欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多
  • ZN448E图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • ZN448E 优势库存
  • 数量9800 
  • 厂家GPS 
  • 封装DIP 
  • 批号24+ 
  • 原厂渠道,全新原装现货,欢迎查询!
  • QQ:97877807QQ:97877807 复制
  • 171-4755-1968(微信同号) QQ:97877807
  • ZN448E图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • ZN448E
  • 数量98500 
  • 厂家GPS 
  • 封装DIP 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495751QQ:2881495751 复制
  • 0755-88917743 QQ:2881495751
  • ZN448E图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • ZN448E
  • 数量3275 
  • 厂家ZN 
  • 封装NA/ 
  • 批号23+ 
  • 原装现货,当天可交货,原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • ZN448图
  • 北京中其伟业科技有限公司

     该会员已使用本站16年以上
  • ZN448
  • 数量1733 
  • 厂家 
  • 封装 
  • 批号16+ 
  • 特价,原装正品,绝对公司现货库存,原装特价!
  • QQ:2880824479QQ:2880824479 复制
  • 010-62104891 QQ:2880824479
  • ZN448E图
  • 深圳市赛尔通科技有限公司

     该会员已使用本站12年以上
  • ZN448E
  • 数量12850 
  • 厂家GPS 
  • 封装DIP 
  • 批号NEW 
  • 绝对进口原装现货,市场价格最低!!
  • QQ:1134344845QQ:1134344845 复制
    QQ:847984313QQ:847984313 复制
  • 86-0755-83536093 QQ:1134344845QQ:847984313
  • ZN448图
  • 上海熠富电子科技有限公司

     该会员已使用本站15年以上
  • ZN448
  • 数量9000 
  • 厂家N/A 
  • 封装N/A 
  • 批号2024 
  • 上海原装现货库存,欢迎查询!
  • QQ:2719079875QQ:2719079875 复制
    QQ:2300949663QQ:2300949663 复制
  • 15821228847 QQ:2719079875QQ:2300949663
  • ZN448E图
  • 深圳市毅创腾电子科技有限公司

     该会员已使用本站16年以上
  • ZN448E
  • 数量3000 
  • 厂家GPS 
  • 封装DIP 
  • 批号22+ 
  • ★只做原装★正品现货★原盒原标★
  • QQ:2355507162QQ:2355507162 复制
    QQ:2355507165QQ:2355507165 复制
  • 86-755-83616256 QQ:2355507162QQ:2355507165
  • ZN448E图
  • 北京顺科电子科技有限公司

     该会员已使用本站8年以上
  • ZN448E
  • 数量5500 
  • 厂家GPS 
  • 封装DIP 
  • 批号21+ 
  • 进口品牌//国产品牌代理商18911556207
  • QQ:729566152QQ:729566152 复制
    QQ:1138731127QQ:1138731127 复制
  • 18911556207 QQ:729566152QQ:1138731127
  • ZN448E图
  • 深圳市欧昇科技有限公司

     该会员已使用本站10年以上
  • ZN448E
  • 数量9000 
  • 厂家GPS 
  • 封装DIP18 
  • 批号2021+ 
  • YF格现货有接受价格就出
  • QQ:2885514621QQ:2885514621 复制
    QQ:1017582752QQ:1017582752 复制
  • 0755-83237676 QQ:2885514621QQ:1017582752
  • ZN448E图
  • 上海振基实业有限公司

     该会员已使用本站13年以上
  • ZN448E
  • 数量2572 
  • 厂家GPS 
  • 封装GPS 
  • 批号23+ 
  • 全新原装现货/另有约30万种现货,欢迎来电!
  • QQ:330263063QQ:330263063 复制
    QQ:1985476892QQ:1985476892 复制
  • 021-59159268 QQ:330263063QQ:1985476892
  • ZN448J图
  • 深圳市宏诺德电子科技有限公司

     该会员已使用本站8年以上
  • ZN448J
  • 数量68000 
  • 厂家GPS 
  • 封装DIP 
  • 批号22+ 
  • 全新进口原厂原装,优势现货库存,有需要联系电话:18818596997 QQ:84556259
  • QQ:84556259QQ:84556259 复制
    QQ:783839662QQ:783839662 复制
  • 0755- QQ:84556259QQ:783839662
  • ZN448J图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • ZN448J
  • 数量15000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • ZN448E图
  • 深圳市创思克科技有限公司

     该会员已使用本站2年以上
  • ZN448E
  • 数量8000 
  • 厂家ZN 
  • 封装DIP 
  • 批号21+ 
  • 全新原装原厂实力挺实单欢迎来撩
  • QQ:1092793871QQ:1092793871 复制
  • -0755-88910020 QQ:1092793871
  • ZN448图
  • 深圳市一线半导体有限公司

     该会员已使用本站16年以上
  • ZN448
  • 数量15000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • ZN448D图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • ZN448D
  • 数量15000 
  • 厂家原厂品牌 
  • 封装原厂外观 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • ZN448E图
  • 深圳市一线半导体有限公司

     该会员已使用本站16年以上
  • ZN448E
  • 数量15000 
  • 厂家 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921

产品型号ZN448的Datasheet PDF文件预览

DS3013 - 2.2  
ZN448/ZN449  
8-BIT MICROPROCESSOR COMPATIBLE A-D CONVERTER  
The ZN448 and ZN449 are 8-bit successive  
approximation A-D converters designed to be easily  
interfacedtomicroprocessors. Allactivecircuitryiscontained  
on-chip including a clock generator and stable 2.5V bandgap  
reference, control logic and double buffered latches with  
reference.  
BUSY (END OF CONVERSION)  
RD (OUTPUT ENABLE)  
CLOCK  
1
2
3
4
18 DB  
17 DB  
16 DB  
15 DB  
0
(LSB)  
1
2
3
WR (START CONVERSION)  
Only a reference resistor and capacitor, clock resistor and  
capacitor and input resistors are required for operation with  
either unipolar or bipolar input voltage.  
R
EXT  
IN  
REF IN  
REF OUT  
5
6
7
14 DB  
13 DB  
12 DB  
4
5
6
V
V
V
8
9
11 DB  
7
(MSB)  
FEATURES  
Easy Interfacing to Microprocessor, or operates as a  
GROUND  
10 +VCC (+5V)  
'Stand-Alone' Converter  
ZN448/9E (DP18)  
Fast: 9 microseconds Conversion time Guaranteed  
Choice of Linearity: 0.5 LSB - ZN448, 1 LSB - ZN449  
On-Chip Clock  
Choice of On-Chip or External Reference Voltage  
Unipolar or Bipolar Input Ranges  
BUSY (END OF CONVERSION)  
1
2
3
4
18  
17  
16  
15  
DB  
DB  
DB  
DB  
0
(LSB)  
RD (OUTPUT ENABLE)  
CLOCK  
1
2
3
Commercial Temperature Range  
WR (START CONVERSION)  
ORDERING INFORMATION  
R
EXT  
IN  
REF IN  
REF OUT  
5
6
7
14  
13  
12  
DB  
DB  
DB  
4
5
6
Linearity  
error (LSB) temperature  
Operating  
V
Device type  
Package  
V
ZN448E  
ZN449D  
ZN449E  
0.5  
1
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
DP18  
MP18  
DP18  
V
8
9
11  
10  
DB  
7
(MSB)  
GROUND  
+VCC (+5V)  
1
ZN449D (MP18)  
Fig.1 Pin connection - top view  
COMPARATOR  
5
6
7
ANALOGUE  
+
R
EXT  
INPUT  
-
8-BIT DAC  
V
IN  
REF  
8
V
OUT  
REF  
3
CLOCK  
CK RC OR  
2.5V  
REFERENCE  
GENERATOR  
EXT CLOCK  
4
1
INTERFACE  
AND  
CONTROL  
LOGIC  
WR  
SUCCESSIVE  
APPROXIMATION REGISTER  
9
GROUND  
BUSY  
10  
V
(+5V)  
CC  
2
3-STATE BUFFERS  
RD  
11  
7
12  
13  
14  
15  
16  
17  
18  
0
DB  
DB  
Fig.2 System diagram  
ZN448/9  
ABSOLUTE MAXIMUM RATINGS  
Supply voltage VCC  
+7  
Max. voltage, logic and VREF input  
Operating temperature range  
Storage temperature range  
+VCC  
0°C to +70°C (MP and DP package)  
-55°C to +125°C  
ELECTRICAL CHARACTERISTICS (at VCC = 5V, Tamb = 25°C and fCLK = 1.6MHz unless otherwise specified).  
Min.  
Typ.  
Max.  
Parameter  
Units  
Conditions  
ZN448  
Linearity error  
Differential linearity error  
Zero transition  
-
-
12  
-
-
15  
±0.5  
±0.75  
18  
LSB  
LSB  
mV  
DP package  
(0000000000000001)  
Full-scaletransition  
(11111110 11111111)  
2.545  
2.550  
2.555  
V
VREF = 2.560V  
ZN449  
Linearity error  
Differential linearity error  
Zero transition  
(0000000000000001)  
Full-scaletransition  
(11111110 11111111)  
-
-
7
-
-
12  
15  
2.550  
±1  
±1  
17  
20  
2.558  
LSB  
LSB  
mV  
mV  
V
MP package  
DP package  
VREF = 2.560V  
10  
2.542  
All Types  
Resolution  
8
-
-
-
-
1
4.5  
-
-
±3  
±6  
±2.5  
±8  
-
5
25  
125  
-
-
-
-
-
bits  
ppm/°C  
ppm/°C  
ppm/°C  
µV/°C  
V
V
mA  
mW  
Linearity temperature coefficient  
Differential linearity temperature coefficient  
Full-scale temperature coefficient  
Zero temperature coefficient  
Reference input range  
Supply voltage  
3
5.5  
40  
200  
Supply current  
Power consumption  
-
Comparator  
Input current  
Input resistance  
Tail current  
Negative supply  
Input voltage  
-
-
25  
-3  
1
100  
65  
-5  
-
-
µA  
kΩ  
µA  
V
VIN = +3V, REXT = 82kΩ  
150  
-30  
+3.5  
V - = -5V  
-0.5  
-
V
On-chip reference  
Output voltage  
ZN448  
ZN449  
2.520  
2.520  
-
-
4
2.550  
2.550  
0.5  
50  
-
2.580  
2.600  
2
-
15  
V
RREF = 390Ω  
CREF = 4µ7  
Slope resistance  
VREF temperature coefficient  
ppm/°C  
mA  
Reference current  
2
ZN448/9  
ELECTRICAL CHARACTERISTICS (Cont.)  
Min.  
Typ.  
Max.  
Parameter  
Units  
Conditions  
Clock  
On-chip clock frequency  
Clock frequency temperature coefficient  
Clock resistor  
Maximum external clock frequency  
Clock pulse width  
High level input voltage VIH  
Low level input voltage VIL  
High level input current IIH  
Low level input current IIL  
-
-
-
1
-
2
1
-
MHz  
%/°C  
kΩ  
MHz  
ns  
V
V
µA  
µA  
+0.5  
-
0.9  
500  
4
-
-
-
-
-
-
-
-
-
-
0.8  
800  
-500  
VIN = +4V, VCC = MAX  
VIN = +0.8V, VCC = MAX  
-
Logic (over operating temperature range)  
Convert input  
High level input voltage VIH  
Low level input voltage VIL  
High level input current IIH  
Low level input current IIL  
2
-
-
-
-
-
0.8  
-
V
V
µA  
µA  
300  
±10  
VIN = +2.4V, VCC = MAX  
VIN = +0.4V, VCC = MAX  
-
-
RD input  
High level input voltage VIH  
2
-
-
-
2.4  
-
-
-
-
-
-
0.8  
-
-
-
0.4  
-100  
1.6  
2
-1.5  
250  
260  
100  
140  
100  
-
V
V
µA  
µA  
V
Low level input voltage VIL  
High level input current IIH  
Low level input current IIL  
High level output voltage VOH  
Low level output voltage VOL  
High level output current IOH  
Low level output current IOL  
Three-state disable output leakage  
Input clamp diode voltage  
RD input to data output  
Enable/disable delay times TE1  
TE0  
+150  
-300  
-
-
-
-
-
VIN = +2.4V, VCC = MAX  
VIN = +0.4V, VCC = MAX  
IOH = +2.4V, VCC = MAX  
V
IOL = +0.4V, VCC = MAX  
µA  
mA  
µA  
V
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
-
-
VOUT = +2V  
-
180  
210  
80  
110  
80  
-
180  
60  
80  
60  
200  
-
TD1  
TD0  
Convert pulse width tWR  
WR input to BUSY output  
-
250  
GENERAL CIRCUIT OPERATION  
The ZN448/9 utilises the successive approximation  
technique. Upon receipt of a negative-going pulse at the WR  
input the BUSY output goes low, the MSB is set to 1 and all  
other bits are set to 0, which produces an output voltage of  
VREF/2 from the DAC. This is compared to the input voltage VIN;  
adecisionismadeonthenextnegativeclockedgetoresetthe  
During a conversion the RD input will normally be held high to  
keep the three-state buffers in their high impedance state.  
Data can be read out by taking RD low, thus enabling the  
three-state output. Readout is non-destructive.  
CONVERSION TIMING  
The ZN448/9 will accept a low-going CONVERT pulse, which  
can be completely asynchronous with respect to the clock,  
and will produce valid data between 7.5 and 8.5 clock pulses  
later depending on the relative timing of the clock and  
CONVERT signals. Timing diagrams for the conversion are  
shown in Fig.3.  
VREF  
2
VREF  
2
MSB to 0 if  
< VIN or leave it set to 1 if  
< VIN.  
Bit 2 is set to 1 on the same clock edge, producing an output  
V
VREF  
2
V
from the DAC of REF or  
4
+
REF depending on the state  
4
of the MSB. This voltage is compared to VIN and on the next  
clock edge a decision is made regarding bit 2, whilst bit 3 is set  
to1. Thisprocedureisrepeatedforalleightbits. Ontheeighth  
negative clock edge BUSY goes high indicating that the  
conversion is complete.  
The converter is cleared by a low-going CONVERT pulse,  
which sets the most significant bit and results all the other bits  
andtheBUSYflag. WhilsttheCONVERTinputislowtheMSB  
outputoftheDACiscontinuouslycomparedwiththeanalogue  
input, but otherwise the converter is inhibited.  
3
ZN448/9  
clockfrequency. TheCONVERTinputisnotlockedoutduring  
a conversion and if it is oulsed low at any time the converter  
will restart.  
After the CONVERT input goes high again the MSB decision  
is made and the successive approximation routine runs to  
completion.  
The BUSY output goes high simultaneously with the LSB  
decision, attheendofaconversionindicatingdatavalid. Note  
that if the three-state data outputs are enabled during a  
conversion the valid data will be available at the outputs after  
therisingedgeoftheBUSYsignal. If, howevertheoutputsare  
not enabled until after BUSY goes high then the data will be  
subject to the propagation delay of the three-state buffers.  
(See under DATA OUTPUTS).  
The CONVERT pulse can be as short as 200ns; however the  
MSB must be allowed to settle for at least 550ns before the  
MSB decision is made. To ensure that this criterion is met  
even with short CONVERT pulses the converter waits, after  
theCONVERTinputgoeshigh,forarisingclockedgefollowed  
by a falling clock edge, the MSB decision being taken on the  
falling clock edge. This ensures that the MSB is allowed to  
settle for at least half a clock period, or 550ns at maximum  
Fig.3 ZN448/9 timing diagram  
4
ZN448/9  
Ifafree-runningconversionisrequired,thentheconvertercan  
be made to cycle by inverting the BUSY output and feeding it  
toWR. Toensurethattheconverterstartsreliablyafterpower-  
up an initial start pulse is required. This can be ensured by  
using a NOR gate instead of an inverter and feeding it with a  
positive-going pulse which can be derived from a simple RC  
network that gives a single pulse when power is applied, as  
shown in Fig.4a.  
whichtimethedatacanbestoredinalatch. Thetimeavailable  
for storing data can be increased by inserting delays into the  
inverter path.  
A timing diagram for the continuous conversion mode is  
shown in Fig.3b.  
As the BUSY output uses a passive pull-up the rise time of this  
output depends on the RC time constant of the pull-up resistor  
andloadcapacitance. Inthecontinuousconversionmodethe  
use of a 4k7 external pull-up resistor is recommended to  
reduce the risetime and ensure that a logic 1 level is reached.  
The ADC will complete a conversion on every eighth clock  
pulse, with the BUSY output going high for a period  
determined by the propagation delay of the NOR gate, during  
Fig.4a Circuit for continuous conversion  
Fig.4b Timing for continuous conversion  
DATA OUTPUTS  
Thedataoutputsareprovidedwiththree-statebufferstoallow  
connection to a common data bus. An equivalent circuit is  
shown in Fig.5. Whilst the RD input is high both output  
transistorsareturnedoffandtheZN448/9presentsonlyahigh  
impedance load to the bus.  
When RD is low the data outputs will assume the logic states  
present at the outputs of the successive register.  
A test circuit and timing diagram for the output enable/disable  
delays are given in Fig.6.  
5
ZN448/9  
V
CC  
500  
20k  
BITS 1-8  
(PINS 11-18)  
10k  
RD  
(PIN 2)  
GROUND  
Fig.5 Data output  
Fig.6 Output enable/disable delays  
6
ZN448/9  
BUSY OUTPUT  
The BUSYoutput, showninFig.7, utilisesapassivepull-upfor  
CMOS/TTLcompatibility. ThisallowsuptofourBUSYoutputs  
to be wire-ANDed together to form a common interrupt line.  
Fig.7 BUSY output  
ON-CHIP CLOCK  
considerably between devices. For optimum accuracy and  
stability of the oscillator frequency, it may be possible to use  
a crystal or ceramic resonator with suitable load components,  
as shown in Fig.8c. The final option is to overdrive the  
oscillator input with an external clock signal from a TTL or  
CMOS gate, as shown in Fig.8d.  
The on-chip clock operates with only a single external  
capacitor connected between pin 3 and ground, as shown in  
Fig.8a. A graph of typical oscillator frequency versus  
capacitance is given in Fig.9. The oscillator frequency may be  
trimmed by means of an external resistor in series with the  
capacitor, as shown in Fig.8b. However, due to processing  
tolerance, the absolute clock frequency may vary  
3
3
OSC  
2k  
MAX  
9
9
GND  
b) Fixed capacitor + variable resistor  
a) Fixed/variable capacitor  
V
CC  
1.2k  
3
3
4.7k  
1MHz  
Xtal  
2200pF ✱  
56pF  
9
Load circuit to suit  
device used  
c) Crystal or resonator  
d) External TTL or CMOS drive  
Fig.8 Clock circuit external components  
7
ZN448/9  
1MHz  
100kHz  
10kHz  
1kHz  
10p  
100p  
1n  
10n  
100n  
Fig.9 Typical clock frequency v CCK (RCK = 0)  
ANALOG CIRCUITS  
D-A converter  
The converter is of the voltage switching type and uses an R-  
2R ladder network as shown in Fig.10. Each element is  
connected to either 0V or VREF IN by transistor voltage switches  
specially designed for low offset voltage (1mV).  
VOS is a small offset voltage that is produced by the device  
supply current flowing in the package lead resistance. The  
offset will normally be removed by the setting up procedure  
and since the offset temperature coefficient is low (8µV/°C)  
the effect on accuracy will be neglible.  
A binary weighted voltage is produced at the output of the R-  
2R ladder.  
The D-A output range can be considered to be 0 - VREF IN  
through an output resistance R (4k).  
D to A output = n (VREF IN -VOS) + VOS  
256  
where n is the digital input to the D-A from the successive  
approximation register.  
R(4k)  
2R  
R
R
R
D TO A OUTPUT  
2R  
2R  
2R  
2R  
V
REF IN  
(PIN 7)  
VOLTAGE  
SWITCHES  
0 VOLTS  
(PIN 9)  
V
DB0  
DB1  
DB6  
DB7  
OS  
Fig.10 R-2R ladder network  
8
ZN448/9  
REFERENCE  
(a) Internal reference  
The internal reference is an active bandgap circuit which is  
equivalent to a 2.5V Zener diode with a very low slope  
impedance (Fig.11). A Resistor (RREF) should be connected  
between pins 8 and 10.  
feature saves power and gives excellent gain tracking  
between the converters.  
Alternatively the internal reference can be used as the  
reference voltage for other external circuits and can source or  
sink up to 3mA.  
The recommended value of 390will supply a nominal  
reference current of (5 - 2.5)/0.39=6.4mA. A stabilising/  
decoupling capacitor, CREF (4µ7), is required between pins 8  
and 9. For internal reference operation VREF OUT (pin 8) is  
connected to VREF IN (pin 7).  
(b) External reference  
If required an external reference in the range +1.5 to +3.0V  
may be connected to VREF IN. The slope resistance of such a  
reference source should be less than 2.5, where n is the  
n
UP to five ZN448/9's may be driven from one internal  
reference, there being no need to reduce RREF. This useful  
number of converters supplied.  
V
+5V  
CC  
(PIN 10)  
R
REF  
(390)  
V
REFOUT  
(PIN 8)  
C
REF  
(0.47µ)  
GROUND  
(PIN 9)  
Fig.11 Internal voltage reference  
RATIOMETRIC OPERATION  
COMPARATOR  
If the output from a transducer varies with its supply then an  
external reference for the ZN4448/9 should be derived from  
the same supply. The external reference can vary from +1.5  
to +3.0V. The ZN448/9 will operate if VREF IN is less than +1.5V  
but reduced overdrive to the comparator will increase its delay  
and so the conversion time will need to be increased.  
The ZN448/9 contains a fast comparator, the equivalent input  
circuit of which is shown in Fig.12. A negative supply voltage  
is required to supply the tail current of the comparator.  
However as this is only 25 to 150µA and need not be well  
stabilised it can be supplied by a simple diode pump circuit  
driven from the BUSY output.  
9
ZN448/9  
+5V PIN 10  
6k  
6k  
-
TO LOGIC  
HIGH = 'RETAIN BIT'  
+
R
IN  
A
V
IN  
IN  
D TO A OUTPUT  
(O - V  
)
REFIN  
PIN 6  
4k  
4k  
PIN 5  
R
EXT  
I
EXT  
V -  
Fig.12 Comparator equivalent circuit  
Fig.13 Diode pump circuits to supply comparator tail current  
10  
ZN448/9  
Several suitable circuits are shown in Fig.13. The principle of  
operation is the same in each case. Whilst the BUSY output  
is high, capacitor C1 is charged to about 4-4.5V. During a  
conversiontheBUSYoutputgoeslowandtheupperendofC1  
is thus also pulled low. The lower end of C1 therefore applies  
about -4V to R2, thus providing the tail current for the  
comparator. The time constant R2. C1 is chosen according  
to the clock frequency so that droop of the capacitor voltage is  
not significant during a conversion.  
is high for greater than one converter clock period then the  
circuitofFig.13awillsuffice. Ifthisisnotthecase,forexample,  
in the continuous conversion mode, then the circuits of Figs.  
13b and 13c are recommended, since these can pump more  
current into the capacitor.  
Where several ZN448/9's are used in a system the self-  
oscillating diode pump circuit Fig.14 is recommeded.  
Alternatively, if a negative supply is available in the system  
then this may be utilised. A list of suitable resistor values for  
different supply voltages is given in Table 1.  
The constraint on using this type of circuit is that C1 must be  
recharged whilst the BUSY output is high. If the BUSY output  
330  
5V  
470  
IN914  
100n  
-3.5V  
100n  
22n  
IN914  
Fig.14 Diode pump circuit to supply comparator tail current for up to five ZN448/9's  
V – (volts)  
REXT (k)  
3
5
47  
82  
10  
12  
15  
20  
25  
30  
150  
180  
220  
330  
390  
470  
Table 1  
11  
ZN448/9  
ANALOG INPUT RANGES  
The basic connection of the ZN448/9 shown in Fig.15 has an  
analogue input range 0 to VREF IN which, in some applications,  
may be made available from previous signal conditioning/  
scaling circuits. Input voltage ranges greater than this are  
accommodated by providing an attenuator on the comparator  
input, whilst for smaller input ranges the signal must be  
amplified to a suitable level.  
Bipolar input ranges are accommodated by off-setting the  
analogue input input range so that the comparator always  
sees a positive input voltage.  
DIGITAL OUTPUTS  
LSB  
MSB  
DB7  
V
CC  
(+5V)  
1
2
3
4
5
6
DB0  
18  
17  
16  
15  
14  
13  
12  
11  
10  
R
REF  
(390)  
1
2
3
4
5
6
7
8
9
V
IN  
R
R
(4k)  
EXT  
(82k)  
IN  
C
REF  
(4µ7)  
BUSY  
RD  
CK  
WR  
V-  
(-5V)  
A
V
V
REFIN REFOUT  
GND  
(0V)  
IN  
NOMINAL A RANGE = 0 TO V  
IN  
REFIN  
Fig.15 External components for basic operation  
12  
ZN448/9  
UNIPOLAR OPERATION  
The general connection for unipolar operation is shown in  
Fig.16.  
R1  
R2  
AINFS = 1 +  
, VREF IN = G.VREF IN.  
To match the ladder resistance R1/R2 (RIN) = 4k.  
The values of R1 and R2 are chosen so that VIN = VREF IN when  
the analog input (AIN) is at full-scale.  
The required nominal values of R1 and R2 are given by R1 =  
4Gk, R2 = 4G k  
G-1  
The resulting full-scale range is given by:  
A
V
REF IN  
IN  
1M  
ZERO  
ADJUST  
R1  
680k  
7
V
IN  
6
ZN448/9  
9
GROUND  
R2  
Fig.16 General unipolar input connections  
Zero adjustment  
Using these relationships a table of nominal values of R1 and  
R2 can be constructed for VREF IN = 2.5V.  
Due to offsets in the DAC and comparator the zero (0 to 1)  
code transition would occur with typically 15mV applied to the  
comparator input, which correpsonds to 1.5LSB with a 2.56V  
reference.  
Input range  
R1  
R2  
G
+5V  
+10V  
8k  
16k  
8k  
5.33k  
2
4
Zero adjustment must therefore be provided to set the zero  
transition to its correct value of +0.5LSB or 5mV with a 2.56V  
reference. Thisisachievedbyapplyinganadjustablepositive  
offset to the comparator input via P2 and R3. The values  
shown are suitable for all input ranges greater than 1.5 times  
Gain adjustment  
Due to tolerance in R1 and R2, tolerance in VREF and the gain  
(full-scale) error of the DAC, some adjustment should be  
incorporated into R1 to calibrate the full-scale of the converter.  
When used with the internal reference and 2% resistors a  
preset capable of adjusting R1 by at least ±5% of its nominal  
value is suggested.  
VREF IN  
.
Practical circuit values for +5 and +10V input ranges are given  
in Fig.17, which incorporates both zero and gain adjustments.  
13  
ZN448/9  
A
V
A
V
REF IN  
IN  
REF IN  
IN  
P2  
P2  
P1 5k  
GAIN  
1M  
ZERO  
P1 10k  
GAIN  
1M  
ZERO  
ADJUST  
ADJUST  
ADJUST  
ADJUST  
R1 5k6  
680k  
R1 11k  
R2 5k6  
680k  
R3  
R3  
TO PIN 6  
TO PIN 6  
± 2% RESISTORS  
R2 8k2  
±20% POTENTIOMETERS  
+5V FULL-SCALE  
+10V FULL-SCALE  
Fig.17 Unipolar operation component values  
Unipolar adjustment prodedure  
(iii) Apply 0.5LSB to AIN and adjust zero until 8 bit just flickers  
between 0 and 1 with all other bits at 1.  
(i) Apply continuous convert pulses at intervals long enough  
to allow a complete conversion and monitor the digital  
outputs.  
(ii) Applyfull-scaleminus1.5LSB toAIN andadjustoff-setuntil  
the bit 8 (LSB) output just flickers between 0 and 1 with all  
other bits at 0.  
Unipolar setting up points  
FS - 1.5LSB  
0.5LSB  
Input range, +FS  
4.9707V  
9.9414V  
9.8mV  
19.5mV  
+5V  
+10V  
1LSB = FS  
256  
Bipolar logic coding  
Output code  
Analogue input (AIN)  
(offset binary)  
(Nominal code centre value)  
11111111  
11111110  
11000000  
10000001  
10000000  
01111111  
01000000  
00000001  
00000000  
FS - 1LSB  
FS - 2LSB  
0.75FS  
0.5FS + 1LSB  
0.5FS  
0.5FS - 1LSB  
0.25FS  
1LSB  
0
14  
ZN448/9  
BIPOLAR OPERATION  
For bipolar operation the input to the ZN448/9 is offset by half  
full-scale by connecting a resistor R3 between VREF IN and VIN  
(Fig.18).  
A
V
REF IN  
IN  
R1  
R3  
7
V
IN  
6
ZN448/9  
9
GROUND  
R2  
Fig.18 Basic bipolar input connection  
When AIN = -FS, VIN needs to be equal to zero.  
When AIN = +FS, VIN needs to be equal to VREF IN  
Thus the nominal values of R1, R2, R3 are given by R1 = 8 Gk,  
R2 = 8G/(G - 1)k, R3 = 8k.  
.
A bipolar range of ±VREF IN (which corresponds to the basic  
unipolar range 0 to +VREF IN) results if R1 = R3 = 8k and R2 = .  
If the full-scale range is ± G. VREF IN then R1 = (G - 1). R2 and  
R1 = G. R3 fulfil the required conditions.  
Assuming the VREF IN = 2.5V the nominal values of resistors for  
To match the ladder resistance, R1/R2/R3 (=RIN) = 4k.  
±5 and ±10V input ranges are given in the following table.  
R3  
Input range  
R1  
R2  
G
8k  
8k  
+5V  
+10V  
16k  
32k  
16k  
10.66k  
2
4
Minusfull-scale(offset)issetbyadjustingR1 aboutitsnominal  
value relative to R3. Plus full-scale (gain) is set by adjusting R2  
relative to R1.  
Note that in the±5V case R3 has been chosen as 7.5k (instead  
of 8.2k) to obtain a more symmetrical range of adjustment  
using standard potentiometers.  
Practical circuit realisations are given in Fig.19.  
15  
ZN448/9  
A
V
A
V
IN  
REF  
IN  
REF  
5k  
OFFSET  
ADJUST  
10k  
OFFSET  
ADJUST  
7k5  
8k2  
13k  
27k  
TO PIN 6  
TO PIN 6  
5k  
5k  
GAIN  
GAIN  
ADJUST  
ADJUST  
± 2% RESISTORS  
±20% POTENTIOMETERS  
13k  
8k2  
±5VOLTS FULL SCALE  
±10VOLTS FULL SCALE  
Fig.19 Bipolar operation component values  
Bipolar adjustment prodedure  
(iii) Apply +(FS -1.5LSB) to AIN and adjust gain until the 8 bit  
just flickers between 0 and 1 with all other bits at 1.  
(i) Apply continuous SC pulses at intervals long enough to  
allow a complete conversion and monitor the digital  
outputs.  
(iv) Repeat step (ii).  
(ii) Apply -(FS -0.5LSB) to AIN and adjust off-set until the bit 8  
(LSB)outputjustflickersbetween0and1withallotherbits  
at 0.  
Bipolar setting up points  
+(FS -1.5LSB)  
-(FS -0.5LSB)  
Input range, ±FS  
+4.9414V  
+9.8828V  
-4.9805V  
-9.9609V  
+5V  
+10V  
1LSB =2FS  
256  
Bipolar logic coding  
Output code  
Analogue input (AIN)  
(offset binary)  
(Nominal code centre value)  
11111111  
11111110  
11000000  
10000001  
10000000  
01111111  
01000000  
00000001  
00000000  
+(FS - 1LSB)  
+(FS - 2LSB)  
+0.5FS  
+1LSB  
0
-1LSB  
-0.5FS  
-(FS - 1LSB)  
-FS  
16  
ZN448/9  
17  
For more information about all Zarlink products  
visit our Web Site at  
www.zarlink.com  
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. trading as Zarlink Semiconductor or its subsidiaries (collectively Zarlink)  
is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or  
use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from  
such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or  
other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use  
of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned  
by Zarlink.  
This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part  
of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other  
information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability,  
performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee  
that such methods of use will be satisfactory in a specific piece of equipment. It is the users responsibility to fully determine the performance and suitability of any  
equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily  
include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury  
or death to the user. All products and materials are sold and services provided subject to Zarlinks conditions of sale which are available on request.  
2
2
2
Purchase of Zarlink s I C components conveys a licence under the Philips I C Patent rights to use these components in and I C System, provided  
2
that the system conforms to the I C Standard Specification as defined by Philips.  
Zarlink and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright 2001, Zarlink Semiconductor Inc. All Rights Reserved.  
TECHNICAL DOCUMENTATION - NOT FOR RESALE  
配单直通车
ZN448D产品参数
型号:ZN448D
生命周期:Transferred
IHS 制造商:PLESSEY SEMICONDUCTORS
包装说明:,
Reach Compliance Code:unknown
风险等级:5.81
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!