欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • BD8174MUV-E2图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • BD8174MUV-E2
  • 数量85000 
  • 厂家ROHM/罗姆 
  • 封装QFN 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • BD8174MU图
  • 集好芯城

     该会员已使用本站13年以上
  • BD8174MU
  • 数量8012 
  • 厂家ROHM/罗姆 
  • 封装QFN 
  • 批号最新批次 
  • 原厂原装公司现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • BD8174MUV-E2图
  • 北京齐天芯科技有限公司

     该会员已使用本站15年以上
  • BD8174MUV-E2
  • 数量6000 
  • 厂家ROHM 
  • 封装QFN 
  • 批号2024+ 
  • 原装正品,假一罚十
  • QQ:2880824479QQ:2880824479 复制
    QQ:1344056792QQ:1344056792 复制
  • 010-62104931 QQ:2880824479QQ:1344056792
  • BD8174MUV-E2图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • BD8174MUV-E2
  • 数量4033 
  • 厂家ROHM/罗姆 
  • 封装NA/ 
  • 批号23+ 
  • 优势代理渠道,原装正品,可全系列订货开增值税票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • BD8174MU-F2图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • BD8174MU-F2
  • 数量8800 
  • 厂家ROHM/罗姆 
  • 封装QFN 
  • 批号新年份 
  • 羿芯诚只做原装,原厂渠道,价格优势可谈!
  • QQ:2853992132QQ:2853992132 复制
  • 0755-82570683 QQ:2853992132
  • BD8174MUV-E2图
  • 深圳市科庆电子有限公司

     该会员已使用本站16年以上
  • BD8174MUV-E2
  • 数量11938 
  • 厂家ROHM 
  • 封装QFN 
  • 批号23+ 
  • 只做进口原装/到货/可含13%税
  • QQ:2850188252QQ:2850188252 复制
    QQ:2850188256QQ:2850188256 复制
  • 0755 QQ:2850188252QQ:2850188256
  • BD8174MUV-E2图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • BD8174MUV-E2
  • 数量3177 
  • 厂家ROHM 
  • 封装QFN 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507168QQ:2355507168 复制
    QQ:2355507169QQ:2355507169 复制
  • 86-755-83219286 QQ:2355507168QQ:2355507169
  • BD8174MUV-E2图
  • 昂富(深圳)电子科技有限公司

     该会员已使用本站4年以上
  • BD8174MUV-E2
  • 数量57638 
  • 厂家ROHM/罗姆 
  • 封装QFN 
  • 批号23+ 
  • 一站式BOM配单,短缺料找现货,怕受骗,就找昂富电子.
  • QQ:GTY82dX7
  • 0755-23611557【陈妙华 QQ:GTY82dX7
  • BD8174MUV-E2图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • BD8174MUV-E2
  • 数量22000 
  • 厂家ROHM/罗姆 
  • 封装QFN 
  • 批号23+ 
  • 只做原装现货假一罚十
  • QQ:2103443489QQ:2103443489 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82702619 QQ:2103443489QQ:2924695115
  • BD8174MUV-E2图
  • 深圳市凯睿晟科技有限公司

     该会员已使用本站10年以上
  • BD8174MUV-E2
  • 数量2000 
  • 厂家ROHM/罗姆 
  • 封装QFN 
  • 批号24+ 
  • 百域芯优势 实单必成 可开13点增值税发票
  • QQ:2885648621QQ:2885648621 复制
  • 0755-23616725 QQ:2885648621
  • BD8174MUV-E2图
  • 深圳市晶美隆科技有限公司

     该会员已使用本站15年以上
  • BD8174MUV-E2
  • 数量28000 
  • 厂家ROHM/罗姆 
  • 封装QFN 
  • 批号24+ 
  • 假一罚十,原装进口正品现货供应,价格优势。
  • QQ:198857245QQ:198857245 复制
  • 0755-82865294 QQ:198857245
  • BD8174MUV-E2图
  • 深圳市瑞天芯科技有限公司

     该会员已使用本站7年以上
  • BD8174MUV-E2
  • 数量20000 
  • 厂家ROHM 
  • 封装QFN 
  • 批号22+ 
  • 深圳现货库存,保证原装正品
  • QQ:1940213521QQ:1940213521 复制
  • 15973558688 QQ:1940213521
  • BD8174MUV-E2图
  • 深圳市顺兴源微电子商行

     该会员已使用本站7年以上
  • BD8174MUV-E2
  • 数量98960000 
  • 厂家ROHM 
  • 封装QFN 
  • 批号16+ 
  • 原装现货,低价出售
  • QQ:3475025894QQ:3475025894 复制
    QQ:3504055308QQ:3504055308 复制
  • 0755-82723655 QQ:3475025894QQ:3504055308
  • BD8174MUV-E2图
  • 深圳市拓亿芯电子有限公司

     该会员已使用本站12年以上
  • BD8174MUV-E2
  • 数量30000 
  • 厂家ROHM/罗姆 
  • 封装QFN 
  • 批号23+ 
  • 原装现货,假一赔十.
  • QQ:1774550803QQ:1774550803 复制
    QQ:2924695115QQ:2924695115 复制
  • 0755-82777855 QQ:1774550803QQ:2924695115
  • BD8174MUV-E2图
  • 深圳市创思克科技有限公司

     该会员已使用本站2年以上
  • BD8174MUV-E2
  • 数量8580 
  • 厂家ROHM/罗姆 
  • 封装QFN 
  • 批号2021+ 
  • 全新原装挺实单欢迎来撩/可开票
  • QQ:1092793871QQ:1092793871 复制
  • -0755-88910020 QQ:1092793871
  • BD8174MUV-E2图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • BD8174MUV-E2
  • 数量6500000 
  • 厂家ROHM(罗姆) 
  • 封装原厂原装 
  • 批号22+ 
  • 万三科技 秉承原装 实单可议
  • QQ:3008962483QQ:3008962483 复制
  • 0755-23763516 QQ:3008962483
  • BD8174MUV-E2图
  • 深圳市隆鑫创展电子有限公司

     该会员已使用本站15年以上
  • BD8174MUV-E2
  • 数量30000 
  • 厂家ADI 
  • 封装SOIC8 
  • 批号2022+ 
  • 电子元器件一站式配套服务QQ:122350038
  • QQ:2355878626QQ:2355878626 复制
    QQ:2850299242QQ:2850299242 复制
  • 0755-82812278 QQ:2355878626QQ:2850299242
  • BD8174MUV-E2图
  • 深圳市华芯盛世科技有限公司

     该会员已使用本站13年以上
  • BD8174MUV-E2
  • 数量865000 
  • 厂家ROHM/罗姆 
  • 封装QFN 
  • 批号最新批号 
  • 一级代理,原装特价现货!
  • QQ:2881475757QQ:2881475757 复制
  • 0755-83225692 QQ:2881475757
  • BD8174MUV-E2图
  • 深圳市硅诺电子科技有限公司

     该会员已使用本站8年以上
  • BD8174MUV-E2
  • 数量43055 
  • 厂家ROHM 
  • 封装QFN 
  • 批号17+ 
  • 原厂指定分销商,有意请来电或QQ洽谈
  • QQ:1091796029QQ:1091796029 复制
    QQ:916896414QQ:916896414 复制
  • 0755-82772151 QQ:1091796029QQ:916896414

产品型号BD8174MUV的Datasheet PDF文件预览

Power Supply IC Series for TFT-LCD Panels  
Output voltage fixed-type  
Multi-channel System Power Supply IC  
BD8174MUV  
General Description  
Key Specifications  
The BD8174MUV is a system power supply IC that  
generates 6 power supply channels required by TFT-LCD  
panels on a single chip.  
Power Supply Voltage 1 Range:  
Oscillating Frequency:  
Operating Temperature Range:  
10V to 14V  
700kHz(Typ)  
-40°C to +105°C  
Output voltage and sequence is fixed so that it is possible  
to control output with few external components.  
Package  
W(Typ) x D(Typ) x H(Max)  
Features  
Step-up DC/DC Converter with Built-in 3A FET  
Synchronous Step-down DC/DC Converter with  
Built-in 2A FET  
High Voltage LDO (50mA)  
Low Voltage LDO (400mA)  
Positive/ Negative Charge Pumps (Integrated-diode)  
10bit DAC 4CH  
VCOM Amplifier  
Gate Shading Function  
All-output Shut Down Function  
Power Good Function  
VQFN048V7070  
7.00mm x 7.00mm x 1.00mm  
Protection Circuits:  
Under-Voltage Lockout Protection Circuit  
Thermal Shutdown Circuit  
Over Current Protection Circuit  
Over Voltage Protection Circuit  
Timer Latch Type Short-Circuit Protection Circuit  
Constant Startup Sequence  
Applications  
LCD TV power supplies  
Product structureSilicon monolithic integrated circuit This product has no designed protection against radioactive rays  
www.rohm.com  
TSZ02201-0313AAZ00670-1-2  
17.Feb.2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
1/38  
TSZ2211114001  
BD8174MUV  
Typical Application Circuit (1)  
LVLDO  
(1.2/1.5/1.8V)  
VDD  
(3.3V)  
1.  
VCC12V input application  
BOOT  
LVCTL  
PG  
OUT0  
SCP  
OUT0  
LVCTL  
VDD  
PG  
DACGND  
FBLD1  
HVLDO  
INP  
PVCC2  
FB1  
HVLDO  
COMP1  
PGND1  
PGND1  
SW1  
VCOM  
BD8174MUV  
INN  
VCOM  
THR  
THR  
CTL  
SW1  
CTL  
LSO1  
LSO1  
DRN  
COM  
COM  
VIN  
(12V)  
VGH  
(35.2V)  
VLS  
VGL  
(-6V)  
2.  
Startup sequence  
VDD1  
VIN input  
VLS  
(Step-up)  
VGL  
VGH  
GS  
PG  
(Step-down)  
LVLDO  
(Negative charge pump) (Positive charge pump)  
HVLDO (15.2V)  
DAC OUT  
VCOM  
DAC Control  
VGH(35.2V)  
80%  
3.  
Power up sequence  
VIN(12V)  
VLS(15.6V)  
HVLDO(15.2V)  
2m(typ)  
PG  
DAC OUT  
VDD(3.3V)  
VCOM  
LVLDO(1.2/1.5/1.8V)  
DAC Control  
GS logic  
VGL(-6V)  
www.rohm.com  
TSZ02201-0313AAZ00670-1-2  
17.Feb.2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
2/38  
TSZ2211115001  
BD8174MUV  
Block Diagram  
VIN(12V)  
C12  
C15  
GCTL  
PVCC1  
1
2
34  
VCC  
OCP  
PVCC2  
40  
LSO1  
Load SW  
Control  
C22  
L21  
47  
48  
VDD  
3.3V  
L11  
D11  
SW2  
STEP DOWN  
DC/DC  
35  
36  
OCP  
SW145  
C21  
PGND2  
46  
STEP UP  
DC/DC  
REG5  
VDD  
C11  
C25  
PGND  
37  
33  
43  
BOOT  
44  
Soft  
Start  
Soft  
Start  
R11  
REF  
C13  
VDD_S  
SEQUENCE  
CONTROL  
ERR  
REF  
FB1 41  
ERR  
COMP1  
FB2  
R12  
42  
C14 R14  
VLS  
15.6V  
HVCC  
HVCC  
OVP  
HVCC  
4
UVLO  
C32  
HVLDO  
15.2V  
HV LDO  
OVP  
OCP  
HVLDO  
C33  
20  
21  
R31  
R32  
C31  
HVCC  
UVLO  
TSD  
VGH  
FBLD1  
35.2V  
VGH  
12  
D51  
REG5  
CPD2  
CPD1  
C51  
10  
11  
REG5  
32  
VREF  
VREF  
REG  
REG5  
CPP1  
CPP2  
7
8
C53 C52  
C92  
VDD  
Positive  
Charge Pump  
OSC  
LVLDO  
1.8V/1.5V/1.2V  
FBCP1  
LV LDO  
LVLDO  
LVCTL  
C54  
31  
38  
VDD  
C41  
FBLD2  
CPPCTL 3  
R91  
39  
PG  
1.5V  
COM  
REF  
13  
DRN  
FBCP2  
Gate  
14  
Shading  
C81  
R81  
CTL  
15  
VGL_S  
5
6
THR  
16  
CPN  
Negative  
Charge Pump  
FB1  
D61  
C62  
VGL  
-6V  
FB2  
FBLD1  
FBLD2  
FBCP1  
FBCP2  
Timer  
Latch  
HVCC  
C61  
INP  
From Calibrator  
VCOM  
19  
INN  
SCP  
18  
23  
C93  
17  
HVLDO  
VCOM  
R73  
VCC  
28  
9
VDD  
GND  
C71  
CPGND  
Power  
On Reset  
DACVREF  
HVCC  
DACVREF  
c
DACGND  
22  
I2C  
I/F  
DAC Control  
29  
SDA  
SCL  
30  
×4  
×4  
×4  
×4  
AMP1  
AMP3  
AMP0  
24  
AMP2  
26  
25  
27  
OUT1  
OUT3  
OUT0  
OUT2  
C901  
C903  
C900  
C902  
www.rohm.com  
TSZ02201-0313AAZ00670-1-2  
17.Feb.2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
3/38  
TSZ2211115001  
BD8174MUV  
Application Parts List (When VLS=15.6V, HVLDO=15.2V is configured)  
PARTS LOCATION  
Value  
130kΩ+16kΩ  
10kΩ  
Company  
ROHM  
ROHM  
PRODUCT NUMBER  
MCR01MZPD  
R11  
R12  
MCR01MZPD  
R14  
R31  
R32  
R73  
R81  
R91  
C11  
C12  
C13  
C14  
C15  
C21  
C22  
C25  
C31  
C32  
C33  
C41  
C51  
C52  
C53  
C54  
C61  
C62  
C71  
C81  
C92  
C93  
C900  
C901  
C902  
C903  
L11  
3kΩ  
130kΩ+12kΩ  
10kΩ  
430Ω  
4.3kΩ  
100kΩ  
10µF  
10µF  
100pF  
2200pF  
-
10µF  
10µF  
0.1µF  
4.7µF  
10µF  
22pF  
4.7µF  
1.0µF  
0.1µF  
0.1µF  
-
1.0µF  
22000pF  
1.0µF  
1000pF  
1.0µF  
0.1µF  
10µF  
10µF  
10µF  
10µF  
10µH  
10µH  
-
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
Murata  
Murata  
Murata  
Murata  
-
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
-
MCR01MZPD  
MCR01MZPD  
MCR01MZPD  
MCR18EZHF  
MCR03EZPD  
MCR01MZPD  
GRM31CB31E106KA75  
GRM31CB31E106KA75  
GRM1882C1H101JA01  
GRM188B11H222KA01  
-
GRM31CB31E106KA75  
GRM31CB31E106KA75  
GRM188R11H104KA93  
GRM319B31E475KA75  
GRM31CB31E106KA75  
GRM1882C1H220JA01  
GRM21BB31C475KA75  
GRM21BB31H105KA12  
GRM188R11H104KA93  
GRM188R11H104KA93  
-
GRM188R11H104KA93  
GRM188B11H223KA01  
GRM21BB31H105KA12  
GRM188B11H102KA01  
GRM21BB31H105KA12  
GRM188R11H104KA93  
GRM31CB31E106KA75  
GRM31CB31E106KA75  
GRM31CB31E106KA75  
GRM31CB31E106KA75  
NR6045T100M  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
TAIYOYUDEN  
TAIYO YUDEN  
ROHM  
ROHM  
ROHM  
L21  
NR6045T100M  
RSX501L-20  
RB162M-40  
RB550EATR  
D11  
D51  
D61  
-
-
Pin Configuration  
TOP VIEW  
36 35 34 33 32 31 30 29 28 27 26 25  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
1
2
3
4
5
6
7
8
9 10 11 12  
www.rohm.com  
© 2016 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0313AAZ00670-1-2  
17.Feb.2016 Rev.001  
4/38  
BD8174MUV  
Pin Description  
PIN  
Pin name  
Function  
NO.  
1
PVCC1  
PVCC1  
CPPCTL  
HVCC  
Boost DC/DC load switch input. See Boost DC/DC (1) for more information.  
Boost DC/DC load switch input. See Boost DC/DC (1) for more information.  
Positive charge pump control input. See charge pump (4) for more information.  
Power supply pin for charge pump, buffer amplifier and HV_LDO.  
Negative charge pump output VGL feedback input.  
Negative charge pump regulator driver output. Drive pin for negative charge pump.  
See charge pump (4) for more information.  
2
3
4
VGL_S  
5
CPN  
6
7
8
Positive charge pump regulator driver output1. Drive pin for positive charge pump.  
See charge pump (4) for more information.  
CPP1  
CPP2  
Positive charge pump regulator driver output2. Drive pin for positive charge pump.  
See charge pump (4) for more information.  
CPGND  
CPD2  
CPD1  
VGH  
9
Power grounding pin at charge pump.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
Positive charge pump internal switching diode output2.  
Positive charge pump internal switching diode output1.  
Positive charge pump output VGH. Connect output capacitor from this pin to GND.  
Gate shading output pin.  
COM  
DRN  
Termination of the low side switch of the gate voltage shading block.  
Gate shading control input pin.  
CTL  
THR  
Gate shading Low level setting pin.  
VCOM  
INN  
VCOM Output  
VCOM input-.  
INP  
VCOM input+.  
HVLDO  
FBLD1  
DACGND  
HV_LDO output pin. Insert output capacitance for GND.  
HV_LDO feedback input pin.  
GND pin for DAC.  
Short protection delay pin. To set short protection delay time, connect capacitor for GND pair.  
For details, refer to information in common block (6).  
Gamma output pin.  
SCP  
23  
OUT0  
OUT1  
OUT2  
OUT3  
GND  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
Gamma output pin.  
Gamma output pin.  
Gamma output pin.  
Grounding pin.  
SDA  
Serial data input pin.  
SCL  
Serial clock input pin.  
LVLDO  
REG5  
VDD_S  
GCTL  
SW2  
LV_LDO output pin. Output outputs 1.8V/ 1.5V/ 1.2V (typ). Insert output capacitance for GND.  
Internal power supply 5.0V output pin. Connect 0.1µF from this pin to ground.  
Buck DC/DC output VDD feedback input. No external registance necessary for feedback register.  
Boost DC/DC load switch PGATE control input. For details, refer to information in Boost DC/DC (1).  
Buck DC/DC switching output. Due to reduce EMI, make a wiring thick and short.  
Buck DC/DC switching node power grounding pin. Due to reduce EMI, make a wiring thick and short.  
Buck DC/DC bootstrap pin. This pin generates the gate drive voltage for the Buck converter.  
Connect 0.1µF from this pin to the switch pin of step down converter, SW2.  
LVLDO output voltage setting pin.  
PGND2  
BOOT  
LVCTL  
PG  
37  
38  
39  
40  
Power good output. After positive charge pump output VGH startup, It will be ON. For Buck DC/DC output,  
Pull-UP and use it. If you dont use it, It will open.  
PVCC2  
Buck DC/DC high side MOSFET power supply input. Connect a capacitor as close to PVCC pin as possiple.  
www.rohm.com  
© 2016 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0313AAZ00670-1-2  
17.Feb.2016 Rev.001  
5/38  
BD8174MUV  
Pin Description Continued  
PIN  
Pin name  
Function  
NO.  
Boost DC/DC output VLS feedback input. Connect a external resister and insert resistance for phase  
compensation setting between VLS. For details, refer to information in Boost DC/DC (1).  
Boost DC/DC error amplifier output pin. Connect a resistance for phase compensation and capacitor.  
For details, refer to information in Boost DC/DC (1).  
FB1  
41  
COMP1  
42  
PGND1  
PGND1  
SW1  
43  
44  
45  
46  
47  
48  
Boost DC/DC switching node power ground pin. Due to reduce EMI, make a wiring thick and short.  
Boost DC/DC switching node power ground pin. Due to reduce EMI, make a wiring thick and short.  
Boost DC/DC switching output. Due to reduce EMI, make a wiring thick and short.  
Boost DC/DC switching output. Due to reduce EMI, make a wiring thick and short.  
Boost DC/DC load switch output. For details, refer to information in Boost DC/DC (1).  
Boost DC/DC load switch output. For details, refer to information in Boost DC/DC (1).  
SW1  
LSO1  
LSO1  
Absolute Maximum Ratings (Ta=25°C)  
Parameter  
Symbol  
Rating  
15  
Unit  
V
Power Supply Voltage 1  
Power Supply Voltage 2  
SW1 Pin Voltage  
VPVCC1,VPVCC2  
VHVCC  
VSW1  
20  
V
20  
V
VGH Pin Voltage  
VVGH  
40  
V
Maximum Junction Temperature  
Power Dissipation  
Tjmax  
Pd  
150  
°C  
W
°C  
°C  
4.83 (Note 1)  
-40 to 105  
-55 to 150  
Operating Temperature Range  
Topr  
Storage Temperature Range  
Tstg  
(Note 1) To use the IC at temperatures over Ta25°C, derate power rating by 38.61mW/°C.  
When mounted on a four-layer glass epoxy board measuring 74.2mm x 74.2mm x 1.6mm (with all layer of copper foil 5505mm2).  
Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over  
the absolute maximum ratings.  
Recommended Operating Conditions (Ta-40°C to +105°C)  
Parameter  
Power Supply Voltage 1  
Power Supply Voltage 2  
SW1 Pin Voltage  
Symbol  
VPVCC1,VPVCC2  
VHVCC  
Min  
Max  
14  
Unit  
V
10  
10  
-
18  
V
VSW1  
18  
V
SW1 Pin Current  
ISW1  
-
3 (Note 2)  
2 (Note 2)  
5.5  
A
SW2 Pin Current  
ISW2  
-
A
Power Good Pull-up Voltage  
VPG  
-
V
VGCTL, VCPPCTL  
VCTL  
,
CTL Pin Voltage  
-
5.5  
V
THR Pin Voltage  
VTHR  
VLVCTL  
1.0  
2.5  
14  
14  
V
V
V
LVCTL Pin Voltage  
-
-
INP,INN Pin Voltage  
VINP,VINN  
(Note 2) Not to exceed Pd.  
www.rohm.com  
TSZ02201-0313AAZ00670-1-2  
17.Feb.2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
6/38  
TSZ2211115001  
BD8174MUV  
Electrical Characteristics (Unless otherwise noted, Ta25°C, VCC12V, VHVCC15V )  
Limit  
Parameter  
Symbol  
Unit  
Condition  
MIN  
TYP  
MAX  
DC/DC】  
Step Up  
Reference Voltage  
Step Down  
VLSREF1  
VLSREF2  
VDD1  
0.985  
0.982  
3.25  
1.00  
1.015  
1.018  
3.35  
V
V
V
V
-
3.30  
-
-25°C < Ta < 105°C  
Output Voltage  
VDD2  
3.24  
3.36  
-25°C < Ta < 105°C  
VCOMP1=1.0V, VFB1=0.5V  
-25°C < Ta < 105°C  
COMP1 Source Current  
ICSO  
ICSI  
-
-
-20  
-
-
µA  
µA  
VCOMP1=1.0V, VFB1=1.5V  
-25°C < Ta < 105°C  
COMP1 Sink Current  
SW1,2, MAX Duty  
+20  
MDT  
RON11  
75  
-
90  
0.2  
0.2  
-
99  
%
Ω
-
-
ISW=0.8A  
SW1 ON Resistance  
RON12  
-
Ω
ISW=10mA, -25°C < Ta < 105°C  
-25°C < Ta < 105°C  
ISW=0.8A  
SW1 Current Limit  
SW2 High side  
ON Resistance  
ISW1OCP  
RON2H1  
RON2H2  
RON2L1  
RON2L2  
ISWLEAK  
ISW2OCP  
VGCTLH  
VGCTLL  
IGCTL  
3
-
-
A
0.2  
0.2  
0.2  
0.2  
0
-
Ω
-
-
Ω
ISW=10mA, -25°C < Ta < 105°C  
ISW=0.8A  
SW2 Low side  
ON Resistance  
-
-
Ω
-
-
Ω
ISW=10mA, -25°C < Ta < 105°C  
SW1,2 Leakage Current  
SW2 Current Limit  
GCTL Input High Voltage  
GCTL Input Low Voltage  
GCTL Input Current  
VLS  
-5  
2
2
-
+5  
-
µA  
A
-
-25°C < Ta < 105°C  
-25°C < Ta < 105°C  
-25°C < Ta < 105°C  
VGCTL=0V  
-
-
V
-
0.2  
-9  
V
-20  
-14.5  
µA  
VOVP1  
18  
19  
20  
V
-25°C < Ta < 105°C  
Over Voltage Threshold  
Load Switch】  
RONLSO11  
RONLSO12  
tSS_LSO1  
-
-
0.2  
0.2  
1.5  
-
-
Ω
Ω
lO=-0.8A  
ON Resistance  
lO=-10mA, -25°C < Ta < 105°C  
RLSO1=10kΩ, -25°C < Ta < 105°C  
Soft Start Period 85%  
0.75  
3.0  
ms  
High Voltage LDO】  
VHVLDO_H1  
VHVLDO_H2  
VHVDPLDH  
0.99  
0.982  
-
1.00  
-
1.01  
1.018  
0.5  
V
V
V
LDO_H Reference Voltage  
-25°C < Ta < 105°C  
VHVCC=15V, lO=50mA  
I/O Voltage Differential H  
0.2  
Low Voltage LDO】  
VLVLDO_H1  
VLVLDO_H2  
VLVLDO_M1  
VLVLDO_M2  
VLVLDO_L1  
VLVLDO_L2  
VLVDPLDH  
1.18  
1.16  
1.77  
1.74  
1.48  
1.45  
-
1.2  
-
1.22  
1.24  
1.83  
1.86  
1.52  
1.55  
0.5  
V
V
V
V
V
V
V
LVCTL=H  
-25°C < Ta < 105°C,LVCTL=H  
LVCTL=M  
1.8  
-
LDO Output Voltage  
-25°C < Ta < 105°C,LVCTL=M  
LVCTL=L  
1.5  
-
-25°C < Ta < 105°C,LVCTL=L  
VDD=3.3V, lO=200mA  
I/O Voltage Differential H  
0.2  
www.rohm.com  
TSZ02201-0313AAZ00670-1-2  
17.Feb.2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
7/38  
TSZ2211115001  
BD8174MUV  
Electrical Characteristics continued (Unless otherwise noted, Ta25°C, VCC12V, VHVCC15V )  
Limit  
Parameter  
Charge pumps】  
VGH Output Voltage  
Symbol  
Unit  
Condition  
MIN  
TYP  
MAX  
VVGH1  
VVGH2  
VVGL1  
VVGL2  
34.6  
34.5  
-6.12  
-6.15  
35.2  
35.8  
35.9  
-5.88  
-5.85  
V
V
V
V
-
-6.0  
-
-25°C < Ta < 105°C  
VGL Output Voltage  
-25°C < Ta < 105°C  
-25°C < Ta < 105°C  
CPP1,2,CPN High side  
ON Resistance  
RONCH  
-
-
5
5
-
-
Ω
Ω
CPP1,2,CPN Low side  
ON Resistance  
-25°C < Ta < 105°C  
RONCL  
-25°C < Ta < 105°C  
-25°C < Ta < 105°C  
VCPPCTL=0V  
CPPCTL Input High Voltage  
VCPCTLH  
2
-
-
-
-
0.2  
-9  
V
V
CPPCTL Input Low Voltage VCPCTLL  
CPPCTL Pin Input Current  
PG ON Voltage  
ICPCTL  
PGH  
PGL  
-20  
-
-14.5  
80  
60  
37.5  
-
µA  
%
%
V
-
PG OFF Voltage  
-
-
VOVP2  
VOVP3  
36.5  
36  
38.5  
39  
VGH  
Over Voltage Threshold  
Gate Shading】  
CTLInput High Voltage  
CTLInputLowVoltage  
VGH-COM ON Resistance  
COM-DRN ON Resistance  
V
-25°C < Ta < 105°C  
-25°C < Ta < 105°C  
-25°C < Ta < 105°C  
-25°C < Ta < 105°C  
-25°C < Ta < 105°C  
Input Voltage=3.3V,  
-25°C < Ta < 105°C  
VCTLH  
VCTLL  
2.3  
-
-
-
1.0  
-
V
V
Ω
Ω
-
-
-
RONSRC  
RONDRN  
5
30  
-
CTL High Input Current  
ICTLH  
16.5  
33  
66  
µA  
Operation amplifier】  
Input Offset Voltage  
VOFF  
IBAMP  
-15  
-
-
+15  
mV  
µA  
Input Bias Current  
VCOM  
Output Current Capability  
Slew Rate  
-1.2  
+1.2  
VVCOM=0V,INN=VCOM,VINP=15V,  
-25°C < Ta < 105°C  
Without external components  
IO=-1mA to +1mA  
ICOM  
50  
150  
-
mA  
SRCOM  
-
15  
0
-
V/µs  
mV  
Load Stability  
ΔVo  
-15  
+15  
IO=-1mA, VINP=14V, VINN=0V  
-25°C < Ta < 105°C  
Output Swing-High  
VOH  
VOL  
VHVCC-1.0 VHVCC-0.8  
-
V
V
IO=1mA, VINP=0V, VINN=14V  
-25°C < Ta < 105°C  
Output Swing-Low  
-
0.1  
0.2  
Gamma Amplifier】  
Source Current Capability  
DAC=1B5h, VOUT=0V,  
-25°C < Ta < 105°C  
IooA  
IoiA  
-
-
-
30  
-
mA  
mA  
DAC=1B5h, OUT=HVCC,  
-25°C < Ta < 105°C  
Sink Current Capability  
-30  
Load Regulation  
ΔVo  
VOH1  
VOH2  
VOL1  
VOL2  
-
15  
-
-
-
mV  
V
IO=-15mA to 15mA  
IO=-4mA  
VHVCC-0.2  
Output Swing - High  
VHVCC-0.3  
-
-
V
IO=-4mA, -25°C < Ta < 105°C  
IO=4mA  
-
-
-
0.2  
0.3  
V
Output Swing Low  
-
V
IO=4mA, -25°C < Ta < 105°C  
DAC】  
Resolution  
Res  
LE  
10  
-
Bit  
Integral Non-linearity Error  
(INL)  
00A to 3F5 is the allowable margin of  
error against the ideal linear.  
-2  
-2  
+2  
+2  
LSB  
00A to 3F5 is the allowable margin of  
error against the ideal increase of  
Differential  
Error (DNL)  
Non-linearity  
DLE  
-
LSB  
Control Signal SDA, SCL】  
Input Voltage H  
-25°C < Ta < 105°C  
-25°C < Ta < 105°C  
ISDA=3mA  
VTH1  
VTH2  
VSDA  
1.7  
-
-
-
-
V
V
V
Input Voltage L  
-
-
0.5  
0.4  
Min Output Voltage  
www.rohm.com  
TSZ02201-0313AAZ00670-1-2  
17.Feb.2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
8/38  
TSZ2211115001  
BD8174MUV  
Electrical Characteristics continued (Unless otherwise noted, Ta25°C, VCC12V, VHVCC15V )  
Limit  
Parameter  
Overall】  
Symbol  
Unit  
Condition  
MIN  
TYP  
MAX  
fSW1  
fSW2  
600  
500  
7.6  
700  
-
800  
900  
8.4  
kHz  
kHz  
V
Oscillator Frequency  
-25°C < Ta < 105°C  
VCC Under-Voltage Lockout  
Threshold ON/OFF Voltage  
HVCC Under-Voltage  
Lockout Threshold ON/OFF  
Voltage  
-25°C < Ta < 105°C  
-25°C < Ta < 105°C  
VCCUV  
8.0  
VHVCCUV  
-
8.5  
-
V
SCP Source Current  
SCP Sink Current  
ISCPSO  
ISCPSI  
VSCP  
2
1
-
5
2
8
6
-
µA  
mA  
V
-25°C < Ta < 105°C  
-25°C < Ta < 105°C  
SCP Threshold Voltage  
1.5  
Average Current  
Consumption 1 (VCC,PVCC)  
Average Current  
Consumption 2 (VCC,PVCC)  
Average Current  
Consumption 3 (HVCC)  
Average Current  
ICC1  
ICC2  
IHICC1  
IHICC2  
-
-
-
-
3.5  
3.5  
3.5  
3.5  
-
-
-
-
mA  
mA  
mA  
mA  
No Switching  
-25°C < Ta < 105°C, No Switching  
No Switching  
-25°C < Ta < 105°C, No Switching  
Consumption 4 (HVCC)  
www.rohm.com  
TSZ02201-0313AAZ00670-1-2  
17.Feb.2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
9/38  
TSZ2211115001  
BD8174MUV  
Typical Performance Curves  
(Unless otherwise noted, Ta=25°C)  
1.05  
1.04  
1.03  
1.02  
1.01  
1
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3
0.99  
0.98  
0.97  
0.96  
0.95  
2.9  
-40 -20  
0
20  
40  
60  
80 100  
7
9
11  
PVCC[V]  
13  
Temperature [°C]  
Figure 1. ICC vs PVCC  
Figure 2. VLSREF vs Temperature  
800  
780  
760  
740  
720  
700  
680  
660  
640  
620  
600  
0.45  
0.4  
0.35  
0.3  
0.25  
0.2  
0.15  
0.1  
0.05  
0
0
1
2
3
4
-40 -20  
0
20  
40  
60  
80  
100  
Temperature [°C]  
VDD[V]  
Figure 4. Divided Voltage vs VDD  
Figure 3. Oscillation Frequency vs  
Temperature  
www.rohm.com  
TSZ02201-0313AAZ00670-1-2  
17.Feb.2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
10/38  
TSZ2211115001  
BD8174MUV  
Typical Performance Curves continued  
20  
15  
1.4  
1.2  
1
10  
5
0.8  
0.6  
0.4  
0.2  
0
0
-5  
-10  
-15  
-20  
0
0.5  
1
1.5  
2
0
5
10  
15  
20  
25  
30  
35  
40  
FB1 Voltage [V]  
VGH[V]  
Figure 5. Divided Voltage vs VGH  
Figure 6. ICOMP vs FB1 Voltage  
100  
1
0.8  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
0.5  
1
1.5  
2
0
0.5  
1
1.5  
2
COMP1 Voltage [V]  
FB1 Voltage [V]  
Figure 7. IFB1 vs FB1 Voltage  
Figure 8. DUTY vs COMP1 Voltage  
www.rohm.com  
TSZ02201-0313AAZ00670-1-2  
17.Feb.2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
11/38  
TSZ2211115001  
BD8174MUV  
Typical Performance Curves continued  
1.55  
1.53  
1.51  
1.49  
1.47  
1.45  
15.5  
15.4  
15.3  
15.2  
15.1  
15  
14.9  
14.8  
14.7  
14.6  
14.5  
0
100  
200  
300  
400  
0
10  
20  
30  
40  
50  
Load Current [mA]  
Load Current [mA]  
Figure 9. Output Voltage vs Load Current  
Figure 10. Output Voltage vs Load Current  
1.25  
1.85  
1.83  
1.81  
1.79  
1.77  
1.75  
1.23  
1.21  
1.19  
1.17  
1.15  
0
100  
200  
300  
400  
0
100  
200  
300  
400  
Load Current [mA]  
Load Current [mA]  
Figure 11. Output Voltage vs Load Current  
Figure 12. Output Voltage vs Load Current  
www.rohm.com  
TSZ02201-0313AAZ00670-1-2  
17.Feb.2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
12/38  
TSZ2211115001  
BD8174MUV  
Typical Performance Curves continued  
14  
12  
10  
8
8
7
6
5
4
3
2
1
0
6
4
2
0
0
0.5  
1
1.5  
2
2.5  
3
-40 -20  
0
20  
40  
60  
80 100  
GCTL Voltage [V]  
Temperature [°C]  
Figure 13. SCP Source Current vs  
Temperature  
Figure 14. LSO1 Voltage vs GCTL Voltage  
14  
12  
10  
8
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
VPVCC=12V  
6
4
2
0
0
0.5  
1
1.5  
2
2.5  
3
100  
300  
500  
700  
900  
CPPCTL Voltage [V]  
Load Current [mA]  
Figure 15. VGH Voltage vs CPPCTL Voltage  
Figure 16. Frequency vs Load Current  
www.rohm.com  
TSZ02201-0313AAZ00670-1-2  
17.Feb.2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
13/38  
TSZ2211115001  
BD8174MUV  
Typical Performance Curves continued  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
100  
300  
500  
700  
900  
Load Current [mA]  
Figure 17. Frequency vs Load Current  
www.rohm.com  
TSZ02201-0313AAZ00670-1-2  
17.Feb.2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
14/38  
TSZ2211115001  
BD8174MUV  
Typical Waveforms  
(Unless otherwise noted, Ta=25°C)  
INP  
INP  
5.0[V/div]  
5.0[V/div]  
VCOM  
VCOM  
5.0[V/div]  
5.0[V/div]  
400[ns/div]  
400[ns/div]  
Figure 18.  
VCOMAMP slew rate  
Figure 19.  
VCOMAMP slew rate  
DAC resistor 3FFh000h  
DAC resistor 000h3FFh  
OUT0  
5.0[V/div]  
OUT0  
5.0[V/div]  
400[ns/div]  
400[ns/div]  
Figure 20.  
DAC slew rate  
Figure 21. DAC slew rate  
www.rohm.com  
TSZ02201-0313AAZ00670-1-2  
17.Feb.2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
15/38  
TSZ2211115001  
BD8174MUV  
Typical Waveforms continued  
VGH  
VLS  
PVCC 12V  
OUT0  
OUT2  
PVCC 12V  
VLS,HVLDO  
VDD  
OUT1  
OUT3  
LVLDO  
VGL  
2.0[ms/div]  
2.0[ms/div]  
Figure 22. Startup sequence1  
Figure 23. Startup sequence2  
VLS(AC)  
200[mV/div]  
FB1  
1.0[V/div]  
Load current  
500[mA/div]  
VLS  
10[V/div]  
4.0[ms/div]  
4.0[µs/div]  
Figure 24. VLS OVP operation  
Figure 25. Step-up DC/DC transient response  
www.rohm.com  
TSZ02201-0313AAZ00670-1-2  
17.Feb.2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
16/38  
TSZ2211115001  
BD8174MUV  
Typical Waveforms continued  
VDD(AC)  
200[mV/div]  
CTL  
2.0[V/div]  
Load current  
500[mA/div]  
COM  
10[V/div]  
10[µs/div]  
4.0[µs/div]  
Figure 26. Step-down DC/DC transient response  
Figure 27. Gate shading waveform  
www.rohm.com  
TSZ02201-0313AAZ00670-1-2  
17.Feb.2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
17/38  
TSZ2211115001  
BD8174MUV  
Description of Operation of Each Block and Procedure for Selecting Application Components  
(1)  
Step-up DC/DC Converter Block  
PVCC1  
M1  
3.3V  
200kO  
GCTL  
LSO1  
SW1  
Load SW  
Control  
VDD_DET  
Cgct1  
VLS_DET  
OCP  
REF×0.9  
VLS  
REF  
ERR  
PWM  
DRV  
PGND1  
Soft  
Start  
OVP  
HVCC  
FB1  
R11  
R12  
C13  
COMP1  
Rcp  
Ccp  
Figure 28. Step-up DC/DC Converter Block  
Step-up DC/DC block is able to set output voltage by an external feedback resistor R11, R12.  
Output voltage VLS is calculated by equation below.  
R11R12  
VLS 1.0  
R12  
Also, OVP function is incorporated for protecting output voltage overshoot, so that if VLS voltage overshoots over  
19V(Typ), prevents over voltage output by stopping switching.  
(1.1)  
Startup sequence  
After step-down DC/DC converter startup, Start-up sequence is fixed to start up.  
When Step-down DC/DC(3.3V output) reaches 90% of the set voltage, step-up DC/DC will start operation.  
Soft start function is incorporated (About 1.5ms typ) in order to prevent overshooting during startup.  
Also, controlling the startup timing of load switch (M1) by GCTL pin enables to control the VLS rising sequence.  
For the startup timing of load switch (M1), there are two patterns: Use or Not use the GCTL pin.  
Case of Not using GCTL pinConnect GCTL pin to OPEN or 3.3V.)  
When disuse GCTL pin, if step-down DC/DC output (VDD) reach 90% of the configured voltage, load switch (M1)  
turns ON.  
VIN(12V)  
VDD (3.3V)  
GCTL  
M1 Gate  
VLS  
tld  
www.rohm.com  
© 2016 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0313AAZ00670-1-2  
17.Feb.2016 Rev.001  
18/38  
BD8174MUV  
Setting of load switch (M1) ON delay time (tld)  
Case of using GCTL pin  
Using GCTL pin makes it possible to have ON timing of load switch (M1) can be delayed more than not using  
GCTL pin.  
There are two methods for setting delay time by GCTL pin: Set the timing by inputting H/L logic signal to GCTL  
pin, or Set by constant time by inserting capacitor to GCTL pin.  
When setting the PGATE ON timing by constant time, ON delay time Tgctl is determined by the equation below.  
VREF Vth  
Tgctl  CgctlRgctIn  
VREF  
3.31.6  
3.3  
 Cgctl200kIn  
VIN(12V)  
VDD (3.3V)  
About GCTL delay time fluctuation  
Tgctl  
GCTL  
The rgdt1 has variation in current and voltage of ±50%  
that includes absolute variations and temperature  
characteristic, design systems with sufficient margin.  
M1 Gate  
VLS  
tld  
(1.2)  
Selecting the output L constant  
The inductance L to be used for output is determined by the rated current ILR and the maximum input current value IINMAX of the  
inductor.  
IL  
IL  
IINMAX+  
should not reach the rated value level.  
2
ILR  
IINMAX mean current  
IL  
t
Figure 29. Coil Current Waveform (Step-up DC/DC Converter)  
Make adjustments so that IINMAX +ΔIL/ 2 will not reach the rated current ILR.At this time, ΔIL is obtained by the following equation.  
1
ΔIL VCC  
L
VO VCC  
1
[A]  
VO  
f
wherein f Switching frequency  
In addition, since the coil L value may have variations in the range of approximately ±30%, set this value with sufficient margin.  
If the coil current exceeds the rated current ILR, the internal IC element may be damaged because of Large current.  
www.rohm.com  
TSZ02201-0313AAZ00670-1-2  
17.Feb.2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
19/38  
TSZ2211115001  
BD8174MUV  
(1.3)  
Output capacitor setting  
For capacitor CO to be used for output, set it to the permissible value of the ripple voltage VPP or that of the drop voltage at the time  
of a sudden load change, whichever is large.  
The output ripple voltage is obtained by the following equation.  
1
VCC  
ΔIL  
ΔVPP ILMAX RESR  
(ILMAX  
)
fCO  
VO  
2
Make this setting so that the voltage will fall within the permissible ripple voltage range.  
For the drop voltage VDR during a sudden load change, estimate the VDR with the following equation.  
ΔI  
VDR   
10sec [V]  
CO  
Wherein, 10 μsec is the estimate of DC/DC response speed. Set CO so that these two values will fall within the limit values.  
Since the DC/DC converter causes a peak current to flow between input and output, capacitors must also be  
mounted on the input side. For this reason, it is recommended to use low-ESR capacitors above 10μF and below  
100mΩ as the input capacitors. Using input capacitors outside of this range may superimpose excess ripple voltage upon the input  
voltage, causing the IC to malfunction.  
However, since the aforementioned conditions vary with load current, input voltage, output voltage, inductor value,  
and switching frequency, be sure to verify the margin using the actual product.  
(1.4)  
Output rectifier diode setting  
For the rectifier diodes to be used as the output stage of the DC/DC converter, it is recommended to use Schottky  
diodes. Select diodes with careful attention paid to the maximum inductance current, maximum output voltage, and  
power supply voltage.  
ΔI  
L
Maximum inductance current: IINMAX +  
< Rated current of diode  
2
Maximum output voltage: VOMAX < Rated voltage of diode  
In addition, since each parameter has variation in current and voltage of 30% to 40%, design systems with sufficient  
margin.  
(1.5)  
Phase compensation setting  
Phase setting procedure  
The following conditions are required to ensure the stability of the negative feedback system.  
When the gain is set to 1(0 dB), the phase leg should not be more than 150°  
(i.e., phase margin should not be less than 30°).  
In addition, since DC/DC converter applications are sampled according to the switching frequency, the overall system  
GBW should be set to not more than 1/10 of the switching frequency. The targeted characteristics of the applications  
can be summarized as follows.  
When the gain is set to “1” (0 dB), the phase lag should not be more than 150° (i.e., phase margin should not be  
less than 30°).  
The GBW at that time (i.e., frequency when the gain is set to “0 dB”) should not be more than 1/10 of the switching  
frequency.  
The responsiveness is determined by the GBW limitation. Consequently, to raise the responsiveness, higher  
switching frequencies are required.  
To ensure the stability through the phase compensation, it is necessary to cancel the secondary phase delay (-180°)  
caused by LC resonance with the secondary phase lead (in other words, by adding two phase leads).  
The GBW (i.e., frequency when the gain is set to “0 dB”) is determined by phase compensation capacitance  
connected to the error amplifier. If GBW needs to be reduced, increase the capacitance of the capacitor.  
www.rohm.com  
TSZ02201-0313AAZ00670-1-2  
17.Feb.2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
20/38  
TSZ2211115001  
BD8174MUV  
Open loop characteristics of integrator  
( i ) Ordinary integrator(Low-pass filter)  
( ii ) Open loop characteristics of integrator  
(a)  
-20dB/decade  
A
0
Gain  
[dB]  
GBW(b)  
f
COMP  
Feedback  
A
0
R
Phase  
[deg]  
-90°  
-90  
C
Phase margin  
-180°  
-180  
f
Figure 30  
Figure 31  
1
1
Point(a) fa   
[Hz]  
Point(b) fb GBW   
[Hz]  
2RCA  
2RC  
Since the phase compensation like that shown in (a) and (b) applies to the error amplifier, it will act as a low-pass  
filter.  
For DC/DC converter applications, R represents feedback resistors connected in parallel.  
According to the LC resonance of the output, two phase leads should be added.  
Vo  
R3  
1
LC resonant frequency fp   
[Hz]  
R1  
R2  
2LC  
C1  
1
COMP  
Rcp  
Phase lead fz1   
Phase lead fz2   
[Hz]  
2R1C1  
1
A
[Hz]  
2RcpCcp  
Ccp  
Figure 32  
Set the lead frequency of one of the phases close to the LC resonant frequency for the purpose of canceling the LC  
resonance.  
Note: If high-frequency noise occurs in output, it will pass through capacitor C1 and affect the feedback. To avoid this problem, add resistor R3 of  
approximately 1kΩ in series with capacitor C1.  
www.rohm.com  
TSZ02201-0313AAZ00670-1-2  
17.Feb.2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
21/38  
TSZ2211115001  
BD8174MUV  
(2)  
Step-down DC/DC block  
REG5  
BOOT  
PVCC  
DET  
VDD_DET  
REF×0.9  
REF  
Cboot  
PVCC2  
SW2  
VDD(3.3V)  
PWM  
DRV  
ERR  
CO  
Rcp  
Ccp  
PGND2  
VDD_S  
Soft  
Start  
OCP  
R23  
C23  
R21  
R22  
Figure 33. Step-down DC/DC  
Step-down DC/DC block incorporates feedback resistor, and output voltage is 3.3V(TYP) fixed.  
Also, built-in error amp (ERR) phase compensation (Rcp,Ccp) minimizes the external components.  
(2.1)  
Startup sequence  
After VIN12V startup, step-down DC/DC starts up with UVLO cancellation as trigger.  
Soft start function (about 2ms Typ) is built in to limit overshooting while startup.  
(2.2)  
Selecting the output L constant  
The inductor to be used for output is determined by the rated current ILR and the maximum input current value IOMAX of the inductor.  
IL  
IOMAX+  
IL should not reach the rated value level.  
2
ILR  
IOMAX mean current  
IL  
t
Figure 34. Inductor Current Waveform Step-down DC/DC)  
Make adjustments so that IOMAX+ ΔIL/ 2 will not reach the rated current ILR.At this time, ΔIL is obtained by the following equation.  
1
VO  
1
ΔIL (VCC VO )  
L
VCC  
f
Wherein fSwitching frequency  
In addition, sine the inductor Lvalue may have variations in the range of approximately ±30%, set this value with sufficient margin.  
If the inductor current exceeds the rated current ILR, the internal IC element may be damaged because of large rush current.  
www.rohm.com  
© 2016 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0313AAZ00670-1-2  
17.Feb.2016 Rev.001  
22/38  
BD8174MUV  
(2.3)  
Selecting I/O capacitors  
To select I/O capacitors, refer to information in Section (1.3).  
However, the output ripple voltage of the step-down DC/DC converter is calculated by the following equation.  
ΔIL VO  
1
ΔVPP ΔIL RESR  
[V]  
2CO VCC  
f
Cboot is a flying capacitor in bootstrap circuit for driving high side switch. 0.1µF is recommended.  
(3)  
HV_LDO block  
REF×0.9  
DET  
HVLDO_DET  
HVCC  
REF  
VLDO(15.2V)  
ERR  
LDO_H  
FBLD  
CO  
R31  
R32  
Figure 35. HV_LDO block  
(3.1)  
Selecting I/O capacitors  
The HV_LDO is ceramic capacitor compatible.  
Capacitance in the range of 4.7µF to 10µF is recommended.  
(3.2)  
Output voltage setting  
Output voltage is variable output by the external resistor R31,R32.  
Output voltage HVLDO is calculated by the equation below.  
R31R32  
HVLDO 1.0  
R32  
(3.3)  
Startup sequence  
After under voltage protection for VCC release, starts up with HVCC startup.  
www.rohm.com  
© 2016 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0313AAZ00670-1-2  
17.Feb.2016 Rev.001  
23/38  
BD8174MUV  
(4)  
LV_LDO block  
REF×0.9  
REF  
DET  
LVLDO_DET  
VDD_S  
LVLDO  
LVLDO(1.8/1.5/1.2V)  
CO  
ERR  
R41  
R42  
LVCTL  
Figure 36. LV_LDO block  
(4.1)  
Selecting I/O capacitors  
LV_LDO is ceramic capacitor compatible.  
Capacitance in the range of 4.7µF to 10µF is recommended.  
(4.2)  
Output voltage setting  
Output voltage is switching output by LVCTL pin.  
Where LVCTL pin=VIN(PVCC1,2)、  
Where LVCTL pin=MOPEN) 、  
Where LVCTL pin= GND、  
LVLDO output = 1.2[V]  
LVLDO output = 1.8[V]  
LVLDO output = 1.5[V]  
(4.3)  
Startup sequence  
After under voltage protection for VCC release, starts up with VDD startup.  
www.rohm.com  
© 2016 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0313AAZ00670-1-2  
17.Feb.2016 Rev.001  
24/38  
BD8174MUV  
(5)  
Charge pump block  
HVCC  
CIN  
HVCC  
VGH  
VGH  
CO  
VREF  
(3.3V)  
OCP  
OVP  
CPD2  
CPPCTL  
CPD1  
HVCC  
CCPP1  
CLK  
LVS  
LVS  
C53  
CPP1  
CCPP2  
CPGND  
HVCC  
COUNTER VGL DET  
2ms(typ)  
PG  
CPP2  
REF  
COUNTER  
2ms(typ)  
ERR  
CPGND  
R51  
DET  
R52  
REF×0.8  
VGH_DET  
R53  
CPGND  
Figure 37. Positive charge pump block  
HVCC  
CIN  
HVCC  
HVCC  
CLK  
DET VLS  
HVCC UVLO  
GCTL  
CCPN  
VGL  
CPN  
LVS  
CO  
REG2  
(1.5V)  
REF  
ERR  
CPGND  
R62  
R61  
VGL_S  
DET  
REF×0.8  
VGL_DET  
C63  
R63  
Figure 38. Negative charge pump block  
www.rohm.com  
TSZ02201-0313AAZ00670-1-2  
17.Feb.2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
25/38  
TSZ2211115001  
BD8174MUV  
The charge pump block starts operation, when it reaches 90% of Boost DC/DC output, GCTL=High and cancels  
HVCC low voltage protection. The startup sequences are internally fixed. First, negative-side charge pump starts  
operation. Next, when the negative-side charge pump reaches 80% of the set voltage, after 2ms (typ), the  
positive-side charge pump will start operation. When both negative and positive-side charge pumps reach 80% of the  
set voltage, after 2ms (typ), the power-good signal outputs from the CPPG pin.  
The positive-side charge pump have an overvoltage protection function that turns off HVCC-side load switch and  
prevents overshoot of output voltage, When VGH voltage reaches 37.5V (typ).  
(5.1)  
Selecting output diodes  
Select Schottky diodes having a current capability two times (negative side) as high as the maximum output current  
and a withstand voltage higher than the output voltage.  
Due to the aforementioned requirements, it is recommended to use the RB550EA dual Schottky barrier diode.  
(5.2)  
Selecting output capacitors  
CCPP1,CCPP2,CCPN is flying capacitor. A capacitance in the range of 0.01µF to 1µF is recommended.  
CO serves as charge pump output capacitors; a capacitance in the range of 0.47µF to 10µF is recommended.  
(5.3)  
Output voltage setting  
Positive charge pump output VGH is 35.2V(TYP) fixed output.  
Negative charge pump output VGL is -6V(TYP) fixed output.  
(6)  
Gate shading block  
Gate shading block activates when positive charge pump output (VGH) is over 80%, CTL logic comes in.  
Inside FET M1 turns ON and FET M2 turns OFF when positive charge pump output (VGH) is below 80%.  
When CTL logic is LOW, inside FET M1 turns ON and M2 turns OFF.  
When CTL logic is HIGH, inside FET M1 turns OFF and M2 turns ON. While M2 turns ON, if DRN pin voltage  
reaches ten times of a voltage inputting to THR, M2 turns OFF.  
VGH  
M1  
LVS  
CTL  
COM  
DRN  
M2  
VGH_DET  
100kO  
LVS  
9R  
REF  
R
THR  
THR  
Figure 39. Gate shading block  
VGH voltage under 80%  
VGH voltage over 80%  
CTL logic  
FET M1  
ON  
FET M2  
OFF  
FET M1  
ON  
FET M2  
OFF  
L
H
ON  
OFF  
OFF  
ON  
www.rohm.com  
TSZ02201-0313AAZ00670-1-2  
17.Feb.2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
26/38  
TSZ2211115001  
BD8174MUV  
Common amplifier  
VCOM operates in the range of 0.1V to HVCC-0.8V(TYP). Normally, use the VCOM amplifier as a buffer type  
amplifier as shown in (a).  
Use the output voltage of the HVLDO block for power supply on the reference side.  
To increase the current drive capability, use the PNP and NPN transistors as shown in (b).  
When the VCOM amplifier is not used, set the block to the buffer type as shown in (a) and ground the INP pin.  
In this case, it is recommended to set the RCOM1 and RCOM2 resistors in the range of 10kΩ to 100kΩ .  
Setting them to not more than 10kΩ may increase current consumption, thus resulting in degraded power efficiency.  
Setting them to not less than 100kΩ may result in higher offset voltage due to the input bias current of 0.1µA (Typ).  
(a)  
(b)  
HVLDO  
HVLDO  
RCOM1  
RCOM2  
RCOM1  
RCOM2  
30kΩ  
30kΩ  
INP  
INP  
VCOM  
VCOM  
INN  
INN  
1000pF  
VCOM  
VCOM  
Vo1  
RCOM3  
1kΩ  
Figure 40. VCOM  
RCOM2  
VCOM   
HVLDO  
RCOM1RCOM2  
www.rohm.com  
TSZ02201-0313AAZ00670-1-2  
17.Feb.2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
27/38  
TSZ2211115001  
BD8174MUV  
(7)  
DAC block  
The serial data control block consists of a register that stores data from the SDA, SCL pins, and a DAC circuit that  
receives the output from this register and provides adjusted voltages to other IC blocks.  
REGISTER 0  
REGISTER 1  
REGISTER 2  
REGISTER 3  
DAC  
DAC  
DAC  
DAC  
×4  
×4  
×4  
×4  
OUT0  
OUT1  
OUT2  
OUT3  
SDA  
Acknowledge  
Shift resistor  
SCL  
Figure 41. Serial block  
Output Voltage setting mode  
Writes to a register address specified by I2C BUS.  
For writing mode from I2C BUS to register, there are ()Single mode , ()Multi mode.  
On single mode, write data to one designated register.  
On multi mode, as a start address register specified in the second byte of data entry by multiple data write can  
be performed continuously.  
Single mode or multi mode can be configured by having or not having “stop bit”.  
(i). Single mode timing chart  
Write single DAC register. R3-R0 specify DAC address.  
start  
Device Address  
Write Ackn Start DAC address pointer. R6-R2 have no meaning Ackn DAC(pointer) MSbyte. D15-D10 have no meaning Ackn  
DAC(pointer) LSbyte.  
Ackn  
Stop  
SCL  
A6  
A6  
A5  
A5  
A4  
A4  
A3  
A3  
A2  
A2  
A1  
A1  
A0 R/W Ackn WS  
A0 R/W Ackn WS  
R6  
R6  
R5  
R5  
R4  
R4  
R3  
R3  
R2  
R2  
R1  
R1  
R0 Ackn D15 D14 D13 D12 D11 D10 D9  
R0 Ackn D15 D14 D13 D12 D11 D10 D9  
D8 Ackn D7  
D8 Ackn D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0 Ackn  
D0 Ackn  
SDA_in  
Device_Out  
The whole DAC Register D9-D0 is  
update in this moment.  
(ii). Multi mode timing chart  
Write multiple DAC registers. R3-R0 specify start DAC  
address  
start  
Device Address  
Write Ackn Start DAC address pointer. R6-R2 have no meaning Ackn DAC(pointer) MSbyte. D15-D10 have no meaning Ackn  
DAC(pointer) LSbyte.  
Ackn  
・・・  
SCL  
SDA_in  
A6  
A6  
A5  
A5  
A4  
A4  
A3  
A3  
A2  
A2  
A1  
A1  
A0 R/W Ackn WS  
A0 R/W Ackn WS  
R6  
R6  
R5  
R5  
R4  
R4  
R3  
R3  
R2  
R2  
R1  
R1  
R0 Ackn D15 D14 D13 D12 D11 D10 D9  
R0 Ackn D15 D14 D13 D12 D11 D10 D9  
D8 Ackn D7  
D8 Ackn D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0 Ackn  
D0 Ackn  
・・・  
・・・  
Device_Out  
The whole DAC Register D9-D0 is  
update in this moment.  
DAC(3) MSbyte. D15-D10 have no meaning  
Ackn  
DAC(3) LSbyte.  
Ackn  
Stop  
・・・  
・・・  
・・・  
D15 D14 D13 D12 D11 D10 D9  
D15 D14 D13 D12 D11 D10 D9  
D8 Ackn D7  
D8 Ackn D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0 Ackn  
D0 Ackn  
The whole DAC Register D9-D0 is  
update in this moment.  
www.rohm.com  
TSZ02201-0313AAZ00670-1-2  
17.Feb.2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
28/38  
TSZ2211115001  
BD8174MUV  
Resistor address  
BIT  
Register name  
DATA0  
Initial value Output pin  
R1  
R0  
7
X
6
X
5
X
4
X
3
X
2
X
1
0
D9 D8  
Register  
0
0
0
02C5h  
0230h  
01EDh  
014Dh  
OUT0  
OUT1  
OUT2  
OUT3  
DATA1 D7 D6 D5 D4 D3 D2 D1 D0  
DATA0 D9 D8  
DATA1 D7 D6 D5 D4 D3 D2 D1 D0  
DATA0 D9 D8  
DATA1 D7 D6 D5 D4 D3 D2 D1 D0  
DATA0 D9 D8  
DATA1 D7 D6 D5 D4 D3 D2 D1 D0  
X
X
X
X
X
X
Register  
0
1
1
1
0
1
1
X
X
X
X
X
X
Register  
2
X
X
X
X
X
X
Register  
3
DATA0Upper 8 bits, DATA1Lower 8 bits, Xdon’t care, D9 to D0Data bit  
REGISTER ADDRESS  
Device addresses A6 to A0 are specific to the IC and should be set as follows: A6 to A0=1110101.  
The lower 2 bits (R1 to R0) of the second byte are used to store the register address. R6 to R2 should be set to  
0 as usual.  
Command interface  
Use I2C BUS for command interface with host. Writing or reading by specifying 1 byte select address, along with  
slave address. I2C BUS Slave mode format is shown below.  
MSB  
LSB  
MSB  
LSB  
MSB  
LSB  
S
Slave Address  
A
Select Address  
A
DATA  
A
P
S
:
Start condition  
After slave mode (7bit),, with read mode (H) or light mode (L), send 8 bit data in all.  
Acknowledge Added acknowledge bit per byte in sending and receiving data.  
Slave Address :  
A
:
If the data is sent/ received properly, ”L” is send/receives.  
Sending/ Receiving ”H” means lack of acknowledge.  
Use 1 byte select address.  
Select Address :  
DATA  
P
:
:
Data byte. Sending/ Receiving dataMSB first)  
Stop condition  
The case where writing 3FCh to DAC1Single mode)  
S
Slave Address  
EAh  
A
Select Address  
01h  
A
Register1 DATA0  
03h  
A
Register1 DATA1  
FCh  
A
P
(ex.)  
: Slave from master  
Master from slave  
The case where writing 3FCh from DAC0 to DAC3 (Multi mode)  
Register  
0
Register  
Register  
Register1 to 3  
A
Slave Address  
Select Address  
0
1
S
A
A
A
A
A
P
DATA0,DATA1  
DATA0  
DATA1  
DATA0  
(ex.)  
EAh  
00h  
03h  
FCh  
03h  
: Slave from master  
Master from slave  
www.rohm.com  
TSZ02201-0313AAZ00670-1-2  
17.Feb.2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
29/38  
TSZ2211115001  
BD8174MUV  
I2C Timing  
tHIGH  
tR  
tF  
SCL  
tLOW  
tPD  
tHD:STA  
tSU;DAT  
tHD;DAT  
SDA  
(IN)  
tBUF  
tDH  
SDA  
(OUT)  
SCL  
SDA  
tSU;STA  
tHD;STA  
tSU;STO  
tl  
SSTART bit  
PSTOP bit  
S
P
Timing regulation  
Parameter  
FAST mode  
Symbol  
Unit  
MIN  
TYP  
MAX  
SCL Frequency  
SCL ”H” Time  
SCL ”L” Time  
Rise Time  
fSCL  
tHIGH  
tLOW  
tR  
-
0.6  
1.2  
-
-
400  
kHz  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
µs  
µs  
µs  
µs  
µs  
-
-
-
-
-
0.3  
Fall Time  
tF  
-
-
0.3  
Start Condition Holding Time tHD;STA  
0.6  
0.6  
100  
100  
-
-
-
Start Condition Setup Time  
SDA Holding Time  
tSU;STA  
tHD;DAT  
tSU;DAT  
tPD  
-
-
-
-
SDA Setup Time  
-
-
-
Acknowledge Delay Time  
Acknowledge Holding Time  
Stop Condition Setup Time  
BUS Open Time  
0.9  
tDH  
-
0.1  
-
-
-
-
-
tSU;STO  
tBUF  
0.6  
1.2  
-
-
Noise Spike Width  
tl  
0.1  
www.rohm.com  
TSZ02201-0313AAZ00670-1-2  
17.Feb.2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
30/38  
TSZ2211115001  
BD8174MUV  
Buffer output setting  
The relation between buffer output voltage (OUT0 to OUT3) and DAC setting value is shown below.  
DAC setting value 1  
Output voltage (OUT0 to OUT3)   
HVLDO  
1024  
Buffer output terminals OUT0 to OUT3 output after UVLO release of HVCC.  
While UVLO detection, the output is HiZ.  
(8)  
Common block  
UVLO function  
(8.1)  
When VCC is below 8.0V(TYP), UVLO function activates and be canceled when VCC is over 8.4V(TYP).  
(8.2) SCP function  
5uA  
SCP  
LATCH  
1.5V  
CSCP  
Figure 42. SCP  
The SCP function protects against short-circuits in the outputs of the step-up DC/DC converter, step-down DC/DC  
converter, HV_LDO, LV_LDO and charge pump blocks. When any one of these outputs falls below 60% of the set  
voltage, it will be regarded as a short-circuit in output, thus activating the short-circuit protection function.  
If a short-circuit is detected, source current of 5 μA (Typ) will be output from the SCP pin. Then, delay time will be set  
with external capacitance. When the SCP pin voltage exceeds 1.5V (Typ), the state will be latched to shut down all  
outputs. Once the state has been latched, it will not be canceled unless VCC restarts. The delay time setting is  
obtained by using the following equation.  
CSCP 1.5  
TL[s]   
5106  
Even if none of the output startup sequences is complete at startup of the IC, short-circuits will be detected and the  
SCP function activated. For this reason, set the delay time substantially longer than the startup time.  
www.rohm.com  
© 2016 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0313AAZ00670-1-2  
17.Feb.2016 Rev.001  
31/38  
BD8174MUV  
I/O Equivalent Circuits  
3.CPPCTL  
5.VGL_S  
6.CPN  
7.CPP1 8.CPP2  
HVCC  
PVCC1  
PVCC1  
1.5V  
VREF  
10.CPD2  
11.CPD1  
13.COM  
HVCC  
HVCC  
VGH  
VGH  
VGH  
14.DRN  
15.CTL  
16.THR  
VGH  
VGH  
VREF  
PVCC1  
17.VCOM  
18.INN 19.INP  
20.HVLDO  
HVCC  
HVCC  
HVCC  
21.FBLD1  
23.SCP  
24.OUT0 25.OUT1  
26.OUT2 27.OUT3  
PVCC  
HVCC  
HVCC  
www.rohm.com  
TSZ02201-0313AAZ00670-1-2  
17.Feb.2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
32/38  
TSZ2211115001  
BD8174MUV  
I/O Equivalent Circuits - Continued  
29.SDA  
30.SCL  
31.LVLDO  
35.SW2  
39.PG  
VDD  
VDD  
VDD  
32.REG5  
34.GCTL  
PVCC1  
PVCC1  
PVCC2  
VREF  
37.BOOT  
38.LVCTL  
PVCC1  
PVCC1  
REG5  
SW2  
41.FB1  
42.COMP1  
45.SW1 46.SW1  
PVCC1  
PVCC1  
47.LSO1 48.LSO1  
PVCC1  
www.rohm.com  
© 2016 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0313AAZ00670-1-2  
17.Feb.2016 Rev.001  
33/38  
BD8174MUV  
Operational Notes  
1.  
2.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the ICs power  
supply pins.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
Thermal Consideration  
Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may  
result in deterioration of the properties of the chip. In case of exceeding this absolute maximum rating, increase the  
board size and copper area to prevent exceeding the maximum junction temperature rating.  
6.  
7.  
Recommended Operating Conditions  
These conditions represent a range within which the expected characteristics of the IC can be approximately  
obtained. The electrical characteristics are guaranteed under the conditions of each parameter.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may  
flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring,  
and routing of connections.  
8.  
9.  
Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
10. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment)  
and unintentional solder bridge deposited in between pins during assembly to name a few.  
11. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
www.rohm.com  
TSZ02201-0313AAZ00670-1-2  
17.Feb.2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
34/38  
TSZ2211115001  
BD8174MUV  
Operational Notes continued  
12. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should  
be avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 43. Example of monolithic IC structure  
13. Thermal Shutdown Circuit(TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always  
be within the IC’s power dissipation rating. If however the rating is exceeded for a continued period, the junction  
temperature (Tj) will rise which will activate the TSD circuit that will turn OFF all output pins. When the Tj falls below  
the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from  
heat damage.  
14. Over Current Protection Circuit (OCP)  
This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This  
protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should  
not be used in applications characterized by continuous operation or transitioning of the protection circuit.  
15. DC/DC switching line wiring pattern  
DC/DC converter switching line (wiring from switching pin to inductor, Nch MOS) should be connected with short and  
wide wiring. If the wiring is long, ringing by switching would increase. That may cause excess voltage of absolute  
maximum ratings. If the wiring is obliged to lengthen by parts location limits, please consider inserting snubber circuit.  
16. Discontinuous mode  
The step-up and step-down DC/DC converters used in this IC have been designed on the assumption that the  
converters are used in continuous mode. Using the IC constantly while in discontinuous mode may result in  
malfunctions. To avoid this problem, make coil adjustments or insert a resistor between output and GND to prevent  
the IC from entering discontinuous mode while in use.  
www.rohm.com  
TSZ02201-0313AAZ00670-1-2  
17.Feb.2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
35/38  
TSZ2211115001  
BD8174MUV  
Ordering Information  
B
D
8
1
7
4
M U V -  
E 2  
Part number  
Package  
MUV: VQFN048V7070  
Packaging and forming specification  
E2: Embossed tape and reel  
Marking Diagram  
VQFN048V7070 (TOP VIEW)  
Part Number Marking  
BD8174MU  
LOT Number  
1PIN MARK  
www.rohm.com  
TSZ02201-0313AAZ00670-1-2  
17.Feb.2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
36/38  
TSZ2211115001  
BD8174MUV  
Physical Dimension, Tape and Reel Information  
Package Name  
VQFN048V7070  
www.rohm.com  
© 2016 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0313AAZ00670-1-2  
17.Feb.2016 Rev.001  
37/38  
BD8174MUV  
Revision History  
Date  
Revision  
001  
Changes  
17.Feb.2016  
New Release  
www.rohm.com  
TSZ02201-0313AAZ00670-1-2  
17.Feb.2016 Rev.001  
© 2016 ROHM Co., Ltd. All rights reserved.  
38/38  
TSZ2211115001  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (Specific Applications), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHMs Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PGA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PGA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
Datasheet  
BD8174MUV - Web Page  
Part Number  
Package  
Unit Quantity  
BD8174MUV  
VQFN048V7070  
1500  
Minimum Package Quantity  
Packing Type  
Constitution Materials List  
RoHS  
1500  
Taping  
inquiry  
Yes  
配单直通车
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!