mlflow.config
-
mlflow.config.
disable_system_metrics_logging
()[source] Note
Experimental: This function may change or be removed in a future release without warning.
Disable system metrics logging globally.
Calling this function will disable system metrics logging globally, but users can still opt in system metrics logging for individual runs by mlflow.start_run(log_system_metrics=True).
-
mlflow.config.
enable_async_logging
(enable=True)[source] Enable or disable async logging globally.
- Parameters
enable – bool, if True, enable async logging. If False, disable async logging.
import mlflow mlflow.config.enable_async_logging(True) with mlflow.start_run(): mlflow.log_param("a", 1) # This will be logged asynchronously mlflow.config.enable_async_logging(False) with mlflow.start_run(): mlflow.log_param("a", 1) # This will be logged synchronously
-
mlflow.config.
enable_system_metrics_logging
()[source] Note
Experimental: This function may change or be removed in a future release without warning.
Enable system metrics logging globally.
Calling this function will enable system metrics logging globally, but users can still opt out system metrics logging for individual runs by mlflow.start_run(log_system_metrics=False).
-
mlflow.config.
get_registry_uri
() → str[source] Get the current registry URI. If none has been specified, defaults to the tracking URI.
- Returns
The registry URI.
# Get the current model registry uri mr_uri = mlflow.get_registry_uri() print(f"Current model registry uri: {mr_uri}") # Get the current tracking uri tracking_uri = mlflow.get_tracking_uri() print(f"Current tracking uri: {tracking_uri}") # They should be the same assert mr_uri == tracking_uri
Current model registry uri: file:///.../mlruns Current tracking uri: file:///.../mlruns
-
mlflow.config.
get_tracking_uri
() → str[source] Get the current tracking URI. This may not correspond to the tracking URI of the currently active run, since the tracking URI can be updated via
set_tracking_uri
.- Returns
The tracking URI.
import mlflow # Get the current tracking uri tracking_uri = mlflow.get_tracking_uri() print(f"Current tracking uri: {tracking_uri}")
Current tracking uri: file:///.../mlruns
-
mlflow.config.
is_tracking_uri_set
()[source] Returns True if the tracking URI has been set, False otherwise.
-
mlflow.config.
set_registry_uri
(uri: str) → None[source] Set the registry server URI. This method is especially useful if you have a registry server that’s different from the tracking server.
- Parameters
uri – An empty string, or a local file path, prefixed with
file:/
. Data is stored locally at the provided file (or./mlruns
if empty). An HTTP URI likehttps://my-tracking-server:5000
orhttp://my-oss-uc-server:8080
. A Databricks workspace, provided as the string “databricks” or, to use a Databricks CLI profile, “databricks://<profileName>”.
import mflow # Set model registry uri, fetch the set uri, and compare # it with the tracking uri. They should be different mlflow.set_registry_uri("sqlite:////tmp/registry.db") mr_uri = mlflow.get_registry_uri() print(f"Current registry uri: {mr_uri}") tracking_uri = mlflow.get_tracking_uri() print(f"Current tracking uri: {tracking_uri}") # They should be different assert tracking_uri != mr_uri
Current registry uri: sqlite:////tmp/registry.db Current tracking uri: file:///.../mlruns
-
mlflow.config.
set_system_metrics_node_id
(node_id)[source] Note
Experimental: This function may change or be removed in a future release without warning.
Set the system metrics node id.
node_id is the identifier of the machine where the metrics are collected. This is useful in multi-node (distributed training) setup.
-
mlflow.config.
set_system_metrics_samples_before_logging
(samples)[source] Note
Experimental: This function may change or be removed in a future release without warning.
Set the number of samples before logging system metrics.
Every time samples samples have been collected, the system metrics will be logged to mlflow. By default samples=1.
-
mlflow.config.
set_system_metrics_sampling_interval
(interval)[source] Note
Experimental: This function may change or be removed in a future release without warning.
Set the system metrics sampling interval.
Every interval seconds, the system metrics will be collected. By default interval=10.
-
mlflow.config.
set_tracking_uri
(uri: Union[str, pathlib.Path]) → None[source] Set the tracking server URI. This does not affect the currently active run (if one exists), but takes effect for successive runs.
- Parameters
uri –
An empty string, or a local file path, prefixed with
file:/
. Data is stored locally at the provided file (or./mlruns
if empty).An HTTP URI like
https://my-tracking-server:5000
.A Databricks workspace, provided as the string “databricks” or, to use a Databricks CLI profile, “databricks://<profileName>”.
A
pathlib.Path
instance
import mlflow mlflow.set_tracking_uri("file:///tmp/my_tracking") tracking_uri = mlflow.get_tracking_uri() print(f"Current tracking uri: {tracking_uri}")
Current tracking uri: file:///tmp/my_tracking