140 (M–F 2:30pm to 5:00pm Munich Time)  
Email: ONlit–german@hibbertco.com  
Fax Response Line: 303–675–2167  
800–344–3810 Toll Free USA/Canada  
French Phone: (+1) 303–308–7141 (M–F 2:30pm to 5:00pm Toulouse Time)  
Email: ONlit–french@hibbertco.com  
ON Semiconductor Website: http://onsemi.com  
English Phone: (+1) 303–308–7142 (M–F 1:30pm to 5:00pm UK Time)  
Email: ONlit@hibbertco.com  
For additional information, please contact your local  
Sales Representative.  
BCW70LT1/D  
配单直通车
BCW70LT1G产品参数
型号:BCW70LT1G
是否无铅: 不含铅
是否Rohs认证: 符合
生命周期:Active
零件包装代码:SOT-23
包装说明:HALOGEN FREE AND ROHS COMPLIANT, CASE 318-08, 3 PIN
针数:3
制造商包装代码:CASE 318-08
Reach Compliance Code:unknown
风险等级:5.28
最大集电极电流 (IC):0.1 A
集电极-发射极最大电压:45 V
配置:SINGLE
最小直流电流增益 (hFE):215
JEDEC-95代码:TO-236AB
JESD-30 代码:R-PDSO-G3
JESD-609代码:e3
湿度敏感等级:NOT SPECIFIED
元件数量:1
端子数量:3
封装主体材料:PLASTIC/EPOXY
封装形状:RECTANGULAR
封装形式:SMALL OUTLINE
峰值回流温度(摄氏度):260
极性/信道类型:PNP
认证状态:COMMERCIAL
表面贴装:YES
端子面层:MATTE TIN
端子形式:GULL WING
端子位置:DUAL
处于峰值回流温度下的最长时间:40
晶体管元件材料:SILICON
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!