欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • BD6757KN-E2
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • BD6757KN-E2图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • BD6757KN-E2
  • 数量25185 
  • 厂家ROHM/罗姆 
  • 封装NA/ 
  • 批号23+ 
  • 原装现货,当天可交货,原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • BD6757KN-E2图
  • 深圳市华科泰电子商行

     该会员已使用本站13年以上
  • BD6757KN-E2
  • 数量8968 
  • 厂家ROHM 
  • 封装QFN-52P 
  • 批号0538+(PB) 
  • 绝对原装现货特价
  • QQ:405945546QQ:405945546 复制
    QQ:1439873477QQ:1439873477 复制
  • 0755-82567800 QQ:405945546QQ:1439873477
  • BD6757KN-E2图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • BD6757KN-E2
  • 数量5000 
  • 厂家ROHM Semiconductor 
  • 封装贴/插片 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104791 QQ:857273081QQ:1594462451
  • BD6757KN-E2图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • BD6757KN-E2
  • 数量5000 
  • 厂家ROHM Semiconductor 
  • 封装贴/插片 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931 QQ:857273081QQ:1594462451
  • BD6757KN-E2图
  • 北京元坤伟业科技有限公司

     该会员已使用本站17年以上
  • BD6757KN-E2
  • 数量5000 
  • 厂家ROHM Semiconductor 
  • 封装贴/插片 
  • 批号2024+ 
  • 百分百原装正品,现货库存
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931 QQ:857273081QQ:1594462451
  • BD6757KN-E2图
  • 深圳市中杰盛科技有限公司

     该会员已使用本站14年以上
  • BD6757KN-E2
  • 数量12000 
  • 厂家ROHM Semiconductor 
  • 封装UQFN-52 
  • 批号24+ 
  • 【原装优势★★★绝对有货】
  • QQ:409801605QQ:409801605 复制
  • 0755-22968359 QQ:409801605
  • BD6757KN-E2图
  • 深圳市一线半导体有限公司

     该会员已使用本站16年以上
  • BD6757KN-E2
  • 数量22000 
  • 厂家Rohm Semiconductor 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • BD6757KN-E2图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • BD6757KN-E2
  • 数量1001 
  • 厂家ROHM 
  • 封装QFN-52 
  • 批号24+ 
  • ★体验愉快问购元件!!就找我吧!《停产物料》
  • QQ:97671956QQ:97671956 复制
  • 171-4729-1886(微信同号) QQ:97671956

产品型号BD6757KN-E2的Datasheet PDF文件预览

SystemLensDriverSeriesforDigitalStillCameras/Single-lensReflexCameras  
7ch System Lens Drivers for  
DigitalStillCameras/Single-lensReflexCameras  
No.09014EAT04  
BD6757KN, BD6889GU  
Description  
BD6757KN and BD6889GU motor drivers provide 6 Full-ON Drive H-bridge channels and 1 Linear Constant-Current Drive  
H-bridge channel. Stepping motors can be used for the auto focus, zoom, and iris, making it possible to configure a  
sophisticated, high precision lens drive system. ROHM’s motor drivers are both compact, multifunctional, and enable  
advanced features such as lens barrier and anti shock.  
Features  
1) Subminiature grid array package: 5.0 5.0 1.2mm3 (BD6889GU)  
2) DMOS output allowing a range power supply: 2.0V to 8.0V (BD6757KN)  
3) Low ON-Resistance Power MOS output:  
Full-ON Drive block with 1.3Typ. and Linear Constant-Current Drive block with 0.9Typ. (BD6757KN, BD6889GU)  
4) Built-in two digital NPN transistor circuits for photo-interrupter waveform shaping:  
Input-dividing type with output pull-up resistance (BD6757KN)  
5) Built-in four digital NPN transistor circuits for photo-interrupter waveform shaping:  
Input-dividing type with output pull-up resistance (BD6889GU)  
6) Built-in four digital PNP transistor circuits for photo-interrupter waveform shaping:  
Input-dividing type with output pull-down resistance (BD6889GU)  
7) Built-in voltage-regulator circuit for photo-interrupter (BD6889GU)  
8) Built-in two-step output current setting switch for the Linear Constant-Current Drive block (BD6757KN)  
9) 0.9V±2% high-precision reference voltage output  
10) Constant-Current Drive block features phase compensation capacitor-free design  
11) Built-in ±3% high-precision Linear Constant-Current Driver  
12) Built-in charge pump circuit for the DMOS gate voltage drive(BD6757KN)  
13) UVLO (Under Voltage Lockout Protection) function  
14) Built-in TSD (Thermal Shut Down) circuit  
15) Standby current consumption: 0μA (Typ.)  
Absolute Maximum Ratings  
Limit  
Parameter  
Symbol  
Unit  
BD6757KN  
-0.5 to +7.0  
-0.5 to +10.0  
15.0  
BD6889GU  
-0.5 to +7.0  
-0.5 to +7.0  
None  
Power supply voltage  
Motor power supply voltage  
Charge pump voltage  
Control input voltage  
Power dissipation  
Operating temperature range  
Junction temperature  
Storage temperature range  
H-bridge output current  
VCC  
VM  
VG  
VIN  
Pd  
Topr  
Tjmax  
Tstg  
Iout  
V
V
V
V
mW  
°C  
°C  
°C  
mA/ch  
-0.5 to VCC+0.5  
-0.5 to VCC+0.5  
1
2
950※  
980※  
-25 to +75  
+150  
-55 to +150  
-800 to +800※  
-25 to +85  
+150  
-55 to +150  
-800 to +800※  
3
3
1 Reduced by 7.6mW/°C over 25°C, when mounted on a glass epoxy board (70mm 70mm 1.6mm).  
2 Reduced by 7.84mW/°C over 25°C, when mounted on a glass epoxy board (70mm 70mm 1.6mm).  
3 Must not exceed Pd, ASO, or Tjmax of 150°C.  
Operating Conditions (Ta=-25 to +75°C(BD6757KN), -25 to +85°C(BD6889GU))  
Limit  
Parameter  
Symbol  
Unit  
BD6889GU  
2.5 to 5.7  
2.5 to 5.7  
0 to VCC  
-500 to +500※  
BD6757KN  
2.5 to 5.5  
2.5 to 8.0  
0 to VCC  
-500 to +500※  
Power supply voltage  
Motor power supply voltage  
Control input voltage  
VCC  
VM  
VIN  
Iout  
V
V
V
4
4
H-bridge output current  
mA/ch  
4 Must not exceed Pd or ASO.  
www.rohm.com  
2009.06 - Rev.A  
1/15  
© 2009 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BD6757KN, BD6889GU  
Electrical Characteristics  
1) BD6757KN Electrical Characteristics (Unless otherwise specified, Ta=25°C, VCC=3.0V, VM=5.0V)  
Limit  
Parameter  
Symbol  
Unit  
Conditions  
Min.  
Typ.  
Max.  
Overall  
Circuit current  
during standby operation  
ICCST  
ICC  
-
-
0
10  
μA  
PS=0V  
Circuit current  
1.0  
3.0  
mA  
PS=VCC with no signal  
Control input (IN=PS, IN1A to IN7B, and LIMSW)  
High level input voltage  
Low level input voltage  
High level input current  
Low level input current  
Pull-down resistor  
Charge pump  
VINH  
VINL  
IINH  
IINL  
2.0  
-
-
-
-
0.7  
60  
-
V
V
15  
-1  
50  
30  
0
μA  
μA  
kΩ  
VINH=3V  
VINL=0V  
RIN  
100  
200  
Charge pump voltage  
UVLO  
VCP  
10  
11  
-
-
V
V
UVLO voltage  
VUVLO  
1.6  
2.4  
Full-ON Drive block (ch1 to ch6)  
Io=±400mA on high and low sides  
in total  
Output ON-Resistance  
Pulse input response  
RON  
tp  
-
1.3  
-
1.6  
-
100  
ns  
With an input pulse with of 200ns  
Linear Constant-Current Drive block (ch7)  
Io=±400mA on high and low sides  
in total  
Output ON-Resistance  
VREF output voltage  
Output limit current 1  
Output limit current 2  
Output limit current 3  
RON  
VREF  
IOL1  
IOL2  
IOL3  
-
0.9  
0.90  
400  
300  
200  
1.1  
0.92  
412  
315  
210  
0.88  
388  
285  
190  
V
Iout=0~1mA  
RNF=0.5with a load of 10Ω  
VLIMH(L)=0.2V, LIMSW=0V(3V)  
RNF=0.5with a load of 10Ω  
VLIMH(L)=0.15V, LIMSW=0V(3V)※  
RNF=0.5with a load of 10Ω  
mA  
mA  
mA  
5
5
VLIMH(L)=0.1V, LIMSW=0V(3V)※  
Digital NPN transistor block for photo-interrupter waveform shaping  
Input current  
ISIH  
VSOL  
RSIL  
RSOH  
-
-
-
-
0.1  
0.25  
130  
20  
mA  
V
SIx=3V  
Low level output voltage  
Input dividing resistance  
Output pull-up resistance  
0.1  
100  
10  
SIx=3V, ISO=0.5mA  
70  
5
kΩ  
kΩ  
-
Input dividing resistance  
comparison  
Division resistance comparison  
0.8  
1.0  
1.2  
5
between SIx and GND※  
5 Design target value (Not all shipped devices are fully tested.)  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.06 - Rev.A  
2/15  
Technical Note  
BD6757KN, BD6889GU  
2) BD6889GU Electrical Characteristics (Unless otherwise specified, Ta=25°C, VCC=3.0V, VM=5.0V)  
Limit  
Parameter  
Symbol  
Unit  
Conditions  
Min.  
Typ.  
Max.  
Overall  
Circuit current  
during standby operation  
ICCST  
ICC  
-
-
0
10  
μA PS=0V  
Circuit current  
1.5  
3.0  
mA PS=VCC with no signal  
Control input (IN=PS, IN1A to IN7B, SW, DSW, DSEL1, and DSEL2)  
High level input voltage  
Low level input voltage  
High level input current  
Low level input current  
Pull-down resistor  
UVLO  
VINH  
VINL  
IINH  
IINL  
2.0  
-
-
-
-
0.7  
60  
-
V
V
15  
-1  
50  
30  
0
μA VINH=3V  
μA VINL=0V  
kΩ  
RIN  
100  
200  
UVLO voltage  
VUVLO  
1.6  
-
2.4  
V
Full-ON Drive block (ch1 to ch6)  
Io=±400mA on high and low sides  
in total  
Output ON-Resistance  
Pulse input response  
RON  
tp  
-
1.3  
-
1.6  
-
100  
ns  
With an input pulse with of 200ns  
Linear Constant-Current Drive block (ch7)  
Io=±400mA on high and low sides  
in total  
Output ON-Resistance  
RON  
-
0.9  
1.1  
VREF output voltage  
Output limit current 1  
Output limit current 2  
Output limit current 3  
VREF  
IOL1  
IOL2  
IOL3  
0.88  
388  
285  
190  
0.90  
400  
300  
200  
0.92  
412  
315  
210  
V
Iout=0~1mA  
mA RNF=0.5with a load of 10, VLIM=0.2V  
mA RNF=0.5with a load of 10, VLIM=0.15V  
mA RNF=0.5with a load of 10, VLIM=0.1V  
Digital NPN transistor block for photo-interrupter waveform shaping  
Input current  
ISIH  
VSOL  
RSIN  
RSOH  
-
-
0.1  
0.25  
130  
43  
mA SIx=3V  
Low level output voltage  
Input dividing resistance  
Output pull-up resistance  
-
0.1  
100  
33  
V
SIx=3V, ISO=0.5mA  
70  
23  
kΩ  
kΩ  
Input dividing resistance  
comparison  
Division resistance comparison  
-
0.8  
1.0  
1.2  
-
6
between SIx and GND※  
Digital PNP transistor block for photo-interrupter waveform shaping  
Input current  
ISIL  
-0.1  
VCC-0.25  
70  
-
-
-
mA SIx=0V  
High level output voltage  
Input dividing resistance  
Output pull-down resistance  
VSOH  
RSIP  
RSOL  
VCC-0.1  
100  
V
SIx=0V, ISO=-0.5mA  
130  
43  
kΩ  
kΩ  
23  
33  
Input dividing resistance  
comparison  
Division resistance comparison  
-
0.8  
1.0  
1.2  
-
6
between SIx and VCC※  
Voltage-regulator for photo-interrupter  
High level output voltage  
Output ON-Resistance  
Output leak current  
VREGH  
RONREG  
ILPI  
VCC-0.25  
VCC-0.2  
-
2.5  
1
V
IREG=100mA  
IREG=100mA  
-
-
2
0
μA SW=VCC  
6 Design target value (Not all shipped devices are fully tested.)  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.06 - Rev.A  
3/15  
Technical Note  
BD6757KN, BD6889GU  
Electrical Characteristic Diagrams  
BD6757KN  
1250  
BD6889GU  
BD6757KN  
1250  
1000  
750  
500  
250  
0
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
Top 75°C  
Mid 25°C  
Low -25°C  
980mW  
510mW  
1000  
750  
500  
250  
0
940mW  
570mW  
Op. range  
(2.5V to 5.5V)  
75°C  
85°C  
75 100 125 150  
0
25  
50  
75 100 125 150  
0
25  
50  
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0  
Supply voltage : VCC [V]  
Ambient temperature : Ta [°C]  
Ambient temperature : Ta [°C]  
Fig.1 Power Dissipation Reduction  
Fig.2 Power Dissipation Reduction  
Fig.3 Circuit current  
BD6889GU  
5.0  
BD6757KN  
5.0  
BD6757KN  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
Top 85°C  
Mid 25°C  
Low -25°C  
Top 75°C  
Mid 25°C  
Low -25°C  
Top 75°C  
Mid 25°C  
Low -25°C  
4.0  
4.0  
Op. range  
3.0  
3.0  
2.0  
1.0  
(2.5V to 5.7V)  
2.0  
1.0  
0.0  
0.0  
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0  
9.0 10.0 11.0 12.0 13.0 14.0 15.0  
9.0 10.0 11.0 12.0 13.0 14.0 15.0  
Supply voltage : VG [V]  
Supply voltage : VCC [V]  
Supply voltage : VG [V]  
Fig.4 Circuit current  
Fig.5 Output ON-Resistance  
(Full-ON Drive block)  
Fig.6 Output ON-Resistance  
(Linear Constant-Current Drive block)  
BD6757KN, BD6889GU  
250  
BD6889GU  
5.0  
BD6889GU  
5.0  
Top 85°C  
Mid 25°C  
Low -25°C  
Top 85°C  
Mid 25°C  
Low -25°C  
200  
150  
100  
4.0  
4.0  
Op. range  
Op. range  
3.0  
3.0  
(2.5V to 5.7V)  
(2.5V to 5.7V)  
2.0  
1.0  
2.0  
1.0  
Top 85°C  
Mid 25°C  
Low -25°C  
50  
0
0.0  
0.0  
0
50  
100  
150  
200  
250  
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0  
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0  
VLIM voltage : VLIM [mV]  
Supply voltage : VM [V]  
Supply voltage : VM [V]  
Fig.9 Output limit voltage  
Fig.7 Output ON-Resistance  
(Full-ON Drive block)  
Fig.8 Output ON-Resistance  
(Linear Constant-Current Drive block)  
(RNF=0.5)  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.06 - Rev.A  
4/15  
Technical Note  
BD6757KN, BD6889GU  
Pin arrangement and Pin Function  
39  
SI1  
SI2  
IN1B  
IN1A  
26  
OUT5A  
OUT5B  
PGND2  
OUT6A  
OUT6B  
OUT7A  
RNF  
OUT4A  
OUT4B  
OUT3A  
OUT3B  
PGND1  
OUT2B  
OUT2A  
OUT1B  
OUT1A  
IN5A  
BD6757KN  
OUT7B  
SENSE  
SO2  
SO1  
IN5B  
52  
13  
Fig.10 BD6757KN Pin Arrangement (Top View)  
UQFN52 Package  
BD6757KN Pin Function Table  
No. Pin Name  
Function  
No. Pin Name  
27 IN2A  
28 IN2B  
29 IN3A  
30 VM2  
31 CP1  
Function  
Control input pin ch2 A  
1
2
3
4
5
6
7
8
9
IN7B  
Control input pin ch7 B  
VM4  
Motor power supply pin ch7  
Control input pin ch7 A  
Control input pin ch2 B  
Control input pin ch3 A  
IN7A  
GND  
Ground Pin  
Motor power supply pin ch3 and ch4  
Charge pump capacitor connection pin 1  
Charge pump capacitor connection pin 2  
Charge pump capacitor connection pin 3  
Charge pump capacitor connection pin 4  
Charge pump output pin  
VREF  
VLIMH  
VLIML  
LIMSW  
VCC  
Reference voltage output pin  
Output current setting pin 1 ch7  
Output current setting pin 2 ch7  
Output current setting selection pin ch7  
Power supply pin  
32 CP2  
33 CP3  
34 CP4  
35 VG  
10 VM1  
Motor power supply pin ch1 and ch2  
Power-saving pin  
36 VM3  
37 IN3B  
38 IN4A  
39 IN4B  
40 SI1  
Motor power supply pin ch5 and ch6  
Control input pin ch3 B  
11 PS  
12 IN6B  
Control input pin ch6 B  
Control input pin ch4 A  
13 IN6A  
Control input pin ch6 A  
Control input pin ch4 B  
14 IN5B  
Control input pin ch5 B  
Digital transistor input pin 1  
15 IN5A  
Control input pin ch5 A  
41 SI2  
Digital transistor input pin 2  
16 OUT1A  
17 OUT1B  
18 OUT2A  
19 OUT2B  
20 PGND1  
21 OUT3B  
22 OUT3A  
23 OUT4B  
24 OUT4A  
25 IN1A  
H-bridge output pin ch1 A  
H-bridge output pin ch1 B  
H-bridge output pin ch2 A  
H-bridge output pin ch2 B  
Motor ground pin ch1 to ch4  
H-bridge output pin ch3 B  
H-bridge output pin ch3 A  
H-bridge output pin ch4 B  
H-bridge output pin ch4 A  
Control input pin ch1 A  
42 OUT5A  
43 OUT5B  
44 PGND2  
45 OUT6A  
46 OUT6B  
47 OUT7A  
48 RNF  
49 OUT7B  
50 SENSE  
51 SO2  
H-bridge output pin ch5 A  
H-bridge output pin ch5 B  
Motor ground pin ch5 and ch6  
H-bridge output pin ch6 A  
H-bridge output pin ch6 B  
H-bridge output pin ch7 A  
Resistance connection pin for output current detection ch7  
H-bridge output pin ch7 B  
Output current detection pin ch7  
Digital transistor output pin 2  
Digital transistor output pin 1  
26 IN1B  
Control input pin ch1 B  
52 SO1  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.06 - Rev.A  
5/15  
Technical Note  
BD6757KN, BD6889GU  
1
2
3
4
5
6
7
8
A
N.C.  
OUT6A OUT6B  
VM3  
PGND3 OUT5B OUT5A  
N.C.  
B
C
D
E
F
DSW  
SW  
IN6A  
DSEL2  
VREF  
IN1A  
IN6B  
IN7A  
IN7B  
IN1B  
SI1  
SO4P  
SI4  
SO4N  
IN5A  
SI3  
REG  
PS  
OUT4A  
OUT4B  
VM2  
OUT7A  
VM4  
VCC  
IN5B  
IN4B  
SI2  
SO3P  
RNF  
DSEL1  
IN4A  
IN3A  
SO2P  
SO3N PGND2  
SENSE VLIM  
IN2A  
IN3B  
OUT3B  
G
H
OUT7B  
N.C.  
GND  
IN2B  
SO1P  
SO1N  
VM1  
SO2N OUT3A  
OUT1A OUT1B PGND1  
OUT2B OUT2A  
N.C.  
Fig.11 BD6889GU Pin Arrangement (Top View)  
VBGA063T050 Package  
BD6889GU Pin Function Table  
No. Pin Name  
A1 N.C.  
A2 OUT6A  
A3 OUT6B  
A4 VM3  
A5 PGND3  
A6 OUT5B  
A7 OUT5A  
A8 N.C.  
B1  
Function  
-
No. Pin Name  
E1 RNF  
Function  
Resistance connection pin for output current detection ch7  
Selection pin for transistor output 1  
Control input pin ch1 A  
H-bridge output pin ch6 A  
H-bridge output pin ch6 B  
Motor power supply pin ch5 and ch6  
Motor ground pin ch5 and ch6  
H-bridge output pin ch5 B  
H-bridge output pin ch5 A  
-
E2 DSEL1  
E3 IN1A  
E4 IN1B  
E5 IN4B  
E6 IN4A  
E7 SO3N  
E8 PGND2  
F1 SENSE  
F2 VLIM  
F3 IN2A  
Control input pin ch1 B  
Control input pin ch4 B  
Control input pin ch4 A  
NPN transistor output pin 3  
Motor ground pin ch3 and ch4  
Output current detection pin ch7  
Output current setting ch7  
B2 DSW  
B3 IN6A  
B4 IN6B  
B5 SO4P  
B6 SO4N  
B7 REG  
B8 OUT4A  
C1 OUT7A  
C2 SW  
Enable input pin for transistor  
Control input pin ch6 A  
Control input pin ch2 A  
Digital transistor input pin 1  
Digital transistor input pin 2  
Control input pin ch3 A  
Control input pin ch3 B  
H-bridge output pin ch3 B  
H-bridge output pin ch7 B  
Ground pin  
Control input pin ch6 B  
F4 SI1  
PNP transistor output pin 4  
NPN transistor output pin 4  
Regulator output pin for PI  
H-bridge output pin ch4 A  
H-bridge output pin ch7 A  
Regulator input pin for PI  
Selection pin for transistor output 2  
Control input pin ch7 A  
F5 SI2  
F6 IN3A  
F7 IN3B  
F8 OUT3B  
G1 OUT7B  
G2 GND  
G3 IN2B  
G4 SO1P  
G5 SO1N  
G6 SO2P  
G7 SO2N  
G8 OUT3A  
H1 N.C.  
C3 DSEL2  
C4 IN7A  
C5 SI4  
Control input pin ch2 B  
PNP transistor output pin 1  
NPN transistor output pin 1  
PNP transistor output pin 2  
NPN transistor output pin 2  
H-bridge output pin ch3 A  
-
Digital transistor input pin 4  
Control input pin ch5 A  
C6 IN5A  
C7 PS  
Power-saving pin  
C8 OUT4B  
D1 VM4  
D2 VCC  
D3 VREF  
D4 IN7B  
D5 IN5B  
D6 SI3  
H-bridge output pin ch4 B  
Motor power supply pin ch7  
Power supply pin  
H2 OUT1A  
H3 OUT1B  
H4 PGND1  
H5 VM1  
H-bridge output pin ch1 A  
H-bridge output pin ch1 B  
Motor ground pin ch1 and ch2  
Motor power supply pin ch1 and ch2  
H-bridge output pin ch2 B  
H-bridge output pin ch2 A  
-
Reference voltage output pin  
Control input pin ch7 B  
Control input pin ch5 B  
Digital transistor input pin 3  
PNP transistor output pin 3  
Motor power supply pin ch3 and ch4  
H6 OUT2B  
H7 OUT2A  
H8 N.C.  
D7 SO3P  
D8 VM2  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.06 - Rev.A  
6/15  
Technical Note  
BD6757KN, BD6889GU  
Application Circuit Diagram  
Bypass filter Capacitor for  
power supply input. (p.14/16)  
0.1μF  
0.1μF  
0.1μF  
1100uF  
CP1  
CP2  
CP3  
CP4  
VG  
VCC  
9
31  
32  
33  
34  
35  
Power-saving (p.9/16)  
H : Active  
OSC  
Charge Pump  
Charge Pump  
Bypass filter Capacitor for  
power supply input. (p.14/16)  
L : Standby  
PS 11  
TSD & UVLO  
VG  
BandGap  
Power Save  
1~100uF  
Motor control input  
(p.9/16)  
10  
16  
VM1  
OUT1A  
OUT1B  
H bridge  
Full ON  
IN1A 25  
IN1B 26  
IN2A 27  
IN2B 28  
M
Level Shift  
&
17  
18  
Logic12  
OUT2A  
OUT2B  
Pre Driver  
H bridge  
Full ON  
Bypass filter Capacitor for  
power supply input. (p.14/16)  
19  
1~100uF  
Motor control input  
(p.9/16)  
30  
22  
VG  
VM2  
OUT3A  
OUT3B  
H bridge  
Full ON  
IN3A 29  
IN3B 37  
IN4A 38  
IN4B 39  
M
Level Shift  
&
21  
24  
Logic34  
OUT4A  
OUT4B  
Pre Driver  
H bridge  
Full ON  
Bypass filter Capacitor for  
power supply input. (p.14/16)  
23  
20  
PGND1  
1~100uF  
Motor control input  
(p.9/16)  
36  
42  
VG  
VM3  
OUT5A  
OUT5B  
H bridge  
Full ON  
IN5A 15  
IN5B 14  
IN6A 13  
IN6B 12  
M
Level Shift  
&
43  
45  
Logic56  
OUT6A  
OUT6B  
Pre Driver  
H bridge  
Full ON  
Bypass filter Capacitor for  
power supply input. (p.14/16)  
46  
44  
PGND2  
1~100uF  
Motor control input  
(p.9/16)  
VG  
2
VM4  
Level Shift  
&
47  
49  
IN7A  
IN7B  
3
1
OUT7A  
OUT7B  
H bridge  
Const. Current  
Logic7  
Pre Driver  
RNF  
48  
50  
0.1~5.0Ω  
SENSE  
VCC  
VCC  
The output current is converted to a voltage with  
the RNF external resistor and transmitted to the  
SENSE pin. (p.9/16)  
VREF  
Selector  
Iout[A] = (VLIMH or VLIML[V])÷RNF[]  
4
5
8
6
7
40  
52  
41  
51  
GND  
VREF  
LIMSW  
VLIMH  
R2  
VLIML  
R3  
SI1  
SO1  
SI2  
SO2  
R1  
The sensor signal SI2, for lens position  
detection, is reshaped and output to SO2.  
p.10/16  
Output current selection  
(p.9/16)  
When using the VREF voltage (0.9V) resistance division  
value as VLIMH and VLIML input value, select R1, R2, and R3  
values such that,  
H : VLIML  
L : VLIMH  
1kR1+R2+R320k(p.9/16)  
The sensor signal SI1, for lens position  
detection, is reshaped and output to SO1.  
p.10/16  
Fig.12 BD6757KN Application Circuit Diagram  
www.rohm.com  
2009.06 - Rev.A  
7/15  
© 2009 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BD6757KN, BD6889GU  
Bypass filter Capacitor for  
power supply input. (p.14/16)  
1100uF  
Power-saving (p.9/16)  
H : Active  
VCC  
Bypass filter Capacitor for  
power supply input. (p.14/16)  
L : Standby  
D2  
PS C7  
Power Save  
TSD & UVLO  
BandGap  
1~100uF  
Motor control input  
(p.9/16)  
H5  
H2  
VM1  
OUT1A  
OUT1B  
H bridge  
Full ON  
IN1A E3  
IN1B E4  
IN2A F3  
IN2B G3  
M
Level Shift  
&
H3  
H7  
Logic12  
Logic34  
Logic56  
OUT2A  
OUT2B  
Pre Driver  
H bridge  
Full ON  
Bypass filter Capacitor for  
power supply input. (p.14/16)  
H6  
H4  
PGND1  
1~100uF  
Motor control input  
(p.9/16)  
D8  
G8  
VM2  
OUT3A  
OUT3B  
H bridge  
Full ON  
IN3A F6  
IN3B F7  
IN4A E6  
IN4B E5  
M
Level Shift  
&
F8  
B8  
Pre Driver  
OUT4A  
OUT4B  
H bridge  
Full ON  
Bypass filter Capacitor for  
power supply input. (p.14/16)  
C8  
E8  
PGND2  
1~100uF  
Motor control input  
(p.9/16)  
A4  
A7  
VM3  
OUT5A  
OUT5B  
H bridge  
Full ON  
IN5A C6  
IN5B D5  
IN6A B3  
IN6B B4  
M
Level Shift  
&
A6  
A2  
Pre Driver  
OUT6A  
OUT6B  
H bridge  
Full ON  
Bypass filter Capacitor for  
power supply input. (p.14/16)  
A3  
A5  
PGND3  
1~100uF  
Motor control input  
(p.9/16)  
D1  
C1  
G1  
VM4  
The output current is converted  
to a voltage with the RNF  
external resistor and transmitted  
to the SENSE pin. (p.9/16)  
Iout[A] = VLIM[V]÷RNF[]  
Level Shift  
&
IN7A C4  
IN7B D4  
OUT7A  
OUT7B  
H bridge  
Const. Current  
Logic7  
Pre Driver  
RNF  
E1  
F1  
0.1~5.0Ω  
SENSE  
Selector for Digital  
transistor (p.10/16)  
VLIM  
F2  
D3  
R2  
DSEL1 E2  
DSEL2 C3  
DSW B2  
R1  
Digital  
transistor SW  
DTR Selector  
VREF  
VREF  
When using the VREF voltage (0.9V)  
resistance division value as VLIM input  
value, select R1 and R2 values such that,  
1kR1+R220k(p.9/16)  
VCC  
VCC  
REG Switch (p.10/16)  
H : REG output ON  
L : REG output OFF  
SO4P  
SO4N  
B5  
B6  
VCC  
VCC  
SW C2  
REG  
SW  
SW  
C5  
REG B7  
SI4  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
Power supply for photo  
interrupter (p.10/16)  
The sensor signal SI4, for lens position  
detection, is reshaped and output to SO4x.  
(p.10/16)  
VCC  
VCC  
VCC  
SW  
SW  
SW  
SW  
SW  
SW  
G2 F4  
GND  
G5 G4  
F5  
G7 G6  
D6  
SI3  
E7 D7  
SO1N  
REG  
SO1P  
SO2N  
REG  
SO2P  
SO3N  
REG  
SO3P  
SI1  
SI2  
The sensor signal SI1, for lens position  
detection, is reshaped and output to SO1x.  
(p.10/16)  
The sensor signal SI3, for lens position  
detection, is reshaped and output to SO3x.  
(p.10/16)  
The sensor signal SI2, for lens position  
detection, is reshaped and output to SO2x.  
(p.10/16)  
Fig.13 BD6889GU Application Circuit Diagram  
8/15  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.06 - Rev.A  
Technical Note  
BD6757KN, BD6889GU  
Function Explanation  
1) Power-saving function  
When Low-level voltage is applied to PS pin, the IC will be turned off internally and the circuit current will be 0μA (Typ.).  
During operating mode, PS pin should be High-level. (See the Electrical Characteristics; p.2/16 and p.3/16)  
2) Motor Control input  
(1) INxA and INxB pins  
These pins are used to program and control the motor drive modes. The Full-ON drivers and the Linear Constant-Current  
driver use IN/IN and EN/IN input modes, respectively. (See the Electrical Characteristics; p.2/16 and p.3/16, and I/O Truth  
Table; p.10/16)  
3) H-bridge  
The 7-channel H-bridges can be controlled independently. For this reason, it is possible to drive the H-bridges  
simultaneously, as long as the package thermal tolerances are not exceeded.  
The H-bridge output transistors of the BD6757KN and BD6889GU consist of Power DMOS, with the charge pump step-up  
power supply VG, and Power CMOS, with the motor power supply VM, respectively. The total H-bridge ON-Resistance on  
the high and low sides varies with the VG and VM voltages, respectively. The system must be designed so that the  
maximum H-bridge current for each channel is 800mA or below. (See the Operating Conditions; p.1/16)  
4) Drive system of Linear Constant-Current H-bridge (BD6757KN: ch7 and BD6889GU: ch7)  
BD6757KN (ch7) and BD6889GU (ch7) enable Linear Constant-Current Driving.  
(1) Reference voltage output (with a tolerance of ±2%)  
The VREF pin outputs 0.9V, based on the internal reference voltage. The output current of the Constant-Current Drive  
block is controllable by connecting external resistance to the VREF pin of the IC and applying a voltage divided by the  
resistor to the output current setting pins. (BD6757KN: VLIMH and VLIML pins, BD6889GU: VLIM pin) It is  
recommended to set the external resistance to 1kor above in consideration of the current capacity of the VREF pin,  
and 20kor below in order to minimize the fluctuation of the set value caused by the base current of the internal  
transistor of the IC.  
(2) Output current settings and setting changes (BD6757KN)  
When the Low-level control voltage is applied to the LIMSW pin, the value on the VLIMH pin will be used as an output  
current set value to control the output current. When the High-level control voltage is applied to the LIMSW pin, the  
value on the VLIML pin will be used as an output current set value to control the output current. (See the Electrical  
Characteristics; P.2/16)  
(3) Output current detection and current settings  
By connecting external resistor (0.1to 5.0) to the RNF pin of the IC, the motor drive current will be converted into  
voltage in order to be detected. The output current is kept constant by shorting the RNF and SENSE pins and  
comparing the voltage with the VLIMH or VLIML voltage (VLIM voltage in the case of the BD6889GU). To perform  
output current settings more precisely, trim the external RNF resistance if needed, and supply a precise voltage externally to  
the VLIMH or VLIML pin of the IC (VLIM pin in the case of the BD6889GU). In that case, open the VREF pin.  
VLIMH[V] or VLIML[V]  
Select VLIMH when LIMSW is Low-level  
Select VLIML when LIMSW is High-level  
(BD6757KN)  
・・・・・・(1)  
RNF[]  
Output current value Iout[A] =  
VLIM[V]  
(BD6889GU)  
RNF[]  
The output current is 400mA3% if 0.2V is applied to the VLIMH or VLIML pin (VLIM pin in the case of the  
BD6889GU) and a 0.5resistor is connected externally to the RNF pin.  
If the VLIMH and VLIML pins (VLIM pin in the case of the BD6889GU) are shorted to the VCC pin (or the same voltage  
level as the VCC is applied) and the SENSE and RNF pins are shorted to the ground, this channel can be used as a  
Full-ON Drive H-bridge like the other six channels.  
5) Charge pump (BD6757KN)  
Each output H-bridge of the BD6757KN on the high and low sides consists of Nch DMOS. Therefore, the gate voltage VG  
should be higher than the VM voltage to drive the Nch DMOS on the high side.  
The BD6757KN has a built-in charge pump circuit that generates VG voltage by connecting an external capacitor (0.01μF  
to 0.1μF).  
If a 0.1μF capacitor is connected between: CP1 and CP2, CP3 and CP4, VG and GND  
Then, VG pin output voltage will be:  
VM1 + (VCC 2)  
If a 0.1μF capacitor is connected between: CP1 and CP2, VG and GND  
CP4 and VG pins are shorted, and CP3 pin is open  
VM1 + VCC  
Then, VG pin output voltage will be:  
The VM1 to VM4 respectively can be set to voltages different to one another. In order to ensure better performance, the  
voltage differential between VG and VM must be 4.5V or higher, and the VG voltage must not exceed the absolute  
maximum rating of 15V.  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.06 - Rev.A  
9/15  
Technical Note  
BD6757KN, BD6889GU  
6) Digital transistor for photo-interrupter waveform shaping (BD6757KN and BD6889GU)  
The BD6757KN, and BD6889GU build in two digital NPN transistor circuits, and eight digital NPN and PNP transistor  
circuits for photo-interrupter waveform shaping, respectively. The sensor signal, for lens position detection, is reshaped  
and output to the DSP. The input (SIx pin) is a dividing resistance type, and provided with NPN output (SOxN pin) pull-up  
resistor and PNP output (SOxP pin) pull-down resistor. This is so that VCC, and GND voltage will be NPN output, and  
PNP output, respectively, when the input is open. In the case of the BD6889GU, DSW, DSEL1, and DSEL2 pins can  
control the switching of NPN and PNP transistor. The inputs are provided with input pull-down resistor. This is so that  
GND voltage will be input, when these three pins are open. (See I/O Truth Table; P.12/16)  
7) Voltage-regulator for photo-interrupter (BD6889GU)  
The BD6889GU builds in voltage-regulator circuits for photo-interrupter. When High-level voltage is applied to SW pin,  
the REG pin will be turned on. The input is provided with input pull-down resistor. This is so that REG pin will be turn off,  
when the input is open.  
I/O Truth Table  
BD6757KN and BD6889GU Full-ON Driver ch1 to ch6 I/O Truth Table  
INPUT  
OUTPUT  
Drive mode  
Output mode  
INxA  
L
H
L
H
INxB  
L
L
H
H
OUTxA  
OUTxB  
Z
H
L
Z
L
H
L
Standby  
CW  
CCW  
Brake  
IN/IN  
L
L: Low, H: High, X: Don't care, Z: High impedance  
At CW, current flows from OUTA to OUTB. At CCW, current flows from OUTB to OUTA.  
BD6757KN and BD6889GU Linear Constant-Current Driver ch7 I/O Truth Table  
INPUT  
OUTPUT  
Drive mode  
Output mode  
IN7A  
L
H
IN7B  
X
L
OUT7A  
OUT7B  
Z
H
L
Z
L
H
Standby  
CW  
CCW  
EN/IN  
H
H
L: Low, H: High, X: Don't care, Z: High impedance  
At CW, current flows from OUTA to OUTB. At CCW, current flows from OUTB to OUTA.  
BD6889GU Digital Transistor I/O Truth Table  
INPUT  
OUTPUT  
DSW  
L
H
H
H
DSEL1  
DSEL2  
PNP1  
OFF  
OFF  
OFF  
ON  
NPN1  
OFF  
ON  
ON  
OFF  
OFF  
PNP2  
OFF  
OFF  
OFF  
ON  
NPN2  
OFF  
ON  
ON  
OFF  
OFF  
PNP3  
OFF  
OFF  
ON  
OFF  
ON  
NPN3  
OFF  
ON  
OFF  
ON  
PNP4  
OFF  
OFF  
ON  
OFF  
ON  
NPN4  
OFF  
ON  
OFF  
ON  
X
L
L
H
H
X
L
H
L
Logic  
H
H
ON  
ON  
OFF  
OFF  
L: Low, H: High, X: Don’t care, OFF: GND (in the case of PNP), VCC (in the case of NPN)  
PNPx output to SOxP terminal, NPNx output to SOxN terminal  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.06 - Rev.A  
10/15  
Technical Note  
BD6757KN, BD6889GU  
In the case of drive the Stepping Motor using ch1 and ch2 IN/IN input mode of the BD6757KN and BD6889GU  
2 Phases  
INPUT  
OUTPUT  
Output mode  
ch1 / ch2  
IN1A  
IN1B  
IN2A  
IN2B  
OUT1A OUT1B OUT2A OUT2B  
L
H
L
L
L
L
H
H
L
L
L
Z
H
L
Z
L
Z
H
H
L
Z
L
Stand by  
1. CW / CW  
3. CCW / CW  
5. CCW / CCW  
7. CW / CCW  
H
H
L
L
H
H
L
L
L
H
H
L
H
H
H
L
H
L
L: Low, H: High, X: Don't care, Z: High impedance  
At CW, current flows from OUTA to OUTB. At CCW, current flows from OUTB to OUTA.  
1-2 Phases  
INPUT  
OUTPUT  
OUT1A OUT1B OUT2A OUT2B  
Output mode  
ch1 / ch2  
IN1A  
L
IN1B  
IN2A  
L
IN2B  
L
L
L
Z
H
Z
L
Z
L
Z
H
H
H
Z
L
Z
L
Stand by  
H
L
H
H
H
L
L
1. CW / CW  
2. Z / CW  
L
L
Z
H
H
H
Z
L
L
L
H
H
H
L
L
L
3. CCW / CW  
4. CCW / Z  
5. CCW / CCW  
6. Z / CCW  
7. CW / CCW  
8. CW / Z  
L
L
L
Z
H
H
H
Z
L
L
H
H
H
L
L
L
L
Z
H
H
L
H
L
L
L
H
L
L
L
Z
L: Low, H: High, X: Don't care, Z: High impedance  
At CW, current flows from OUTA to OUTB. At CCW, current flows from OUTB to OUTA.  
H
H
IN1A  
IN1B  
IN1A  
IN1B  
L
H
L
H
L
L
H
H
IN2A  
IN2B  
IN2A  
IN2B  
L
H
L
H
L
L
H
H
OUT1A  
OUT1B  
OUT1A  
OUT1B  
L
L
H
H
L
L
H
H
OUT2A  
OUT2B  
OUT2A  
OUT2B  
L
H
L
H
L
L
1
3
5
7
1
3
5
7
1
2
3
4
5
6
7
8
High impedance  
Fig.14 2 Phases Timing Sequence with IN/IN Input  
Fig.15 1-2 Phases Timing Sequence with IN/IN Input  
CW  
CW  
OUT2A  
OUT2A  
Forward  
Forward  
3
5
1
7
3
5
1
7
2
OUT1B  
CCW  
OUT1A  
CW  
OUT1B  
CCW  
OUT1A  
CW  
4
8
6
OUT2B  
CCW  
OUT2B  
CCW  
Reverse  
Reverse  
Fig.16 Torque Vector of 2 Phases Mode  
Fig.17 Torque Vector of 1-2 Phases Mode  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.06 - Rev.A  
11/15  
Technical Note  
BD6757KN, BD6889GU  
I/O Circuit Diagram  
PS, INxA, INxB, LIMSW  
VMx, OUTxA, OUTxB, PGNDx, RNF  
VMx  
VREF  
VLIMH, VLIML, SENSE  
VCC  
VCC  
VCC  
VCC  
VCC  
10kΩ  
10kΩ  
OUTxA  
OUTxB  
50kΩ  
100kΩ  
PGNDx  
RNF  
CP3, CP1  
VCC  
VG, CP4, CP2  
SIx  
SOx  
VG  
VCC  
VCC  
VCC  
VCC  
10kΩ  
100kΩ  
CP4  
CP2  
100kΩ  
VM1  
Fig.18 BD6757KN I/O Circuit Diagram (Resistance values are typical ones)  
PS, INxA, INxB, SW, DSW, DSEL1,  
DSEL2  
VMx, OUTxA, OUTxB, PGNDx, RNF  
VMx  
VREF  
VLIM, SENSE  
VCC  
VCC  
VCC  
VCC  
VCC  
10kΩ  
1kΩ  
OUTxA  
OUTxB  
100kΩ  
100kΩ  
PGNDx  
RNF  
SIx  
REG  
SOxN  
SOxP  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
100kΩ  
33kΩ  
33kΩ  
VCC  
100kΩ  
100kΩ  
100kΩ  
Fig.19 BD6889GU I/O Circuit Diagram (Resistance values are typical ones)  
12/15  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.06 - Rev.A  
Technical Note  
BD6757KN, BD6889GU  
Heat Dissipation  
1) Power Consumption  
The power consumption of the IC (Pw) is expressed by the following formula.  
Pw[W] = VCC[V] ICC[A] + Iout2[A2] RON[] (Full-ON Drive block and PWM Constant-Current Drive block)  
・・・・・・(2)  
= VCC[V] ICC[A] + Iout[A] (VM[V] - VRNF[V] - Iout[A] Rm[]) (Linear Constant-Current Drive block) ・・・・・・(3)  
Pw: Power consumption of the IC  
VCC: Power supply voltage on the VCC pin  
ICC: Current consumption of the VCC pin  
Iout: Current consumption of the VM pin on the drive channel  
RON: Total ON-Resistance on the high and low drive channel  
VM: Power supply voltage on the VM pin on the drive channel  
VRNF: Voltage on the RNF pin on the drive channel  
Rm: Resistance on the motor on the drive channel  
While in operation, check that the junction temperature (Tjmax) of the IC will not be in excess of 150, in consideration  
of formula (2), formula (3), the package power (Pd), and ambient temperature (Ta). If the junction temperature exceeds  
150, the IC will not work as a properly. This can cause problems, such as parasitic oscillation and temperature leakage.  
If the IC is used under such conditions, it will result in characteristic degradation and eventually fail. Be sure to keep the  
junction temperature lower than 150.  
2) Measurement Method of Junction Temperature  
The junction temperature can be measured by the following method.  
By using the diode temperature characteristics of the control input pin, on a  
channel that is not driven, the junction temperature X can be measured in a  
VIN  
pseudo manner.  
The junction temperature X[] under certain conditions is expressed by formula  
(4), provided that the temperature characteristic of the diode is -2 mV/℃  
V
GND  
50μA  
a - b[mV]  
X[°C] =  
+ 25[°C]  
・・・・・・(4)  
-2 [mV/°C]  
Fig.20 Tjmax Measurement Circuit Diagram  
X: Junction temperature  
a: The voltmeter V value at a junction temperature of 25℃  
b: The voltmeter V value at a junction temperature of X℃  
-2: Temperature characteristic of diode  
If the exact junction temperature is desired, it is necessary to measure the specific temperature characteristic of the  
internal diode, of each IC.  
Notes for use  
1) Absolute maximum ratings  
Use of the IC in excess of absolute maximum ratings such as the applied voltage or operating temperature range may  
result in IC damage. Assumptions should not be made regarding the state of the IC (short mode or open mode) when  
such damage is suffered. The implementation of a physical safety measure such as a fuse should be considered when  
use of the IC in a special mode where the absolute maximum ratings may be exceeded is anticipated.  
2) Storage temperature range  
As long as the IC is kept within this range, there should be no problems in the IC’s performance. Conversely, extreme  
temperature changes may result in poor IC performance, even if the changes are within the above range.  
3) Power supply pins and lines  
None of the VM line for the H-bridges is internally connected to the VCC power supply line, which is only for the control  
logic or analog circuit. Therefore, the VM and VCC lines can be driven at different voltages. Although these lines can be  
connected to a common power supply, do not open the power supply pin but connect it to the power supply externally.  
Regenerated current may flow as a result of the motor's back electromotive force. Insert capacitors between the power  
supply and ground pins to serve as a route for regenerated current. Determine the capacitance in full consideration of all  
the characteristics of the electrolytic capacitor, because the electrolytic capacitor may loose some capacitance at low  
temperatures. If the connected power supply does not have sufficient current absorption capacity, regenerative current  
will cause the voltage on the power supply line to rise, which combined with the product and its peripheral circuitry may  
exceed the absolute maximum ratings. It is recommended to implement a physical safety measure such as the insertion  
of a voltage clamp diode between the power supply and ground pins.  
For this IC with several power supplies and a part consists of the CMOS block, it is possible that rush current may flow  
instantaneously due to the internal powering sequence and delays, and to the unstable internal logic, respectively. Therefore,  
give special consideration to power coupling capacitance, width of power and ground wirings, and routing of wiring.  
www.rohm.com  
2009.06 - Rev.A  
13/15  
© 2009 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BD6757KN, BD6889GU  
4) Ground pins and lines  
Ensure a minimum GND pin potential in all operating conditions. Make sure that no pins are at a voltage below the GND  
at any time, regardless of whether it is a transient signal or not.  
When using both small signal GND and large current MGND patterns, it is recommended to isolate the two ground  
patterns, placing a single ground point at the application's reference point so that the pattern wiring resistance and  
voltage variations caused by large currents do not cause variations in the small signal ground voltage. Be careful not to  
change the GND wiring pattern of any external components, either.  
The power supply and ground lines must be as short and thick as possible to reduce line impedance.  
5) Thermal design  
Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions.  
6) Pin short and wrong direction assembly of the device  
Use caution when positioning the IC for mounting on printed circuit boards. The IC may be damaged if there is any  
connection error or if positive and ground power supply terminals are reversed. The IC may also be damaged if pins are  
shorted together or are shorted to other circuit’s power lines.  
7) Actions in strong magnetic field  
Use caution when using the IC in the presence of a strong magnetic field as doing so may cause the IC to malfunction.  
8) ASO  
When using the IC, set the output transistor for the motor so that it does not exceed absolute maximum ratings or ASO.  
9) Thermal shutdown circuit  
If the junction temperature (Tjmax) reaches 175°C, the TSD circuit will operate, and the coil output circuit of the motor will  
open. There is a temperature hysteresis of approximately 20°C (BD6757KN Typ.) and 25°C (BD6889GU Typ.). The TSD  
circuit is designed only to shut off the IC in order to prevent runaway thermal operation. It is not designed to protect the IC  
or guarantee its operation. The performance of the IC’s characteristics is not guaranteed and it is recommended that the  
device is replaced after the TSD is activated.  
10) Testing on application board  
When testing the IC on an application board, connecting a capacitor to a pin with low impedance subjects the IC to stress.  
Always discharge capacitors after each process or step. Always turn the IC's power supply off before connecting it to, or  
removing it from a jig or fixture, during the inspection process. Ground the IC during assembly steps as an antistatic  
measure. Use similar precaution when transporting and storing the IC.  
11) Application example  
The application circuit is recommended for use. Make sure to confirm the adequacy of the characteristics. When using  
the circuit with changes to the external circuit constants, make sure to leave an adequate margin for external components  
including static and transitional characteristics as well as dispersion of the IC.  
12) Regarding input pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements to keep them isolated. P-N  
junctions are formed at the intersection of these P layers with the N layers of other elements, creating a parasitic diode or  
transistor. For example, the relation between each potential is as follows:  
When GND > Pin A, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic diode and transistor.  
Parasitic elements can occur inevitably in the structure of the IC. The operation of parasitic elements can result in mutual  
interference among circuits, operational faults, or physical damage. Accordingly, methods by which parasitic elements  
operate, such as applying a voltage that is lower than the GND (P substrate) voltage to an input pin, should not be used.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
B
Pin B  
C
E
Pin A  
B
C
E
N
N
N
P+  
P+  
P+  
P substrate  
GND  
P+  
N
P
P
Parasitic  
element  
N
N
Parasitic  
element  
P substrate  
GND GND  
GND  
Other adjacent  
elements  
Parasitic element  
Parasitic element  
Fig.21 Example of Simple IC Architecture  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.06 - Rev.A  
14/15  
Technical Note  
BD6757KN, BD6889GU  
Ordering part number  
B
D
6
7
5
7
K
N
-
E
2
Part No.  
Part No.  
6757 : Wide power supply  
voltage range  
Package  
KN : UQFN52  
GU : VBGA063T050  
Packaging and forming specification  
E2: Embossed tape and reel  
6889 : Subminiature package  
UQFN52  
7.2 0.1  
7.0 0.1  
<Tape and Reel information>  
(1.2)  
Tape  
Embossed carrier tape (with dry pack)  
39  
27  
40  
26  
14  
Quantity  
2500pcs  
E2  
52  
Direction  
of feed  
1
13  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
0.2 0.05  
M
0.05  
(
)
+0.1  
0.05  
0.6  
-
0.3  
(0.55)  
3-(0.  
45  
)
Notice :  
Do not use the dotted line area  
for soldering  
Direction of feed  
1pin  
(0.2)  
0.4  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
VBGA063T050  
<Tape and Reel information>  
1PIN MARK  
5.0 0.1  
Tape  
Embossed carrier tape (with dry pack)  
Quantity  
2500pcs  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
S
(
)
0.08  
63- 0.3 0.05  
S
P=0.5×7  
0.75 0.1  
0.5  
φ
A
φ
M
0.05 S AB  
H
G
F
B
E
D
C
B
A
1 2 3 4 5 6 7 8  
Direction of feed  
1pin  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.06 - Rev.A  
15/15  
Daattaasshheeeett  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual  
ambient temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the  
ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice - GE  
Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
QR code printed on ROHM Products label is for ROHM’s internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act,  
please consult with ROHM representative in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable  
for infringement of any intellectual property rights or other damages arising from use of such information or data.:  
2. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the information contained in this document.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice - GE  
Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
配单直通车
BD6757KN-E2产品参数
型号:BD6757KN-E2
是否Rohs认证: 符合
生命周期:Obsolete
零件包装代码:QFN
包装说明:VQCCN,
针数:52
Reach Compliance Code:compliant
ECCN代码:EAR99
HTS代码:8542.39.00.01
风险等级:5.82
模拟集成电路 - 其他类型:STEPPER MOTOR CONTROLLER
JESD-30 代码:S-XQCC-N52
长度:7.2 mm
功能数量:1
端子数量:52
最高工作温度:75 °C
最低工作温度:-25 °C
最大输出电流:0.8 A
封装主体材料:UNSPECIFIED
封装代码:VQCCN
封装形状:SQUARE
封装形式:CHIP CARRIER, VERY THIN PROFILE
峰值回流温度(摄氏度):NOT SPECIFIED
认证状态:Not Qualified
座面最大高度:0.95 mm
最大供电电压 (Vsup):5.5 V
最小供电电压 (Vsup):2.5 V
标称供电电压 (Vsup):3 V
表面贴装:YES
温度等级:COMMERCIAL EXTENDED
端子形式:NO LEAD
端子节距:0.4 mm
端子位置:QUAD
处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:7.2 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!