欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • ZSC31050FIG1
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • ZSC31050FIG1-T图
  • 深圳市得捷芯城科技有限公司

     该会员已使用本站11年以上
  • ZSC31050FIG1-T
  • 数量3404 
  • 厂家ZMDI 
  • 封装NA/ 
  • 批号23+ 
  • 原装现货,当天可交货,原型号开票
  • QQ:3007977934QQ:3007977934 复制
    QQ:3007947087QQ:3007947087 复制
  • 0755-82546830 QQ:3007977934QQ:3007947087
  • ZSC31050FIG1-R图
  • 集好芯城

     该会员已使用本站13年以上
  • ZSC31050FIG1-R
  • 数量2338 
  • 厂家Renesas Electronics America Inc. 
  • 封装 
  • 批号最新批次 
  • 原厂原装公司现货
  • QQ:3008092965QQ:3008092965 复制
    QQ:3008092965QQ:3008092965 复制
  • 0755-83239307 QQ:3008092965QQ:3008092965
  • ZSC31050FIG1-R图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • ZSC31050FIG1-R
  • 数量6328 
  • 厂家IDT-集成器 
  • 封装TSSOP-16 
  • 批号▉▉:2年内 
  • ▉▉¥40.3元一有问必回一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • ZSC31050FIG1-R图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • ZSC31050FIG1-R
  • 数量660000 
  • 厂家RENESAS(瑞萨电子) 
  • 封装 
  • 批号23+ 
  • 支持实单/只做原装
  • QQ:3008961398QQ:3008961398 复制
  • 0755-21006672 QQ:3008961398
  • ZSC31050FIG1-R图
  • 深圳市宇川湘科技有限公司

     该会员已使用本站6年以上
  • ZSC31050FIG1-R
  • 数量23000 
  • 厂家IDT 
  • 封装16SSOP 
  • 批号23+ 
  • 原装正品现货,郑重承诺只做原装!
  • QQ:2885348305QQ:2885348305 复制
    QQ:2885348305QQ:2885348305 复制
  • 0755-84534256 QQ:2885348305QQ:2885348305
  • ZSC31050FIG1-R图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • ZSC31050FIG1-R
  • 数量6500000 
  • 厂家RENESAS(瑞萨电子) 
  • 封装原厂原装 
  • 批号22+ 
  • 万三科技 秉承原装 实单可议
  • QQ:3008962483QQ:3008962483 复制
  • 0755-23763516 QQ:3008962483
  • ZSC31050FIG1-R图
  • 深圳市力拓辉电子有限公司

     该会员已使用本站13年以上
  • ZSC31050FIG1-R
  • 数量
  • 厂家Renesas 
  • 封装 
  • 批号21+ 
  • 全新原装正品鄙视假货
  • QQ:2881140004QQ:2881140004 复制
    QQ:2881140005QQ:2881140005 复制
  • 755-82787180 QQ:2881140004QQ:2881140005
  • ZSC31050FIG1-R图
  • 深圳市瑞天芯科技有限公司

     该会员已使用本站7年以上
  • ZSC31050FIG1-R
  • 数量20000 
  • 厂家ZMDI 
  • 封装SSOP16 
  • 批号22+ 
  • 深圳现货库存,保证原装正品
  • QQ:1940213521QQ:1940213521 复制
  • 15973558688 QQ:1940213521
  • ZSC31050FIG1-T图
  • 深圳市创思克科技有限公司

     该会员已使用本站2年以上
  • ZSC31050FIG1-T
  • 数量8000 
  • 厂家ZMDI 
  • 封装SSOP16 
  • 批号21+ 
  • 全新原装原厂实力挺实单欢迎来撩
  • QQ:1092793871QQ:1092793871 复制
  • -0755-88910020 QQ:1092793871
  • ZSC31050FIG1-R图
  • 深圳市一线半导体有限公司

     该会员已使用本站16年以上
  • ZSC31050FIG1-R
  • 数量6244 
  • 厂家Renesas Electronics America Inc. 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • ZSC31050FIG1-T图
  • 深圳市一线半导体有限公司

     该会员已使用本站11年以上
  • ZSC31050FIG1-T
  • 数量4658 
  • 厂家Renesas Electronics America Inc. 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921

产品型号ZSC31050FIG1的Datasheet PDF文件预览

Advanced Differential  
ZSC31050  
Sensor Signal Conditioner  
Datasheet  
Brief Description  
Features  
ZSC31050 is a CMOS integrated circuit for highly accurate amp-  
lification and sensor-specific correction of bridge sensor and  
temperature sensor signals. The device provides digital com-  
pensation of sensor offset, sensitivity, temperature drift, and non-  
linearity via a 16-bit RISC microcontroller running a polynomial  
correction algorithm.  
.
Digital compensation of sensor offset, sensitivity, temperature  
drift, and nonlinearity  
.
Accommodates nearly all resistive bridge sensor types (signal  
spans from 1mV/V up to 275mV/V)  
.
.
Digital one-pass calibration: quick and precise  
Selectable compensation temperature source: bridge,  
thermistor, or internal or external diode  
The ZSC31050 accommodates virtually any bridge sensor type  
(e.g., piezo-resistive, ceramic thick-film, or steel membrane  
based). In addition, it can interface to a separate temperature  
sensor. The bi-directional digital interfaces (I2C, SPI, and  
ZACwire™) can be used for a simple PC-controlled one-pass  
calibration procedure to program a set of calibration coefficients  
into an on-chip EEPROM. A specific sensor and a ZSC31050 can  
be mated digitally: fast, precise, and without the cost overhead  
associated with trimming by external devices or laser. The  
ZACwire™ interface enables an end-of-line calibration of the  
sensor module.  
.
.
Output options: voltage (0 to 5V), current (4 to 20mA), PWM,  
I2C, SPI, ZACwire(one-wire interface), alarm  
Adjustable output resolution (up to 15 bits) versus sampling  
rate (up to 3.9kHz)  
.
.
Current consumption: 2.5mA (typical)  
Selectable bridge excitation: ratiometric voltage, constant  
voltage, or constant current  
.
.
Input channel for separate temperature sensor  
Sensor connection and common mode check (sensor aging  
detection)  
Typical applications for the ZSC31050 include industrial, medical,  
and consumer products. It is specifically engineered for most  
resistive bridge sensors; e.g., sensors for measuring pressure,  
force, torque, acceleration, angle, position, and revolution.  
.
AEC-Q100 qualification (temperature grade 0)  
Physical Characteristics  
.
.
.
Operation temperature -40°C to +125°C (-40°C to +150°C  
de-rated, depending on product version)  
Benefits  
.
No external trimming components required  
Supply voltage: 2.7V to 5.5V;  
with external JFET: 5V to 48 V  
.
PC-controlled configuration and calibration via digital bus  
interface simple, low cost  
Available in 16-SSOP package or as die  
.
High accuracy (±0.1% FSO @ 25 to 85°C;  
±0.25% FSO @ 40 to 125°C) *  
Basic Circuit Diagram  
Available Support  
VCC  
OUT  
.
.
.
Evaluation kit available  
Support for industrial mass calibration available  
Sensor  
Module  
Quick circuit customization possible for large production  
volumes  
ZSC31050  
GND  
* Digital output signal.  
© 2017 Integrated Device Technology, Inc.  
1
February 13, 2017  
ZSC31050 Datasheet  
ZSC31050 Block Diagram  
Ext. Temp. Sens.  
IR_TEMP  
VBR  
SCL  
SDA  
CTRL-REGS  
SIF  
+
PCOMP  
ADC Mode  
Offset  
Shift  
Gain  
Factor  
Temp. Sens.  
Select  
RAM  
VINP  
VINN  
OUT /  
OWI  
PGA  
MUX  
ADC  
CMC  
DAC  
FIO1  
FIO2  
Analog Front-End (AFE)  
Int. Temp. Sensor  
IO1  
IO2  
EEPROM  
PWM  
Digital Section  
Interfaces  
External  
Sensor Bridge  
Temperature  
Sensor  
IN3  
Analog  
Digital  
Interface  
Typical Applications:  
Consumer Goods  
Industrial Applications  
Portable Devices  
Automotive Sensors *  
.
Weight scales  
Flow meters  
Strain gauges  
Load meters  
HVAC  
.
4-20mA transmitters  
Intelligent sensor networks  
Process automation  
Factory automation  
.
Altimeters  
.
Oil pressure  
.
.
.
.
.
.
.
.
Blood pressure  
monitors  
.
.
Temperature sensing  
Strain gauges  
* AEC-Q100 qualified  
Ordering Information(See section 8 in the data sheet for additional options.)  
Product Sales Code  
Description  
Package  
ZSC31050FEB  
ZSC31050 Die Temperature range: -40°C to +150°C  
ZSC31050 Die Temperature range: -40°C to +150°C  
Unsawn on Wafer  
Sawn on Wafer Frame  
ZSC31050FEC  
ZSC31050FEG1  
ZSC31050KITV3P1  
ZSC31050 16-SSOP Temperature range: -40°C to +150°C Add “-T” for tube or “-R” for reel to sales code  
ZSC31050 SSC Evaluation Kit V3.1: ZSC31050 Evaluation Board, SSC Communication Board, SSC Sensor  
Replacement Board, five ZSC31050 16-SSOP samples. Software is downloadable.  
ZSC31050MCSV1P1 Modular Mass Calibration System (MSC) V1.1 for ZSC31050: Four Mass Calibration Boards; SSC  
Communication Board; four ZSC31050 Mass Calibration Reference Boards, each with a ZSC31050 sample  
mounted; 30m 10-wire flat cable; 100 connectors. Software is downloadable.  
Corporate Headquarters  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Sales  
Tech Support  
www.IDT.com/go/support  
1-800-345-7015 or 408-284-8200  
Fax: 408-284-2775  
www.IDT.com/go/sales  
www.IDT.com  
DISCLAIMER Integrated Device Technology, Inc. (IDT) reserves the right to modify the products and/or specifications described herein at any time, without notice, at IDT's sole discretion. Performance  
specifications and operating parameters of the described products are determined in an independent state and are not guarante ed to perform the same way when installed in customer products. The  
information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitab ility of IDT's products for any particular purpose,  
an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual  
property rights of IDT or any third parties.  
IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be  
reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the  
property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. All contents of this document are copyright of  
Integrated Device Technology, Inc. All rights reserved.  
© 2017 Integrated Device Technology, Inc.  
2
February 13, 2017  
ZSC31050 Datasheet  
Contents  
1. Electrical Characteristics ..............................................................................................................................................................................5  
1.1 Absolute Maximum Ratings ...............................................................................................................................................................5  
1.2 Operating Conditions .........................................................................................................................................................................5  
1.3 Inherent Characteristics .....................................................................................................................................................................7  
1.3.1  
1.3.2  
Cycle Rate versus ADC Resolution ....................................................................................................................................8  
PWM Frequency .................................................................................................................................................................8  
1.4 Electrical Parameters.........................................................................................................................................................................9  
1.4.1  
1.4.2  
1.4.3  
1.4.4  
1.4.5  
1.4.6  
1.4.7  
Supply/Regulation..............................................................................................................................................................9  
Analog Front End................................................................................................................................................................9  
DAC and Analog Output (OUT Pin) ....................................................................................................................................9  
PWM Output (OUT Pin, IO1 Pin) ........................................................................................................................................9  
Temperature Sensors (IR_TEMP Pin) ................................................................................................................................9  
Digital Outputs (IO1, IO2, OUT Pins in Digital Mode) .......................................................................................................10  
System Response.............................................................................................................................................................10  
1.5 Interface Characteristics ..................................................................................................................................................................11  
1.5.1  
1.5.2  
Multiport Serial Interfaces (I2C, SPI) .................................................................................................................................11  
One-Wire Serial Interface (ZACwire™).............................................................................................................................11  
2. Circuit Description ......................................................................................................................................................................................12  
2.1 Signal Flow ......................................................................................................................................................................................12  
2.2 Application Modes............................................................................................................................................................................13  
2.3 Analog Front-End (AFE)...................................................................................................................................................................14  
2.3.1  
2.3.2  
2.3.3  
2.3.4  
Programmable Gain Amplifier (PGA)................................................................................................................................14  
Extended Zero Point Compensation (XZC).......................................................................................................................14  
Measurement Cycle Performed by Multiplexer .................................................................................................................16  
Analog-to-Digital Converter...............................................................................................................................................16  
2.4 System Control ................................................................................................................................................................................18  
2.5 Output Stage....................................................................................................................................................................................18  
2.5.1  
2.5.2  
2.5.3  
Analog Output...................................................................................................................................................................20  
Comparator Module (ALARM Output)...............................................................................................................................20  
Serial Digital Interface.......................................................................................................................................................20  
2.6 Voltage Regulator ............................................................................................................................................................................21  
2.7 Watchdog and Error Detection.........................................................................................................................................................21  
3. Application Circuit Examples......................................................................................................................................................................22  
4. ESD/Latch-Up-Protection ...........................................................................................................................................................................23  
5. Pin Configuration and Package..................................................................................................................................................................24  
6. Reliability ....................................................................................................................................................................................................25  
7. Customization.............................................................................................................................................................................................25  
8. Ordering Information...................................................................................................................................................................................26  
9. Related Documents....................................................................................................................................................................................26  
© 2017 Integrated Device Technology, Inc.  
3
February 13, 2017  
ZSC31050 Datasheet  
10. Glossary .....................................................................................................................................................................................................27  
11. Document Revision History ........................................................................................................................................................................28  
List of Figures  
Figure 1. Block Diagram of the ZSC31050.......................................................................................................................................................12  
Figure 2. Measurement Cycle ZSC31050 ........................................................................................................................................................16  
Figure 3. Application Example 1.......................................................................................................................................................................22  
Figure 4. Application Example 2.......................................................................................................................................................................22  
Figure 5. Application Example 3.......................................................................................................................................................................22  
Figure 6. Application Example 4.......................................................................................................................................................................22  
Figure 7. Application Example 5.......................................................................................................................................................................23  
Figure 8. Pin Configuration...............................................................................................................................................................................25  
List of Tables  
Table 1. Adjustable Gains, Resulting Sensor Signal Spans, and Common Mode Ranges .............................................................................14  
Table 2. Extended Zero Point Compensation (XZC) Range............................................................................................................................15  
Table 3. Output Resolution versus Sample Rate.............................................................................................................................................17  
Table 4. Output Configurations Overview........................................................................................................................................................18  
Table 5. Analog Output Configuration .............................................................................................................................................................20  
Table 6. Pin Configuration...............................................................................................................................................................................24  
© 2017 Integrated Device Technology, Inc.  
4
February 13, 2017  
ZSC31050 Datasheet  
1. Electrical Characteristics  
1.1 Absolute Maximum Ratings  
The absolute maximum ratings are stress ratings only. The ZSC31050 might not function or be operable above the recommended operating  
conditions. Stresses exceeding the absolute maximum ratings might also damage the device. In addition, extended exposure to stresses  
above the recommended operating conditions might affect device reliability. IDT does not recommend designing to the “Absolute Maximum  
Ratings.”  
No.  
Parameter  
Digital supply voltage  
Analog supply voltage  
Symbol  
VDDMAX  
VDDAMAX  
Conditions  
Min  
-0.3  
-0.3  
-0.3  
Max  
6.5  
Unit  
V DC  
V DC  
V DC  
1.1.1  
To VSS  
To VSS  
1.1.2  
1.1.3  
6.5  
Voltage at all analog and digital I/O  
pins except FBP, SDA, SCL (see  
1.1.4, 1.1.5, and 1.1.6)  
VA_I/O  
,
VDDA+0.3  
VD_I/O  
1.1.4  
1.1.5  
1.1.6  
1.1.7  
Voltage at FBP pin  
Voltage at SDA pin  
Voltage at SCL pin  
Storage temperature  
VFBP_MAX  
VSDA_MAX  
VSCL_MAX  
TSTG  
4mA to 20mA Interface  
I2C mode only  
-1.2  
-0.3  
-0.3  
-45  
VDDA+0.3  
5.5  
V DC  
V DC  
V DC  
C  
I2C mode only  
5.5  
150  
1.2 Operating Conditions  
Unless otherwise noted, voltages are relative to VSS and analog-to-digital conversion = 2nd order, resolution = 13 bits, gain 210,  
fclk 2.25MHz.  
For specifications marked with an asterisk (*), there is no measurement in mass productionthe parameter is guaranteed by design and/or  
quality observations.  
Note: See important notes at the end of the table.  
No.  
Parameter  
Symbol  
Conditions  
Min  
Typical  
Max  
Unit  
1.2.1.1 TQE ambient  
temperature range for part  
numbers ZSC31050xExx  
1.2.1.2 TQA ambient  
temperature range for part  
numbers ZSC31050xAxx  
1.2.1.3 TQI ambient  
TAMB_TQE  
Operation life time < 1000h  
@ 125C to 150C  
-40  
150  
C  
TAMB_TQA  
TAMB_TQI  
TAMB_EEP  
-40  
-25  
-25  
125  
85  
C  
C  
C  
1.2.1  
temperature range for part  
numbers ZSC31050xIxx  
1.2.2  
1.2.3  
1.2.4  
Ambient temperature  
EEPROM programming  
85  
EEPROM programming  
cycles  
100  
Data retention (EEPROM)  
15  
years  
Average temp. < 85C  
© 2017 Integrated Device Technology, Inc.  
5
February 13, 2017  
 
 
 
 
ZSC31050 Datasheet  
No.  
Parameter  
Symbol  
VDDA  
Conditions  
Ratiometric mode  
Ratiometric mode  
Min  
2.7  
4.5  
Typical  
Max  
5.5  
Unit  
V DC  
V DC  
1.2.5  
Analog supply voltage  
1.2.6  
Analog supply voltage  
advanced performance  
VDDAADV  
5.5  
1.2.7  
Digital supply voltage  
VDD  
Externally powered  
1.05  
VDDA  
V DC  
V DC  
2.7  
1.2.8  
1.2.9  
External supply voltage  
Common mode input range[b]  
Input voltage FBP pin  
VSUPP  
Voltage Regulator Mode  
with external JFET [a]  
VDDA +  
2V  
VIN_CM  
Depends on gain adjust;  
refer to section 2.3.1  
0.21  
0.76  
VADC_REF  
1.2.10  
1.2.11  
VIN_FBP  
RBR  
-1  
VDDA  
25.0  
V DC  
k  
Sensor bridge resistance [c]  
(over full temperature range)  
3.0  
5.0  
RBR_CL  
Current loop interface,  
4 to 20mA  
25.0  
k  
1.2.12  
1.2.13  
1.2.14  
1.2.15  
1.2.16  
1.2.17  
Reference resistor for bridge  
current source *  
RBR_REF  
CVDDA  
Bridge current  
IBR = VDDA / (16·RBR_REF  
0.07  
50  
0
RBR  
nF  
)
Stabilization capacitor *  
External capacitor between  
VDDA and VSS  
100  
100  
470  
470  
50  
VDD stabilization capacitor*, [d]  
CVDD  
Between VDD and VSS,  
external  
nF  
Maximum load capacitance  
allowed at OUT [e]  
CL_OUT  
RL_OUT  
CL_VGATE  
Output Voltage Mode  
nF  
Minimum load resistance  
allowed  
Output Voltage Mode  
2
k  
Maximum load capacitance  
allowed at VGATE  
Total capacitance relative to  
all potentials  
10  
nF  
[a] Maximum depends on the breakdown voltage of the external JFET; refer to the application recommendations in the ZSC31050 Application  
Note0-10V Output.  
[b] VADC_REF: reference voltage of the analog-to-digital converter (VBR or VDDA).  
[c] No minimum limitation with an external connection between VDDA and VBR.  
[d] Lower stabilization capacitors can increase noise level at the output.  
[e] If the maximum is used, take into consideration the special requirements of the ZACwireinterface stated in the ZSC31050 Functional  
Description, section 4.3.  
© 2017 Integrated Device Technology, Inc.  
6
February 13, 2017  
 
 
 
 
 
ZSC31050 Datasheet  
1.3 Inherent Characteristics  
For specifications marked with an asterisk (*), there is no measurement in mass productionthe parameter is guaranteed by design and/or  
quality observations.  
No.  
1.3.1  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Selectable input span, bridge  
sensor measurement  
VIN_SP  
Refer to section 2.3.1.  
2
280  
mV/V  
1.3.2  
1.3.3  
Analog offset comp range  
(6 bit setting)  
-20  
-25  
9
20  
25  
15  
Counts  
Counts  
Bits  
Maximum bias current [a]  
3-bit setting [b]  
Analog-to-digital conversion  
(ADC) resolution  
rADC  
1.3.4  
1.3.5  
ADC input range  
Range  
rDAC  
10  
90  
%VDDA  
Bits  
Digital-to-analog conversion  
(DAC) resolution  
At analog output  
11  
1.3.6  
1.3.7  
PWM resolution  
rPWM  
ITS  
9
8
12  
40  
Bits  
Bias current for external  
temperature diodes  
18  
3200  
2
A  
1.3.8  
1.3.9  
Sensitivity internal temperature  
diode [c]  
STT_SI  
fCLK  
Raw values without conditioning  
Guaranteed adjustment range  
2800  
1
3600  
4
ppm  
FS/K  
Clock frequency*  
MHz  
[a] Set configuration word ADJREF:BCUR ( bits 4-6) to 111 (for details, see the ZSC31050 Functional Description).  
[b] 15-bit resolution is not applicable for 1st order ADC and not recommended for sensors with high nonlinearity behavior.  
[c] FS = Full scale.  
© 2017 Integrated Device Technology, Inc.  
7
February 13, 2017  
 
 
 
ZSC31050 Datasheet  
1.3.1 Cycle Rate versus ADC Resolution  
The following specifications are guaranteed by design and/or quality observations.  
Important note: Combining first-order configuration of the ADC with 15-bit resolution is not allowed.  
Conversion Cycle fCYC  
Resolution  
rADC  
ADC Order  
fCLK=2MHz  
[Hz]  
fCLK=2.25MHz  
(OADC  
)
[Bit]  
9
[Hz]  
1465  
879  
1302  
781  
10  
11  
12  
13  
14  
11  
12  
13  
14  
15  
434  
488  
1
230  
259  
115  
129  
59  
67  
3906  
3906  
1953  
1953  
977  
4395  
4395  
2197  
2197  
1099  
2
1.3.2 PWM Frequency  
The following specifications are not measured in mass production; they are guaranteed by design and/or quality observations.  
PWM Frequency in Hz at 2MHz Clock [a]  
Clock Divider  
PWM Frequency in Hz at 2.25MHz Clock [b]  
Clock Divider  
PWM  
Resolution  
rPWM [Bit]  
1
0.5  
1953  
977  
488  
244  
0.25  
977  
488  
244  
122  
0.125  
488  
244  
122  
61  
1
0.5  
2197  
1099  
549  
0.25  
1099  
549  
0.125  
549  
275  
137  
69  
9
3906  
1953  
977  
4395  
2197  
1099  
549  
10  
11  
12  
275  
488  
275  
137  
[a] Internal RC oscillator: coarse adjustment to 1MHz, 2MHz, and 4MHz, fine-tuning +/- 25%; external clock is also possible.  
[b] Internal RC oscillator: coarse adjustment to 1.125MHz, 2.25MHz, and 4.5MHz, fine-tuning +/- 25%; external clock is also possible.  
© 2017 Integrated Device Technology, Inc.  
8
February 13, 2017  
 
 
 
ZSC31050 Datasheet  
1.4 Electrical Parameters  
Unless otherwise noted, voltages are relative to VSS and analog-to-digital conversion = 2nd order, resolution = 13 bits, gain 210,  
fclk2.25MHz.  
Note: See important notes at the end of the table.  
No.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
1.4.1 Supply/Regulation  
1.4.1.1  
Supply current  
ISUPP  
Without bridge and load current,  
bias adjustment 4, fCLK 2.4MHz  
2.5  
2.0  
4
mA  
mA  
1.4.1.2  
Supply current for current  
loop  
ISUPP_CL  
Without bridge current,  
fCLK 1.2MHz,  
bias [a] adjustment 1  
2.75  
1.4.1.3  
Temperature coefficient  
voltage reference *  
TCREF  
-200  
-2 to -10  
0.025  
±50  
200  
ppm/K  
nA  
1.4.2 Analog Front End  
1.4.2.1  
Parasitic differential input  
offset current *  
IIN_OFF  
Temperature range =  
TAMB_TQI (-40 to 85C)  
2 to 10  
0.975  
1.4.3 DAC and Analog Output (OUT Pin)  
1.4.3.1  
Output signal range [b]  
VOUT_SR  
Voltage Mode, RLOAD > 2KΩ  
VDDAADV  
VDDA  
LSB  
Temperature range = TAMB_TQI  
1.4.3.2  
Output DNL  
DNLOUT  
VDDAADV  
0.95  
4
Temperature range = TAMB_TQI  
1.4.3.3  
1.4.3.4  
Output INL [c]  
INLOUT  
SROUT  
LSB  
Output slew rate *  
Voltage Mode  
0.1  
V/s  
Load capacitance < 20nF  
Using conditions of 1.4.3.1  
1.4.3.5  
1.4.3.6  
Short circuit current *  
IOUT_max  
5
0
10  
20  
1
mA  
Addressable output signal  
range *  
VOUT_ADR  
2048 steps  
VDDA  
1.4.4 PWM Output (OUT Pin, IO1 Pin)  
1.4.4.1  
PWM high voltage  
VPWM_H  
VPWM_L  
SRPWM  
0.9  
15  
VDDA  
VDDA  
V/s  
Load resistance > 10k  
Load resistance > 10k  
Load capacitance < 1nF  
1.4.4.2  
PWM low voltage  
0.1  
1.4.4.3  
PWM output slew rate *  
1.4.5 Temperature Sensors (IR_TEMP Pin)  
1.4.5.1  
Sensitivity external diode /  
resistor measurement  
STTS_E  
At rADC = 13 bits  
75  
210  
µV/LSB  
© 2017 Integrated Device Technology, Inc.  
9
February 13, 2017  
 
ZSC31050 Datasheet  
No.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
1.4.6 Digital Outputs (IO1, IO2, OUT Pins in Digital Mode)  
1.4.6.1  
Output high level  
Output low level  
Output current *  
VDOUT_H  
VDOUT_L  
IDOUT  
0.9  
4
VDDA  
VDDA  
mA  
Load resistance > 1 k  
Load resistance > 1 k  
1.4.6.2  
1.4.6.3  
0.1  
1.4.7 System Response  
1.4.7.1  
1.4.7.2  
1.4.7.3  
Startup time [d]  
tSTA  
tRESP  
Power-on to 1st measurement result at  
output  
2
5
ms  
Response time *  
66% change in input signal; refer to  
Table 3 for fCON  
1.66  
2.66  
3.66  
1/fCON  
Overall accuracy  
ACOUT  
0.10  
0.25  
0.50  
10  
%
%
TAMB_TQI (-25 to 85 C) & VDDAADV  
TAMB_TQA (-40 to 125 C) & VDDAADV  
TAMB_TQE (-40 to 150 C) & VDDAADV  
(deviation from ideal line  
including INL, gain, and  
offset errors) *, [e]  
%
1.4.7.4  
1.4.7.5  
1.4.7.6  
Analog output noise:  
peak-to-peak *  
VNOISE, PP  
mV  
Shorted inputs, gain 210  
bandwidth 10kHz  
Analog output noise:  
RMS *  
VNOISE, RMS  
3
mV  
Shorted inputs, gain 210  
bandwidth 10kHz  
Ratiometricity error  
REOUT_5V  
REOUT_3V  
±5% respectively 1000ppm ±10% (5V)  
±5% respectively 200ppm ±10% (3V)  
500  
ppm  
ppm  
1000  
[a] Recommended bias adjustment 4; note the application recommendations and power consumption adjustment constraints given in the  
ZSC31050 Application NoteCurrent Loop.  
[b] De-rated performance in lower part of supply voltage range (2.7 to 3.3V): 2.5 to 5 %VDDA and 95 to 97.5%VDDA.  
[c] Output linearity and accuracy can be enhanced by an additional analog output stage calibration.  
[d] OWI, start window disabled (depending on resolution and configuration, start routine begins approximately 0.8ms after power-on).  
[e] Accuracy better than 0.5% requires offset and gain calibration for the analog output stage; parameter only for ratiometric output. The current  
loop application is verified and validated for 5V operation only and external supply > 7V (upper limit is dependent on the external components  
used). Accuracy and temperature range should be validated based on the schematic design used. Refer to the ZSC31050 Application Note—  
Current Loop for more information.  
*
For specifications marked with an asterisk (*), there is no measurement in mass productionthe parameter is guaranteed by design and/or quality observations.  
© 2017 Integrated Device Technology, Inc.  
10  
February 13, 2017  
 
 
 
ZSC31050 Datasheet  
1.5 Interface Characteristics  
No.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
1.5.1 Multiport Serial Interfaces (I2C, SPI)  
1.5.1.1  
Input high level [a]  
VI2C_IN_H  
0.7  
-
1
VDDA  
V DC  
VDDA  
VDDA  
pF  
5.5  
0.3  
0.1  
400  
1.5.1.2  
1.5.1.3  
1.5.1.4  
Input low level  
VI2C_IN_L  
VI2C_OUT_L  
CSDA  
0
Output low level  
Load capacitance at the  
SDA pin  
1.5.1.5  
Clock frequency at the  
SCL pin [b]  
fSCL  
fCLK ≥ 2MHz  
400  
kHz  
1.5.1.6  
1.5.1.7  
Pull-up resistor  
RI2C_PU  
CI2C_IN  
500  
Input capacitance  
(each pin)  
Also valid for SPI.  
10  
pF  
1.5.2 One-Wire Serial Interface (ZACwire™)  
1.5.2.1  
OWI start window  
tOWI_start  
20  
ms  
1.5.2.2  
1.5.2.3  
Pull-up resistance master  
OWI load capacitance  
ROWI_PU  
330  
COWI_LOAD  
0.08  
0.2  
tOWI_BIT /  
20s < tOWI_BIT < 100s  
ROWI_PU  
VDDA  
VDDA  
1.5.2.4  
1.5.2.5  
Voltage level low  
Voltage level high  
VOWI_L  
VOWI_H  
0.75  
[a] The maximum value in V DC is independent from VDDA in I2C Mode.  
[b] Internal clock frequency fCLK must be at least 5 times higher than the communication clock frequency.  
© 2017 Integrated Device Technology, Inc.  
11  
February 13, 2017  
 
 
ZSC31050 Datasheet  
2. Circuit Description  
Note: This data sheet provides specifications and a general overview of ZSC31050 operation. For details of operation, including configuration  
settings and related EEPROM registers, refer to the ZSC31050 Functional Description.  
2.1 Signal Flow  
The ZSC31050’s signal path includes both analog (shown in pink in Figure 1) and digital (blue) sections. The analog path is differential; i.e.,  
the differential bridge sensor signal is handled internally via two signal lines that are symmetrical around a common mode potential (analog  
ground = VDDA/2), which improves noise rejection.  
Therefore it is possible to amplify positive and negative input signals, which are located in the common mode range of the signal input.  
Figure 1. Block Diagram of the ZSC31050  
Ext. Temp. Sens.  
IR_TEMP  
VBR  
SCL  
SDA  
CTRL-REGS  
SIF  
+
PCOMP  
ADC Mode  
Offset  
Shift  
Gain  
Factor  
Temp. Sens.  
Select  
RAM  
VINP  
VINN  
OUT /  
OWI  
PGA  
MUX  
ADC  
CMC  
DAC  
FIO1  
FIO2  
Analog Front-End (AFE)  
Int. Temp. Sensor  
IO1  
IO2  
EEPROM  
PWM  
Digital Section  
Interfaces  
External  
Sensor Bridge  
Temperature  
Sensor  
IN3  
Analog  
Digital  
Interface  
PGA  
Programmable Gain Amplifier  
Multiplexer  
MUX  
ADC  
CMC  
DAC  
FIO1  
FIO2  
SIF  
Analog-to-Digital Converter  
Calibration Microcontroller  
Digital-to-Analog Converter  
Flexible I/O 1: Analog Out (voltage/current), PWM2, ZACwire™ (one-wire-interface)  
Flexible I/O 2: PWM1, SPI Data Out, SPI Slave Select, Alarm1, Alarm2  
Serial interface: I2C Data I/O, SPI Data In, Clock  
PCOMP  
Programmable Comparator  
EEPROM Nonvolatile Memory for Calibration Parameters and Configuration  
TS  
On-Chip Temperature Sensor (pn-junction)  
Memory for Correction Formula and Algorithm  
PWM Module  
ROM  
PWM  
The differential signal from the bridge sensor is pre-amplified by the programmable gain amplifier (PGA). The multiplexer (MUX) transmits the  
signals from the bridge sensor, external diode, or separate temperature sensor to the ADC in a specific sequence (the internal pn-junction  
(TS) can be used instead of the external temperature diode). Next, the ADC converts these signals into digital values.  
© 2017 Integrated Device Technology, Inc.  
12  
February 13, 2017  
 
ZSC31050 Datasheet  
The digital signal correction takes place in the calibration microcontroller (CMC). It is based on a special correction formula located in the  
ROM and sensor-specific coefficients (stored in the EEPROM during calibration). Depending on the programmed output configuration, the  
corrected sensor signal is output as an analog value, a PWM signal, or a digital value in the format of SPI, I2C, or ZACwire. The output  
signal is provided at two flexible I/O modules (FIO) and at the serial interface (SIF). The configuration data and the correction parameters can  
be programmed into the EEPROM via the digital interfaces.  
The modular circuit concept used in the design of the ZSC31050 allows fast customization of the IC for high-volume applications if needed.  
Circuit blocks and functions can be added or removed, which can reduce the die size (see section 7 for more details).  
2.2 Application Modes  
For each application, a configuration set must be established (generally prior to calibration) by programming the on-chip EEPROM regarding  
to the following modes:  
.
Sensor channel  
Sensor mode: ratiometric voltage or current supply mode.  
Input range: the gain of the analog front end must be chosen with respect to the maximum sensor signal span, which also requires  
adjusting the zero point of the ADC.  
Additional offset compensation, the Extended Zero-Point Compensation (XZC), must be enabled if required; e.g., if the sensor offset  
voltage is close to or larger than the sensor span.  
Resolution/response time: The ADC must be configured for resolution and conversion settings (1st or 2nd order). These settings  
influence the sampling rate, signal integration time, and, as a result, the noise immunity.  
Polarity of the sensor bridge inputs: this allows inverting the sensor bridge inputs  
.
Analog output  
Choice of output type (voltage value, current loop, or PWM) for output register 1.  
Optional additional output register 2: PWM via IO1 pin or alarm out module via IO1 or IO2 pin.  
.
.
Digital communication: The protocol and its parameters must be selected.  
Temperature  
The temperature sensor type for the temperature correction must be chosen (only main channel (T1) is usable for correction).  
Optional: a secondary temperature sensor (T2) can be chosen as a second sensor output.  
.
Supply voltage: For non-ratiometric output, the voltage regulation must be configured.  
Note: Not all possible combinations of settings are allowed (see section 2.5).  
The calibration procedure must include establishing the coefficients for calibration calculation and the following steps depending on  
configuration:  
.
.
.
.
.
Adjustment of the extended offset compensation  
Zero compensation of temperature measurement  
Adjustment of the bridge current  
Settings for the reference voltage if using the reference voltage  
Settings for the thresholds and delays for the alarms if using the alarms  
© 2017 Integrated Device Technology, Inc.  
13  
February 13, 2017  
ZSC31050 Datasheet  
2.3 Analog Front-End (AFE)  
The analog front-end consists of the programmable gain amplifier (PGA), the multiplexer (MUX), and the analog-to-digital converter (ADC).  
2.3.1 Programmable Gain Amplifier (PGA)  
The following tables show the adjustable gains, the sensor signal spans that can be processed, and the common mode range allowed.  
Table 1.  
Adjustable Gains, Resulting Sensor Signal Spans, and Common Mode Ranges  
Max. Span  
VIN_SP in mV/V  
Input Range  
VIN_CM in % VDDA‡  
No.  
PGA Gain aIN  
Gain Amp1  
Gain Amp2  
Gain Amp3  
1
2
420  
280  
210  
140  
105  
70  
30  
30  
15  
15  
15  
7.5  
7.5  
3.75  
3.75  
1
7
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
43 to 57  
40 to 59  
43 to 57  
40 to 59  
38 to 62  
40 to 59  
38 to 62  
40 to 59  
38 to 62  
43 to 57  
40 to 59  
38 to 62  
21 to 76  
4.66  
7
3
4
4
4.66  
3.5  
4.66  
3.5  
4.66  
3.5  
7
6
5
8
6
12  
16  
24  
32  
50  
80  
100  
280  
7
52.5  
35  
8
9
26.3  
14  
10  
11  
12  
13  
9.3  
7
1
4.66  
3.5  
1.4  
1
2.8  
1
2.3.2 Extended Zero Point Compensation (XZC)  
The ZSC31050 supports two methods of sensor offset cancellation (zero shift):  
.
.
Digital offset correction  
XZC an analog cancellation for large offset values (up to approximately 300% of span)  
The digital sensor offset correction is processed at the digital signal correction/conditioning by the CMC. The XZC analog sensor offset pre-  
compensation is needed for compensation of large offset values, which would overdrive the analog signal path due to uncompensated  
amplification. For analog sensor offset pre-compensation, a compensation voltage is added in the analog pre-gaining signal path (coarse  
offset removal). The analog offset compensation in the AFE can be adjusted by six EEPROM bits as described in the ZSC31050 Functional  
Description. It allows an analog zero-point shift of up to 300% of the segment of the signal span that can be processed.  
Bridge in voltage mode; refer to the ZSC31050 Functional Description for the usable input signal / common mode range at the bridge in current mode.  
© 2017 Integrated Device Technology, Inc.  
14  
February 13, 2017  
 
ZSC31050 Datasheet  
The zero-point shift ZXZC of the temperature measurements can also be adjusted by six EEPROM bits (recommended ZXZC= -20 to +20). It is  
calculated by equation (1):  
VXZC  
k ZXZC  
(1)  
VDDBR 20 aIN  
Where  
VXZC  
= Extended zero compensation voltage  
VDDBR = Bridge voltage  
k
= Calculation factor  
= Input gain  
aIN  
Table 2.  
Extended Zero Point Compensation (XZC) Range  
PGA Gain  
Max. Span  
VIN_SP  
Calculation  
Factor k  
Offset Shift per Step  
(% Full Span)  
Approx. Maximum  
Offset Shift  
Approx. Maximum Shift  
(% VIN_SP  
)
aIN  
(mV/V)  
(mV/V)  
(@ ± 20 Steps)  
420  
280  
210  
140  
105  
70  
2
3.0  
1.833  
3.0  
15%  
9%  
15%  
9%  
6%  
9%  
6%  
9%  
6%  
15%  
9%  
6%  
1%  
+/- 7  
330  
200  
330  
200  
140  
200  
140  
200  
140  
330  
200  
140  
22  
3
+/- 6  
4
+/- 14  
+/- 12  
+/- 12  
+/- 24  
+/- 22  
+/-48  
6
1.833  
1.25  
1.833  
1.25  
1.833  
1.25  
3.0  
8
12  
16  
24  
32  
50  
80  
100  
280  
52.5  
35  
26.3  
14  
+/- 45  
+/- 180  
+/- 160  
+/- 140  
+/- 60  
9.3  
7
1.833  
1.25  
0.2  
2.8  
Note: ZXZC can be adjusted in the range of 31 to 31; however, parameters are guaranteed only for -20 to 20.  
© 2017 Integrated Device Technology, Inc.  
15  
February 13, 2017  
 
ZSC31050 Datasheet  
2.3.3 Measurement Cycle Performed by Multiplexer  
Depending on EEPROM settings, the multiplexer selects the following inputs in a set sequence as shown in Figure 2.  
Refer to the ZSC31050 Functional Description for EEPROM details.  
Figure 2.  
Measurement Cycle ZSC31050  
.
Internal offset of the input channel (auto-zero) measured by short circuiting  
the input  
Start Routine  
.
Bridge temperature signal measured by external and internal diode (pn-  
junction)  
n
Bridge sensor measurement  
Temp 1 auto-zero  
.
.
.
Bridge temperature signal measured by bridge resistors  
Temperature measured by external thermistor  
Pre-amplified bridge sensor signal  
1
n
Bridge sensor measurement  
Temp 1 measurement  
1
The complete measurement cycle is controlled by the CMC. The cycle  
diagram at the right shows its principle structure.  
n
Bridge sensor measurement  
Bridge sensor auto-zero  
Bridge sensor measurement  
Temp 2 auto-zero  
1
The EEPROM adjustable parameters are  
n * T2E  
T2E  
n * T2E  
T2E  
n
.
Measurement count n (bits 9:7 in configuration word CFGCYC):  
n =<1, 2, 4, 8, 16, 32, 64, 128>  
Bridge sensor measurement  
Temp 2 measurement  
.
Temperature 2 measurement enable, T2E=<0, 1>  
After power-on, the start routine is called. It includes the bridge sensor and  
auto-zero measurement. It also measures the main temperature channel and  
its auto-zero if enabled.  
Bridge sensor measurement  
Common mode voltage  
1
2.3.4 Analog-to-Digital Converter  
The ADC is a charge-balancing converter using full differential switched capacitor technique. It can be used as a first or second order  
converter:  
In the first order mode, the ADC is inherently monotone and insensitive against short and long term instability of the clock frequency. The  
conversion cycle time depends on the desired resolution and can be roughly calculated by equation (2):  
r
ADC  
(2)  
tCYC_1 2  
s  
   
The available ADC resolutions are rADC = <9, 10, 11, 12, 13, 14>.  
In the second order mode, two conversions are stacked with the advantage of a much shorter conversion cycle time but with the drawback of  
a lower noise immunity caused by the shorter signal integration period. The conversion cycle time in this mode is roughly calculated by  
equation (3):  
r
3  
ADC  
tCYC_ 2 2  
s  
   
(3)  
2
The available ADC resolutions are rADC = <11, 12, 13, 14, 15>.  
© 2017 Integrated Device Technology, Inc.  
16  
February 13, 2017  
 
 
 
ZSC31050 Datasheet  
The result of the AD conversion is a relative counter result corresponding to equation (4):  
VADC_DIFF VADC_OFF  
r
ADC  
ZADC 2  
1RSADC  
(4)  
VADC_REF  
ZADC  
Number of counts; i.e., the result of the conversion)  
VADC_DIFF  
VADC_REF  
VADC_OFF  
RSADC  
Differential input voltage of ADC: (aIN * VIN_DIFF  
)
Reference voltage of ADC: (VBR or VDDA)  
Residual offset voltage of analog front-end to ADC  
Digital ADC range shift (RSADC = 1/2, 3/4, 7/8, 15/16, controlled by EEPROM setting)  
A sensor input signal can be shifted via the RSADC value into the optimal input range of the ADC.  
The potential at the VBR pin is used as the ADCs reference voltage VADC_REF in “VADC_REF = VBR” mode. The mode is determined by the  
CFGAPP:ADCREF configuration register in EPPROM as described in the ZSC31050 Functional Description. Sensor bridges with no  
ratiometric behavior (e.g., temperature-compensated bridges) that are supplied by a constant current, require the VDDA potential as VADC_REF  
and this can be adjusted in the configuration. If this mode is enabled, XZC cannot be used (adjustment=0), but it must be enabled (refer to the  
calculation spreadsheet ZSC31050_Bridge_Current_Excitation_Rev*.xls for details).  
Note: The AD conversion time (sample rate) is only part of the complete signal conditioning cycle.  
Table 3.  
Output Resolution versus Sample Rate  
Maximum Output Resolution  
Sample Rate fCON  
ADC  
Order  
§
rADC  
(Bit)  
9
Digital OUT  
Analog OUT  
rPWM  
(Bit)  
9
fCLK=2MHz  
fCLK =2.25MHz  
(Hz)  
(OADC  
)
(Bit)  
9
(Bit)  
9
(Hz)  
1302  
781  
1465  
879  
10  
11  
12  
13  
14  
10  
11  
12  
13  
14  
15  
10  
11  
12  
13  
14  
10  
11  
12  
13  
14  
15  
10  
11  
11  
11  
11  
10  
11  
11  
11  
11  
11  
10  
11  
12  
12  
12  
10  
11  
12  
12  
12  
12  
434  
488  
1
230  
259  
115  
129  
59  
67  
3906  
3906  
3906  
1953  
1953  
977  
4395  
4395  
4395  
2197  
2197  
1099  
2
§
ADC resolution should be 1 to 2 bits higher than applied output resolution  
© 2017 Integrated Device Technology, Inc.  
17  
February 13, 2017  
 
ZSC31050 Datasheet  
2.4 System Control  
The system control is started by the internal power-on reset (POR) using the internal clock generator or an external clock. It has the following  
features:  
.
.
.
Control of the I/O functions and the measurement cycle using the EEPROM-stored configuration settings.  
16-bit correction calculation for each measurement signal using the EEPROM-stored calibration coefficients and ROM-based algorithms.  
Error checking: To increase safety, the EEPROM data are verified via an EEPROM signature during the initialization procedure and the  
registers of the CMC are continuously observed with a parity check. If an error is detected, the error flag of the CMC is set and the outputs  
are driven to a diagnostic value. See section 2.7.  
Note: Conditioning options include up to third-order sensor input correction (de-rated). The available adjustment ranges depend on the  
specific calibration parameters; basically, offset compensation and linear correction are only limited by the loss of resolution the compensation  
will cause. The second-order correction is possible up to approximately 20% of the full-scale difference from a straight line; third-order is  
possible up to approximately 10% (ADC resolution = 13 bits). The temperature calibration includes first and second order correction, which  
should be sufficient in almost all applications. ADC resolution also affects calibration options each additional bit of resolution reduces the  
calibration range by approximately 50%.  
2.5 Output Stage  
The ZSC31050 provides the following I/O pins: OUT, IO1, IO2, and SDA. The signal formats listed in Table 4 can be output via these pins:  
analog (voltage or current), PWM, data (SPI/I2C), alarm. The following values can be provided at the I/O pins: bridge sensor signal,  
temperature signal 1, temperature signal 2, and alarms.  
Note: The alarm signals (Alarm 1 and Alarm 2) only apply to the bridge sensor signal; they cannot be used as an alarm for the temperature  
signal.  
Because some pins are dual-purpose, there are restrictions on the possible combinations for outputs and interface connections. Table 4 gives  
an overview of valid combinations. For some combinations in the SPI Mode, pin assignments depend on whether the ZSC31050 is in the  
Command Mode (CM) or the Normal Operation Mode (NOM) as indicated in the “Mode” column (refer to the ZSC31050 Functional  
Description for more details).  
Note: In the SPI Mode, the IO2 pin is used as the Slave Select, so no Alarm 2 can be output in this mode.  
Table 4.  
Output Configurations Overview  
SIF  
I/O Pins Used  
Configuration  
Number  
Mode  
I2C  
SPI  
OUT  
IO1  
IO2  
SDA  
1
2
Data I/O  
Data I/O  
Data I/O  
Data I/O  
Data I/O  
Data I/O  
Data I/O  
Data I/O  
Data I/O  
Data I/O  
Data I/O  
ALARM1  
3
ALARM2  
ALARM2  
4
ALARM1  
PWM1  
5
6
PWM1  
ALARM2  
7
Analog  
Analog  
Analog  
Analog  
Analog  
8
ALARM1  
9
ALARM2  
ALARM2  
10  
11  
ALARM1  
PWM1  
© 2017 Integrated Device Technology, Inc.  
18  
February 13, 2017  
 
ZSC31050 Datasheet  
SIF  
I/O Pins Used  
Configuration  
Number  
Mode  
I2C  
SPI  
OUT  
IO1  
IO2  
SDA  
12  
13  
14  
15  
16  
17  
18  
Analog  
PWM2  
PWM2  
PWM2  
PWM2  
PWM2  
PWM2  
PWM1  
ALARM2  
Data I/O  
Data I/O  
Data I/O  
Data I/O  
Data I/O  
Data I/O  
Data I/O  
ALARM1  
ALARM2  
ALARM2  
ALARM1  
PWM1  
PWM1  
ALARM2  
Data out  
(SDO)  
19  
Slave select  
Data in  
Data in  
Data out  
(SDO)  
Slave select  
CM  
20  
ALARM1  
Data out  
PWM1  
-
-
NOM  
CM  
Slave select  
Data in  
21  
22  
23  
-
-
NOM  
Analog  
Analog  
Data out  
Data out  
ALARM1  
Data out  
PWM1  
Slave select  
Data in  
Slave select  
Data in  
CM  
NOM  
CM  
-
-
Slave select  
Data in  
24  
25  
26  
Analog  
PWM2  
PWM2  
-
-
NOM  
Data out  
Data out  
ALARM1  
Data out  
PWM1  
Slave select  
Data in  
Data in  
-
Slave select  
CM  
NOM  
CM  
-
Slave select  
-
Data in  
-
27  
PWM2  
NOM  
© 2017 Integrated Device Technology, Inc.  
19  
February 13, 2017  
ZSC31050 Datasheet  
2.5.1 Analog Output  
For analog output, three 15-bit registers store the compensated measurement results for the bridge sensor signal and temperature measure-  
ments 1 and 2. Each register can be independently switched to either the digital-to-analog converter module (DAC) or the PWM module (see  
Figure 1) and then output via the FIO1 or FIO2 output module connected to the OUT or IO1 pin respectively according to Table 5. Refer to the  
ZSC31050 Functional Description for details.  
Table 5.  
Analog Output Configuration  
Output Module  
Voltage (DAC)  
PWM  
OUT  
IO1  
The voltage output module consists of an 11-bit resistor string DAC with a buffered output and a subsequent inverting amplifier with a class  
AB rail-to-rail operational amplifier. The two internal feedback networks are connected to the FBN and FBP pins. This structure offers wide  
flexibility for the output configuration; for example, voltage output and 4mA to 20mA current loop output. Accidentally short-circuiting the  
analog output to VSS or VDDA does not damage the ZSC31050.  
The PWM module outputs the analog measurement value via a stream of pulses with a duty cycle that is determined by the analog value. The  
PWM frequency depends on the resolution and clock divider settings. The maximum analog output resolution is 12 bits; however the  
maximum PWM frequency is 4kHz (9 bits). If both PWM2 and SPI protocol are activated (configuration numbers 25, 26, and 27 in Table 4),  
the output IO1 pin is shared between the PWM output and the SPI SDO output of the serial interface, and SPI interface communication  
(Command Mode) interrupts the PWM output.  
2.5.2 Comparator Module (ALARM Output)  
The comparator module consists of two comparator channels that can be connected to IO1 and IO2. Each can be independently programmed  
for threshold, hysteresis, switching direction, and on/off delay. A window comparator mode is also available.  
2.5.3 Serial Digital Interface  
The ZSC31050 includes a serial digital interface that is able to communicate in three different communication protocols: I2C, SPI, and  
ZACwire(one-wire communication). In SPI mode, the IO2 pin operates as the slave-select input, and the IO1 pin is the data output (SDO).  
Initializing Communication  
After power-on for approximately 20ms (the start window), the ZSC31050 interface is in the ZACwire™ mode, which allows communication  
via the one-wire interface (the OUT pin).  
If a proper communication request is detected during the start window, the interface stays in the ZACwire™ mode (the Command Mode). This  
state can be left by set commands or a new power-on.  
If no request is received during the start window, then the serial interface switches to communication via either I2C or SPI mode depending on  
EEPROM settings. The OUT pin can be used as an analog output or as a PWM output depending on EEPROM settings. The start window  
can be disabled (or enabled) by a special EEPROM setting.  
For a detailed description of the serial interfaces, see the ZSC31050 Functional Description.  
© 2017 Integrated Device Technology, Inc.  
20  
February 13, 2017  
 
ZSC31050 Datasheet  
2.6 Voltage Regulator  
For 3V to 5V (±10%) ratiometric output applications, the external supply voltage can be used for sensor element biasing. If an absolute  
analog output is required, then the internal voltage regulator with an external power regulation element (JFET) can be used. The regulation is  
bandgap-reference-based and designed for an external supply voltage VSUPP in the range of 7V to 48V DC. The internal supply and sensor  
bridge voltage can be varied between 3V and 5.5V in four steps with the voltage regulator as determined by a configuration word in  
EEPROM.  
2.7 Watchdog and Error Detection  
The ZSC31050 detects various possible errors. A detected error is signaled by changing to a diagnostic mode. In this case, the analog output  
is set to the high or low level (maximum or minimum possible output value) depending on the error and the output registers of the digital serial  
interface are set to a correlated error code.  
A watchdog continuously monitors the operation of the CMC and the progress of the measurement loop.  
A continuous check of the sensor bridge for broken wires is done by two comparators monitoring the input voltage of each input [(VSSA +  
0.5V) to (VDDA 0.5V)]. The common mode voltage of the sensor is continuously monitored to detect sensor aging.  
Different functions and blocks in the digital section are continuously monitored, including the RAM, ROM, EEPROM, and register contents.  
See section 1.3.4 in the ZSC31050 Functional Description for a detailed description of all monitored blocks and methods of indicating errors.  
© 2017 Integrated Device Technology, Inc.  
21  
February 13, 2017  
ZSC31050 Datasheet  
3. Application Circuit Examples  
Figure 3. Application Example 1  
Figure 4. Application Example 2  
Typical ratiometric measurement with voltage output, temperature  
compensation via external diode, internal VDD regulator, and active  
sensor connection check (bridge must not be at VDDA)  
0V to 10V output configuration with supply regulator (external  
JFET), temperature compensation via internal diode, and bridge  
in voltage mode  
VDDA = 5V  
+7V to +48V  
+2.7V to +5.5V  
VSUPP  
VSUPP  
C1  
C2  
R3  
390Ω  
0.1µF  
0.1µF  
9
8
7
6
5
4
3
2
1
FBN  
VDD  
SDA  
C2  
C3  
9
8
7
6
5
4
3
2
1
FBN  
VDD  
SDA  
0.1µF 0.1µF  
10  
11  
12  
13  
14  
15  
16  
OUT  
SDA  
SCL  
IO2  
10  
11  
12  
13  
14  
15  
16  
OUT  
SDA  
Serial Interface  
Flexible I/Os  
Out: 0 to 10V  
FBP  
SCL  
FBP  
SCL  
SCL  
IO1  
IO2  
R1  
ZD  
6.8V  
2.2kΩ  
IR_TEMP  
VBR  
IO2  
IR_TEMP  
VBR  
IO2  
IO1  
IO1  
C1  
0.1µF  
IO1  
VINP  
VSS  
VGATE  
IN3  
VINP  
VSS  
VGATE  
IN3  
R4  
R2  
1kΩ 2kΩ  
VINN  
VDDA  
VINN  
VDDA  
C2  
< 15nF  
Sensor Bridge  
Sensor Bridge  
Out / OWI  
GND  
GND  
Figure 5. Application Example 3  
Figure 6. Application Example 4  
Absolute voltage output, supply regulator (external JFET), constant  
current excitation of the sensor bridge, temperature compensation  
by bridge voltage drop measurement, internal VDD regulator  
without external capacitor  
Ratiometric bridge differential signal measurement, 3wire  
connection for end-of-line calibration at OUT pin (ZACwire™),  
additional temperature measurement with external thermistor,  
and PWM output at IO1 pin  
VDDA = 5V  
+7V to +48V  
+2.7V to +5.5V  
VSUPP  
VSUPP  
C1  
0.1µF  
C1  
0.1µF  
C2  
0.1µF  
C2  
0.1µF  
RBR_REF  
9
8
7
6
5
4
3
2
1
RT  
FBN  
VDD  
SDA  
9
8
7
6
5
4
3
2
1
FBN  
VDD  
SDA  
ZD  
6.8V  
10  
11  
12  
13  
14  
15  
16  
OUT  
SDA  
SCL  
IO1  
10  
11  
12  
13  
14  
15  
16  
OUT  
SDA  
SCL  
Serial Interface  
Flexible I/Os  
FBP  
SCL  
FBP  
SCL  
IR_TEMP  
VBR  
IO2  
IR_TEMP  
VBR  
IO2  
IO1  
PWM OUT  
IO1  
IO2  
VINP  
VSS  
VGATE  
IN3  
VINP  
VSS  
VGATE  
IN3  
PTC  
VINN  
VDDA  
VINN  
VDDA  
C2  
C2  
< 15nF  
Sensor Bridge  
< 15nF  
Sensor Bridge  
Out / OWI  
GND  
Out / OWI  
GND  
© 2017 Integrated Device Technology, Inc.  
22  
February 13, 2017  
 
ZSC31050 Datasheet  
Figure 7. Application Example 5  
Two-wire 4mA to 20mA configuration (7 to 48 V), temperature compensation via internal diode  
VDDA = 5V  
+7V to +48V  
VSUPP  
ZD  
7.5V  
(Current Loop+)  
C1  
0.1µF  
C2  
0.1µF  
9
8
7
6
5
4
3
2
1
FBN  
VDD  
SDA  
C3  
10nF  
10  
11  
12  
13  
14  
15  
16  
OUT  
SDA  
SCL  
IO2  
Serial Interface  
Flexible I/Os  
FBP  
SCL  
IR_TEMP  
VBR  
IO2  
IO1  
IO1  
VINP  
VSS  
VGATE  
IN3  
C4  
220pF  
Re  
VINN  
VDDA  
150Ω  
RB  
2.2kΩ  
Rsens  
50Ω  
Sensor Bridge  
(Current Loop)  
GND  
Note: It is possible to combine or separate connectivity of different application examples. For VDD generation, IDT recommends using the  
internal supply voltage regulator with an external capacitor. Refer the ZSC31050 Application NoteCurrent Loop for use of supply voltage  
regulation features (non-ratiometric mode) and current loop output mode.  
4. ESD/Latch-Up-Protection  
All pins have an ESD protection of >2000V, except the VINN, VINP, and FBP pins, which have an ESD protection >1200V. All pins have a  
latch-up protection of 100mA or +8V/ 4V (relative to VSS/VSSA). Refer to section 5 for details and restrictions. ESD protection referenced  
to the Human Body Model is tested with devices in 16-SSOP packages during product qualification. The ESD test follows the Human Body  
Model with 1.5kOhm/100pF based on MIL 883, method 3015.7.  
© 2017 Integrated Device Technology, Inc.  
23  
February 13, 2017  
 
ZSC31050 Datasheet  
5. Pin Configuration and Package  
Table 6.  
Pin Configuration  
Latch-up Related Application Circuit  
Pin  
1
Name  
Description  
Remarks  
Supply  
Restrictions and/or Remarks  
VDDA  
IN3  
Positive analog supply voltage  
2
Resistive temperature sensor IN and Analog IN  
external clock IN  
Freely accessible by application (vulnerable to latch-  
up if specifications in section 4 are exceeded)  
3
4
VGATE  
IO1  
Gate voltage for external regulator  
FET  
Analog OUT  
Only connection to external JFET  
SPI data out or ALARM1 or PWM1  
Output  
Digital IO  
Freely accessible by application  
5
6
7
8
IO2  
SCL  
SDA  
VDD  
SPI slave select or ALARM2  
I2C clock or SPI clock  
Digital IO  
Freely accessible by application  
Freely accessible by application  
Freely accessible by application  
Digital IN, pull-up  
Digital I/O, pull-up  
Supply  
Data I/O for I2C or data IN for SPI  
Positive digital supply voltage  
Only capacitor to VSS is allowed; otherwise no  
application access  
9
FBN  
OUT  
FBP  
Negative feedback connection  
output stage  
Analog I/O  
Freely accessible by application  
Freely accessible by application  
Freely accessible by application  
10  
11  
Analog output or PWM2 output or  
one-wire interface I/O  
Analog OUT or  
Digital I/O  
Positive feedback connection output Analog I/O  
stage  
12  
13  
IR_TEMP Current source resistor I/O and  
temperature diode in  
Analog I/O  
Circuitry secures potential is within VSS-VDDA  
range; otherwise no application access  
VBR  
Bridge top sensing in bridge current  
out  
Analog I/O  
Only short to VDDA or connection to sensor bridge;  
otherwise no application access  
14  
15  
16  
VINP  
VSS  
Positive input from sensor bridge  
Negative supply voltage  
Analog IN  
Ground  
Freely accessible by application  
VINN  
Negative input from sensor bridge  
Analog IN  
Freely accessible by application  
© 2017 Integrated Device Technology, Inc.  
24  
February 13, 2017  
ZSC31050 Datasheet  
The standard package for the ZSC31050 is a 16-SSOP (5.3mm body width) with lead-pitch 0.65mm:  
Figure 8. Pin Configuration  
Pin Name  
Pin Name  
9
10  
11  
12  
13  
14  
15  
16  
8
7
6
5
4
3
2
1
FBN  
OUT  
VDD  
SDA  
SCL  
IO2  
FBP  
IR_TEMP  
VBR  
IO1  
VINP  
VGATE  
IN3  
VDDA  
VSS  
VINN  
6. Reliability  
The ZSC31050 is qualified according to the AEC-Q100 standard, operating temperature grade 0. A fit rate < 5fit (temp=55°C, S=60%) is  
guaranteed. A typical fit rate of the C7A technology that is used for the ZSC31050 is 2.5fit.  
7. Customization  
For high-volume applications that require an upgraded or downgraded functionality compared to the ZSC31050, IDT can customize the circuit  
design by adding or removing certain functional blocks.  
IDT has a considerable library of sensor-dedicated circuitry blocks that enable IDT to provide a custom solution quickly. Please contact IDT  
for further information.  
© 2017 Integrated Device Technology, Inc.  
25  
February 13, 2017  
 
ZSC31050 Datasheet  
8. Ordering Information  
Product Code  
Description  
Package  
ZSC31050FEB  
ZSC31050FEC  
ZSC31050FEG1  
ZSC31050 Die Temperature range: -40°C to +150°C  
ZSC31050 Die Temperature range: -40°C to +150°C  
ZSC31050 16-SSOP Temperature range: -40°C to +150°C  
Unsawn on Wafer  
Sawn on Wafer Frame  
Tube: add “-T” to sales code  
Reel: add “-R”  
ZSC31050FAB  
ZSC31050FAC  
ZSC31050FAG1  
ZSC31050 Die Temperature range: -40°C to +125°C  
ZSC31050 Die Temperature range: -40°C to +125°C  
ZSC31050 16-SSOP Temperature range: -40°C to +125°C  
Unsawn on Wafer  
Sawn on Wafer Frame  
Tube: add “-T” to sales code  
Reel: add “-R”  
ZSC31050FIB  
ZSC31050FIC  
ZSC31050FIG1  
ZSC31050 Die Temperature range: -25°C to +85°C  
ZSC31050 Die Temperature range: -25°C to +85°C  
ZSC31050 16-SSOP Temperature range: -25°C to +85°C  
Unsawn on Wafer  
Sawn on Wafer Frame  
Tube: add “-T” to sales code  
Reel: add “-R”  
ZSC31050KITV3P1  
ZSC31050MCSV1P1  
ZSC31050 SSC Evaluation Kit V3.1: ZSC31050 Evaluation Board, SSC Communication Board, SSC Sensor  
Replacement Board, five ZSC31050 16-SSOP samples. Software is downloadable.  
Modular Mass Calibration System (MSC) V1.1 for ZSC31050: Four Mass Calibration Boards; SSC  
Communication Board; four ZSC31050 Mass Calibration Reference Boards, each with a ZSC31050 sample  
mounted; 30m 10-wire flat cable; 100 connectors. Software is downloadable.  
9. Related Documents  
Visit the ZSC31050 product page (www.IDT.com/ZSC31050) or contact your nearest sales office for the latest version of this document and  
related documents.  
© 2017 Integrated Device Technology, Inc.  
26  
February 13, 2017  
ZSC31050 Datasheet  
10. Glossary  
Term  
Description  
Analog-to-Digital Converter  
Analog Front-End  
ADC  
AFE  
CMC  
CMOS  
DNL  
ESD  
FIO  
Calibration Microcontroller  
Complementary Metal Oxide Semiconductor  
Differential Nonlinearity  
Electrostatic Device  
Flexible Input/Output  
FSO  
IC  
Full Scale Output  
Integrated Circuit  
INL  
Integral Nonlinearity  
MUX  
PGA  
POC  
PWM  
PTC  
SIF  
Multiplexer  
Programmable Gain Amplifier  
Power On Control  
Pulse Width Modulation  
Positive Temperature Coefficient  
Serial Interface  
T2E  
TS  
Temperature 2 Measurement  
Temperature Sensor  
XZC  
Extended Zero-Point Compensation  
© 2017 Integrated Device Technology, Inc.  
27  
February 13, 2017  
ZSC31050 Datasheet  
11. Document Revision History  
Date  
Description  
February 13, 2017  
.
.
.
Revision of maximum voltage supply range with external JFET from original 40V to revised specification 48V.  
Updates for part codes.  
Minor edits and formatting changes.  
January 20, 2016  
Changed to IDT branding.  
July 27, 2015  
(Rev. 1.21)  
.
Update for order codes for ZSC31050 SSC Evaluation Kit.  
Update for contact information.  
.
.
May 11, 2014  
(Rev. 1.20)  
Product has passed AEC-Q100 at temperature grade 0 (-40C to 150C). Related updates to page 2 and  
section 6.  
.
Update for contact information.  
April 7, 2014  
(Rev. 1.15)  
Related documents updated.  
December 11, 2013 Update for part ordering tables: Mass Calibration Kit no longer includes DVD of software. Software is now  
downloaded from website to ensure user has the latest version of the software.  
(Rev. 1.14)  
October 14, 2013  
(Rev. 1.13)  
.
.
.
.
.
Specification 1.2.4 for data retention for EEPROM changed to minimum 15 years.  
Specification 1.3.4 added for ADC input range.  
Added note to section 1.3.1 that first-order configuration of the ADC cannot be used with 15-bit resolution.  
Specification 1.4.7.3 updated to remove condition of current-loop output, etc.  
Minor edits for clarity.  
July 7, 2013  
(Rev. 1.12)  
.
.
.
.
.
.
Addition of RB and C4 in to the current loop application circuit (Figure 7).  
Changed absolute maximum ratings for I2C interface.  
Updated contact information and imagery for cover and headers.  
Correction of equation (4).  
Removal of ZSC31050FCxx part numbers.  
Minor edits.  
July 29, 2010  
(Rev. 1.11)  
.
.
.
.
.
.
Changed “Application Circuit Examples” in Figure 3 and Figure 7.  
Addition of current consumption in feature sheet area.  
New style for equation in section 2.3.2 and 2.3.4.  
Correction of calculation formula for ZADC in section 2.3.4.  
Minor edits to RSADC formula in section 2.3.4.  
Update of product name from ZMD31050 to ZSC31050.  
February 18, 2010  
(Rev. 1.10)  
.
.
.
Changed CD to DVD in ordering code.  
Removed die/package option “F.”  
Minor edits.  
© 2017 Integrated Device Technology, Inc.  
28  
February 13, 2017  
ZSC31050 Datasheet  
Date  
Description  
February 16, 2010  
(Rev. 1.08-1.09)  
.
.
.
.
.
.
Addition of units for 1.4.1.2 and change in symbol for 1.5.2.1.  
Addition of new design for block diagram and all application schematics.  
Update for glossary. Addition of CM/nom information’s in Table 4.  
Update for phone number for ZMD Far East, Ltd.  
Update for ordering codes description.  
Minor edits.  
November 30, 2009  
(Rev. 1.07)  
.
.
.
Reformatted for new ZMDI template.  
Addition of “ZSC31050 Feature Sheet” section on pages 2 and 3.  
Addition of ordering codes for ZSC31050 and Evaluation Kits.  
October 2009  
.
.
.
Update to “Related Documents” and “Document Revision History.”  
Update of company references for ZMDI.  
(Rev. 1.05-1.06)  
New format for revision numbering in footer.  
September 2009  
(Rev. 1.04)  
Reformatted with new ZMDI template.  
1.03  
.
Note 4 “Default Configuration” added in 5.4.  
.
.
Overall accuracy / values and conditions for current loop output added in 5.4.7.3.  
Reliability / fit rate values added in section 6.  
1.01-1.02  
1.00  
.
.
Headlines and footnotes at all pages updated.  
Input capacitance of digital interface pins added in 5.5.1.7.  
First release of document.  
Corporate Headquarters  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Sales  
Tech Support  
www.IDT.com/go/support  
1-800-345-7015 or 408-284-8200  
Fax: 408-284-2775  
www.IDT.com/go/sales  
www.IDT.com  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its affiliated companies (herein referred to as “IDT”) reserve the right to modify the products and/or specifications described herein at any time,  
without notice, at IDT's sole discretion. Performance specifications and operating parameters of the described products are d etermined in an independent state and are not guaranteed to perform the same  
way when installed in customer products. The information contained herein is provided without representation or warranty of a ny kind, whether express or implied, including, but not limited to, the suitability  
of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not  
convey any license under intellectual property rights of IDT or any third parties.  
IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be  
reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the  
property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. All contents of this document are copyright of  
Integrated Device Technology, Inc. All rights reserved.  
© 2017 Integrated Device Technology, Inc.  
29  
February 13, 2017  
配单直通车
ZSC31050FIG1-R产品参数
型号:ZSC31050FIG1-R
Brand Name:Integrated Device Technology
是否无铅: 不含铅
是否Rohs认证: 符合
生命周期:Active
零件包装代码:SSOP
包装说明:SOP,
针数:16
制造商包装代码:PYG16
Reach Compliance Code:compliant
HTS代码:8542.31.00.01
风险等级:1.55
模拟集成电路 - 其他类型:ANALOG CIRCUIT
JESD-30 代码:R-PDSO-G16
JESD-609代码:e3
湿度敏感等级:1
功能数量:1
端子数量:16
最高工作温度:85 °C
最低工作温度:-25 °C
封装主体材料:PLASTIC/EPOXY
封装代码:SOP
封装形状:RECTANGULAR
封装形式:SMALL OUTLINE
峰值回流温度(摄氏度):260
最大供电电压 (Vsup):5.5 V
最小供电电压 (Vsup):2.7 V
表面贴装:YES
技术:CMOS
温度等级:OTHER
端子面层:Tin (Sn)
端子形式:GULL WING
端子位置:DUAL
处于峰值回流温度下的最长时间:NOT SPECIFIED
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!