Polarization-Independent Tunable Ultra-Wideband Meta-Absorber in Terahertz Regime
<p>Proposed meta-absorber with bilayer graphene and Au cylinders. (<b>a</b>) Schematic of the proposed absorber. (<b>b</b>) Top view of the unit cell of top layer, (<b>c</b>) Top view of the unit cell of second graphene layer.</p> "> Figure 2
<p>(<b>a</b>) Boundary and Excitation setting for the unit cell of the proposed absorber, (<b>b</b>) The simulated frequency responses for Line 1: with the first graphene layer, Line 2: with the second graphene layer, Line 3: the proposed absorber, Line 4: without the cylinders array.</p> "> Figure 3
<p>The diagrammatic sketch of an equivalent circuit model of the proposed absorber.</p> "> Figure 4
<p>(<b>a</b>) Comparison of input impedance with cylinders array and with parylene substrate. (<b>b</b>) The simulated frequency responses with different <math display="inline"><semantics> <mi>γ</mi> </semantics></math>.</p> "> Figure 5
<p>The simulated (<b>a</b>) electric field distribution and (<b>b</b>) surface current density of the first graphene layer and (<b>c</b>) surface current density of the backed Au ground at <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>.</mo> <mn>8</mn> </mrow> </semantics></math> THz.</p> "> Figure 6
<p>The simulated electric field distribution of the second graphene layer at <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math> THz.</p> "> Figure 7
<p>The simulated surface current density of (<b>a</b>) the second graphene layer and (<b>b</b>) the backed ground at the frequency of <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math> THz.</p> "> Figure 8
<p>The electromagnetic field profile for the structures, (<b>a</b>) without graphene at 3.7 THz, (<b>b</b>) without graphene at 6.5 THz, (<b>c</b>) without graphene at 7.6 THz, (<b>d</b>) with graphene at 3.7 THz, (<b>e</b>) with graphene at 6.5 THz, (<b>f</b>) with graphene at 7.6 THz.</p> "> Figure 9
<p>The simulated absorption spectrum with changing graphene loading voltage of (<b>a</b>) the first graphene layer, (<b>b</b>) the second graphene layer.</p> "> Figure 10
<p>Simulated absorption spectra of the absorber for different polarization angles under various incidence.</p> "> Figure 11
<p>Absorption contour map of the absorber under various incident angles (<b>a</b>) TE mode and (<b>b</b>) TM mode.</p> ">
Abstract
:1. Introduction
2. Models and Design
3. Simulation and Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, C.; Huang, C.; Pu, M.; Song, J.; Zhao, Z.; Wu, X.; Luo, X. Dual-band wide-angle metamaterial perfect absorber based on the combination of localized surface plasmon resonance and Helmholtz resonance. Sci. Rep. 2017, 7, 5652. [Google Scholar] [CrossRef] [PubMed]
- Stantchev, R.I.; Phillips, D.B.; Hobson, P.; Hornett, S.M.; Padgett, M.J.; Hendry, E. Compressed sensing with near-field THz radiation. Optica 2017, 4, 989–992. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Singh, L.; Xu, N.; Singh, R.; Zhang, W.; Xie, L. Terahertz sensing of highly absorptive water-methanol mixtures with multiple resonances in metamaterials. Opt. Express 2017, 25, 14089–14097. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Landy, N.I.; Bingham, C.M.; Zhang, X.; Averitt, R.D.; Padilla, W.J. A metamaterial absorber for the terahertz regime: Design, fabrication and characterization. Opt. Express 2008, 16, 7181–7188. [Google Scholar] [CrossRef] [PubMed]
- Cong, L.; Xu, N.; Zhang, W.; Singh, R. Polarization Control in Terahertz Metasurfaces with the Lowest Order Rotational Symmetry. Adv. Opt. Mater. 2015, 3, 1176–1183. [Google Scholar] [CrossRef]
- Yen, T.J.; Padilla, W.J.; Fang, N.; Vier, D.C.; Smith, D.R.; Pendry, J.B.; Basov, D.N.; Zhang, X. Terahertz magnetic response from artificial materials. Science 2004, 303, 1494–1496. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Park, Y.S.; Li, J.; Lu, X.; Zhang, W.; Zhang, X. Negative refractive index in chiral metamaterials. Phys. Rev. Lett. 2009, 102, 023901. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Plum, E.; Zhang, W.; Zheludev, N.I. Highly tunable optical activity in planar achiral terahertz metamaterials. Opt. Express 2010, 18, 13425–13430. [Google Scholar] [CrossRef] [PubMed]
- Bahk, Y.M.; Kang, B.J.; Kim, Y.S.; Kim, J.Y.; Kim, W.T.; Kim, T.Y.; Kang, T.; Rhie, J.; Han, S.; Park, C.H.; et al. Electromagnetic saturation of angstrom-sized quantum barriers at terahertz frequencies. Phys. Rev. Lett. 2015, 115, 125501. [Google Scholar] [CrossRef]
- Yoshida, K.; Shibata, K.; Hirakawa, K. Terahertz field enhancement and photon-assisted tunneling in single-molecule transistors. Phys. Rev. Lett. 2015, 115, 138302. [Google Scholar] [CrossRef]
- Ju, L.; Geng, B.; Horng, J.; Girit, C.; Martin, M.; Hao, Z.; Bechtel, H.A.; Liang, X.; Zettl, A.; Shen, Y.R.; et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 2011, 6, 630. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Gong, R.; Cheng, Z. A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves. Opt. Commun. 2016, 361, 41–46. [Google Scholar] [CrossRef]
- Jiang, Y.; Wan, X.; Wang, J.; Wang, J. Tunable Terahertz Absorber Based on Bulk-Dirac-Semimetal Metasurface. IEEE Photonics J. 2018, 10, 1–7. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, J.; Li, L. A Dual-Band Tunable Metamaterial Near-Unity Absorber Composed of Periodic Cross and Disk Graphene Arrays. IEEE Photonics J. 2018, 10, 1–12. [Google Scholar] [CrossRef]
- Deng, G. Triple-band polarisation-independent metamaterial absorber at mm wave frequency band. IET Microw. Antennas Propag. 2018, 12, 1120–1125. [Google Scholar] [CrossRef]
- Huang, X.; Lu, C.; Rong, C.; Hu, Z.; Liu, M. Multiband Ultrathin Polarization-Insensitive Terahertz Perfect Absorbers With Complementary Metamaterial and Resonator Based on High-Order Electric and Magnetic Resonances. IEEE Photonics J. 2018, 10, 1–11. [Google Scholar] [CrossRef]
- Dorche, A.E.; Abdollahramezani, S.; Chizari, A.; Khavasi, A. Broadband, Polarization-Insensitive, and Wide-Angle Optical Absorber Based on Fractal Plasmonics. IEEE Photonics Technol. Lett. 2016, 28, 2545–2548. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, Y.; Cao, Y.; Liu, Y.; Zhang, H. Graphene induced tunable and polarization-insensitive broadband metamaterial absorber. Opt. Commun. 2017, 382, 281–287. [Google Scholar] [CrossRef]
- Guo, W.; Liu, Y.; Han, T. Ultra-broadband infrared metasurface absorber. Opt. Express 2016, 24, 20586–20592. [Google Scholar] [CrossRef]
- Xiong, H.; Wu, Y.B.; Dong, J.; Tang, M.C.; Jiang, Y.N.; Zeng, X.P. Ultra-thin and broadband tunable metamaterial graphene absorber. Opt. Express 2018, 26, 1681–1688. [Google Scholar] [CrossRef]
- Torabi, E.S.; Fallahi, A.; Yahaghi, A. Evolutionary Optimization of Graphene-Metal Metasurfaces for Tunable Broadband Terahertz Absorption. IEEE Trans. Antennas Prog. 2017, 65, 1464–1467. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Liu, P.; Yu, D.; Li, G.; Yang, L. A Tunable Ultrabroadband Ultrathin Terahertz Absorber Using Graphene Stacks. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1115–1118. [Google Scholar] [CrossRef]
- Fardoost, A.; Vanani, F.G.; Safian, R. Design of a Multilayer Graphene-Based Ultrawideband Terahertz Absorber. IEEE Trans. Nanotechnol. 2017, 16, 68–73. [Google Scholar]
- Pan, W.; Yu, X.; Zhang, J.; Zeng, W. A Novel Design of Broadband Terahertz Metamaterial Absorber Based on Nested Circle Rings. IEEE Photonics Technol. Lett. 2016, 28, 2335–2338. [Google Scholar] [CrossRef]
- Jia, D.; Xu, J.; Yu, X. Ultra-broadband terahertz absorption using bi-metasurfaces based multiplexed resonances. Opt. Express 2018, 26, 26227. [Google Scholar] [CrossRef] [PubMed]
- Sayem, A.A.; Mahdy, M.R.C.; Rahman, M.S. Broad angle negative refraction in lossless all dielectric or semiconductor based asymmetric anisotropic metamaterial. J. Opt. 2016, 18, 015101. [Google Scholar] [CrossRef]
- Cong, L.; Pitchappa, P.; Wu, Y.; Ke, L.; Lee, C.; Singh, N.; Yang, H.; Singh, R. Active Multifunctional Microelectromechanical System Metadevices: Applications in Polarization Control, Wavefront Deflection, and Holograms. Adv. Opt. Mat. 2016, 5, 1600716. [Google Scholar] [CrossRef]
- Cong, L.; Tan, S.; Yahiaoui, R.; Yan, F.; Zhang, W.; Singh, R. Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces. Appl. Phys. Lett. 2015, 106, 031107. [Google Scholar] [CrossRef]
- Cong, L.; Pitchappa, P.; Lee, C.; Singh, R. Active Phase Transition via Loss Engineering in a Terahertz MEMS Metamaterial. Adv. Mater. 2017, 29, 1700733. [Google Scholar] [CrossRef]
- Liu, N.; Liu, H.; Zhu, S.; Giessen, H. Stereometamaterials. Nat. Photonics 2009, 3, 157–162. [Google Scholar] [CrossRef]
- De Cos, M.E.; Las-Heras, F. On the advantages of loop-based unit-cell’s metallization regarding the angular stability of artificial magnetic conductors. Appl. Phys. A 2015, 118, 699–708. [Google Scholar] [CrossRef]
Bandwidth (THz) | phi = | phi = | phi = | phi = | phi = |
---|---|---|---|---|---|
theta = | 7.3 | 7.4 | 7.3 | 7.4 | 7.4 |
theta = | 7.4 | 7.5 | 7.4 | 7.4 | 7.5 |
theta = | 7.6 | 7.7 | 7.6 | 7.6 | 7.7 |
theta = | 7.9 | 7.9 | 7.9 | 7.9 | 7.9 |
theta = | 8.3 | 8.0 | 8.3 | 8.1 | 6.7 |
theta = | 6.2 | 4.3 | 6.2 | 4.9 | 4.7 |
theta = | 2.7 | 2.4 | 2.7 | 2.5 | 1.8 |
theta = | 1.3 | 1.0 | 1.3 | 1.2 | 0.9 |
Bandwidth (THz) | phi = | phi = | phi = | phi = | phi = |
---|---|---|---|---|---|
theta = | 7.3 | 7.4 | 7.3 | 7.4 | 7.4 |
theta = | 7.4 | 7.5 | 7.4 | 7.4 | 7.5 |
theta = | 7.6 | 7.8 | 7.6 | 7.6 | 7.7 |
theta = | 8.2 | 8.0 | 8.2 | 8.2 | 7.9 |
theta = | 8.4 | 8.6 | 8.4 | 8.6 | 7.8 |
theta = | 8.6 | 8.3 | 8.6 | 6.9 | 8.1 |
theta = | 7.4 | 8.0 | 7.4 | 7.5 | 7.6 |
theta = | 3.9 | 3.4 | 3.9 | 3.5 | 3.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Deng, L.; Qu, M.; Li, S. Polarization-Independent Tunable Ultra-Wideband Meta-Absorber in Terahertz Regime. Electronics 2019, 8, 831. https://doi.org/10.3390/electronics8080831
Liu S, Deng L, Qu M, Li S. Polarization-Independent Tunable Ultra-Wideband Meta-Absorber in Terahertz Regime. Electronics. 2019; 8(8):831. https://doi.org/10.3390/electronics8080831
Chicago/Turabian StyleLiu, Shuxiang, Li Deng, Meijun Qu, and Shufang Li. 2019. "Polarization-Independent Tunable Ultra-Wideband Meta-Absorber in Terahertz Regime" Electronics 8, no. 8: 831. https://doi.org/10.3390/electronics8080831