mlflow.client
The mlflow.client
module provides a Python CRUD interface to MLflow Experiments, Runs,
Model Versions, and Registered Models. This is a lower level API that directly translates to MLflow
REST API calls.
For a higher level API for managing an “active run”, use the mlflow
module.
-
class
mlflow.client.
MlflowClient
(tracking_uri: Optional[str] = None, registry_uri: Optional[str] = None)[source] Bases:
object
Client of an MLflow Tracking Server that creates and manages experiments and runs, and of an MLflow Registry Server that creates and manages registered models and model versions. It’s a thin wrapper around TrackingServiceClient and RegistryClient so there is a unified API but we can keep the implementation of the tracking and registry clients independent from each other.
-
copy_model_version
(src_model_uri, dst_name) → ModelVersion[source] Copy a model version from one registered model to another as a new model version.
- Parameters
src_model_uri – The model URI of the model version to copy. This must be a model registry URI with a “models:/” scheme (e.g., “models:/iris_model@champion”).
dst_name – The name of the registered model to copy the model version to. If a registered model with this name does not exist, it will be created.
- Returns
Single
mlflow.entities.model_registry.ModelVersion
object representing the copied model version.
import mlflow.sklearn from mlflow import MlflowClient from mlflow.models import infer_signature from sklearn.datasets import make_regression from sklearn.ensemble import RandomForestRegressor def print_model_version_info(mv): print(f"Name: {mv.name}") print(f"Version: {mv.version}") print(f"Source: {mv.source}") mlflow.set_tracking_uri("sqlite:///mlruns.db") X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False) # Log a model with mlflow.start_run() as run: params = {"n_estimators": 3, "random_state": 42} rfr = RandomForestRegressor(**params).fit(X, y) signature = infer_signature(X, rfr.predict(X)) mlflow.log_params(params) mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature) # Create source model version client = MlflowClient() src_name = "RandomForestRegression-staging" client.create_registered_model(src_name) src_uri = f"runs:/{run.info.run_id}/sklearn-model" mv_src = client.create_model_version(src_name, src_uri, run.info.run_id) print_model_version_info(mv_src) print("--") # Copy the source model version into a new registered model dst_name = "RandomForestRegression-production" src_model_uri = f"models:/{mv_src.name}/{mv_src.version}" mv_copy = client.copy_model_version(src_model_uri, dst_name) print_model_version_info(mv_copy)
Name: RandomForestRegression-staging Version: 1 Source: runs:/53e08bb38f0c487fa36c5872515ed998/sklearn-model -- Name: RandomForestRegression-production Version: 1 Source: models:/RandomForestRegression-staging/1
-
create_experiment
(name: str, artifact_location: Optional[str] = None, tags: Optional[Dict[str, Any]] = None) → str[source] Create an experiment.
- Parameters
name – The experiment name, which must be a unique string.
artifact_location – The location to store run artifacts. If not provided, the server picks anappropriate default.
tags – A dictionary of key-value pairs that are converted into
mlflow.entities.ExperimentTag
objects, set as experiment tags upon experiment creation.
- Returns
String as an integer ID of the created experiment.
from pathlib import Path from mlflow import MlflowClient # Create an experiment with a name that is unique and case sensitive. client = MlflowClient() experiment_id = client.create_experiment( "Social NLP Experiments", artifact_location=Path.cwd().joinpath("mlruns").as_uri(), tags={"version": "v1", "priority": "P1"}, ) client.set_experiment_tag(experiment_id, "nlp.framework", "Spark NLP") # Fetch experiment metadata information experiment = client.get_experiment(experiment_id) print(f"Name: {experiment.name}") print(f"Experiment_id: {experiment.experiment_id}") print(f"Artifact Location: {experiment.artifact_location}") print(f"Tags: {experiment.tags}") print(f"Lifecycle_stage: {experiment.lifecycle_stage}")
Name: Social NLP Experiments Experiment_id: 1 Artifact Location: file:///.../mlruns Tags: {'version': 'v1', 'priority': 'P1', 'nlp.framework': 'Spark NLP'} Lifecycle_stage: active
-
create_model_version
(name: str, source: str, run_id: Optional[str] = None, tags: Optional[Dict[str, Any]] = None, run_link: Optional[str] = None, description: Optional[str] = None, await_creation_for: int = 300) → ModelVersion[source] Create a new model version from given source.
- Parameters
name – Name for the containing registered model.
source – URI indicating the location of the model artifacts. The artifact URI can be run relative (e.g.
runs:/<run_id>/<model_artifact_path>
), a model registry URI (e.g.models:/<model_name>/<version>
), or other URIs supported by the model registry backend (e.g. “s3://my_bucket/my/model”).run_id – Run ID from MLflow tracking server that generated the model.
tags – A dictionary of key-value pairs that are converted into
mlflow.entities.model_registry.ModelVersionTag
objects.run_link – Link to the run from an MLflow tracking server that generated this model.
description – Description of the version.
await_creation_for – Number of seconds to wait for the model version to finish being created and is in
READY
status. By default, the function waits for five minutes. Specify 0 or None to skip waiting.
- Returns
Single
mlflow.entities.model_registry.ModelVersion
object created by backend.
import mlflow.sklearn from mlflow.store.artifact.runs_artifact_repo import RunsArtifactRepository from mlflow import MlflowClient from mlflow.models import infer_signature from sklearn.datasets import make_regression from sklearn.ensemble import RandomForestRegressor mlflow.set_tracking_uri("sqlite:///mlruns.db") params = {"n_estimators": 3, "random_state": 42} name = "RandomForestRegression" X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False) rfr = RandomForestRegressor(**params).fit(X, y) signature = infer_signature(X, rfr.predict(X)) # Log MLflow entities with mlflow.start_run() as run: mlflow.log_params(params) mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature) # Register model name in the model registry client = MlflowClient() client.create_registered_model(name) # Create a new version of the rfr model under the registered model name desc = "A new version of the model" runs_uri = f"runs:/{run.info.run_id}/sklearn-model" model_src = RunsArtifactRepository.get_underlying_uri(runs_uri) mv = client.create_model_version(name, model_src, run.info.run_id, description=desc) print(f"Name: {mv.name}") print(f"Version: {mv.version}") print(f"Description: {mv.description}") print(f"Status: {mv.status}") print(f"Stage: {mv.current_stage}")
Name: RandomForestRegression Version: 1 Description: A new version of the model Status: READY Stage: None
-
create_registered_model
(name: str, tags: Optional[Dict[str, Any]] = None, description: Optional[str] = None) → RegisteredModel[source] Create a new registered model in backend store.
- Parameters
name – Name of the new model. This is expected to be unique in the backend store.
tags – A dictionary of key-value pairs that are converted into
mlflow.entities.model_registry.RegisteredModelTag
objects.description – Description of the model.
- Returns
A single object of
mlflow.entities.model_registry.RegisteredModel
created by backend.
import mlflow from mlflow import MlflowClient def print_registered_model_info(rm): print(f"name: {rm.name}") print(f"tags: {rm.tags}") print(f"description: {rm.description}") name = "SocialMediaTextAnalyzer" tags = {"nlp.framework": "Spark NLP"} desc = "This sentiment analysis model classifies the tone-happy, sad, angry." mlflow.set_tracking_uri("sqlite:///mlruns.db") client = MlflowClient() client.create_registered_model(name, tags, desc) print_registered_model_info(client.get_registered_model(name))
name: SocialMediaTextAnalyzer tags: {'nlp.framework': 'Spark NLP'} description: This sentiment analysis model classifies the tone-happy, sad, angry.
-
create_run
(experiment_id: str, start_time: Optional[int] = None, tags: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None) → Run[source] Create a
mlflow.entities.Run
object that can be associated with metrics, parameters, artifacts, etc. Unlikemlflow.projects.run()
, creates objects but does not run code. Unlikemlflow.start_run()
, does not change the “active run” used bymlflow.log_param()
.- Parameters
experiment_id – The string ID of the experiment to create a run in.
start_time – If not provided, use the current timestamp.
tags – A dictionary of key-value pairs that are converted into
mlflow.entities.RunTag
objects.run_name – The name of this run.
- Returns
mlflow.entities.Run
that was created.
from mlflow import MlflowClient # Create a run with a tag under the default experiment (whose id is '0'). tags = {"engineering": "ML Platform"} name = "platform-run-24" client = MlflowClient() experiment_id = "0" run = client.create_run(experiment_id, tags=tags, run_name=name) # Show newly created run metadata info print(f"Run tags: {run.data.tags}") print(f"Experiment id: {run.info.experiment_id}") print(f"Run id: {run.info.run_id}") print(f"Run name: {run.info.run_name}") print(f"lifecycle_stage: {run.info.lifecycle_stage}") print(f"status: {run.info.status}")
Run tags: {'engineering': 'ML Platform'} Experiment id: 0 Run id: 65fb9e2198764354bab398105f2e70c1 Run name: platform-run-24 lifecycle_stage: active status: RUNNING
-
delete_experiment
(experiment_id: str) → None[source] Delete an experiment from the backend store.
This deletion is a soft-delete, not a permanent deletion. Experiment names can not be reused, unless the deleted experiment is permanently deleted by a database admin.
- Parameters
experiment_id – The experiment ID returned from
create_experiment
.
from mlflow import MlflowClient # Create an experiment with a name that is unique and case sensitive client = MlflowClient() experiment_id = client.create_experiment("New Experiment") client.delete_experiment(experiment_id) # Examine the deleted experiment details. experiment = client.get_experiment(experiment_id) print(f"Name: {experiment.name}") print(f"Artifact Location: {experiment.artifact_location}") print(f"Lifecycle_stage: {experiment.lifecycle_stage}")
Name: New Experiment Artifact Location: file:///.../mlruns/1 Lifecycle_stage: deleted
-
delete_model_version
(name: str, version: str) → None[source] Delete model version in backend.
- Parameters
name – Name of the containing registered model.
version – Version number of the model version.
import mlflow.sklearn from mlflow import MlflowClient from mlflow.models import infer_signature from sklearn.datasets import make_regression from sklearn.ensemble import RandomForestRegressor def print_models_info(mv): for m in mv: print(f"name: {m.name}") print(f"latest version: {m.version}") print(f"run_id: {m.run_id}") print(f"current_stage: {m.current_stage}") mlflow.set_tracking_uri("sqlite:///mlruns.db") X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False) # Create two runs and log MLflow entities with mlflow.start_run() as run1: params = {"n_estimators": 3, "random_state": 42} rfr = RandomForestRegressor(**params).fit(X, y) signature = infer_signature(X, rfr.predict(X)) mlflow.log_params(params) mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature) with mlflow.start_run() as run2: params = {"n_estimators": 6, "random_state": 42} rfr = RandomForestRegressor(**params).fit(X, y) signature = infer_signature(X, rfr.predict(X)) mlflow.log_params(params) mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature) # Register model name in the model registry name = "RandomForestRegression" client = MlflowClient() client.create_registered_model(name) # Create a two versions of the rfr model under the registered model name for run_id in [run1.info.run_id, run2.info.run_id]: model_uri = f"runs:/{run_id}/sklearn-model" mv = client.create_model_version(name, model_uri, run_id) print(f"model version {mv.version} created") print("--") # Fetch latest version; this will be version 2 models = client.get_latest_versions(name, stages=["None"]) print_models_info(models) print("--") # Delete the latest model version 2 print(f"Deleting model version {mv.version}") client.delete_model_version(name, mv.version) models = client.get_latest_versions(name, stages=["None"]) print_models_info(models)
model version 1 created model version 2 created -- name: RandomForestRegression latest version: 2 run_id: 9881172ef10f4cb08df3ed452c0c362b current_stage: None -- Deleting model version 2 name: RandomForestRegression latest version: 1 run_id: 9165d4f8aa0a4d069550824bdc55caaf current_stage: None
-
delete_model_version_tag
(name: str, version: Optional[str] = None, key: Optional[str] = None, stage: Optional[str] = None) → None[source] Delete a tag associated with the model version.
When stage is set, tag will be deleted for latest model version of the stage. Setting both version and stage parameter will result in error.
- Parameters
name – Registered model name.
version – Registered model version.
key – Tag key. key is required.
stage – Registered model stage.
import mlflow.sklearn from mlflow import MlflowClient from mlflow.models import infer_signature from sklearn.datasets import make_regression from sklearn.ensemble import RandomForestRegressor def print_model_version_info(mv): print(f"Name: {mv.name}") print(f"Version: {mv.version}") print(f"Tags: {mv.tags}") mlflow.set_tracking_uri("sqlite:///mlruns.db") params = {"n_estimators": 3, "random_state": 42} name = "RandomForestRegression" X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False) rfr = RandomForestRegressor(**params).fit(X, y) signature = infer_signature(X, rfr.predict(X)) # Log MLflow entities with mlflow.start_run() as run: mlflow.log_params(params) mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature) # Register model name in the model registry client = MlflowClient() client.create_registered_model(name) # Create a new version of the rfr model under the registered model name # and delete a tag model_uri = f"runs:/{run.info.run_id}/sklearn-model" tags = {"t": "1", "t1": "2"} mv = client.create_model_version(name, model_uri, run.info.run_id, tags=tags) print_model_version_info(mv) print("--") # using version to delete tag client.delete_model_version_tag(name, mv.version, "t") # using stage to delete tag client.delete_model_version_tag(name, key="t1", stage=mv.current_stage) mv = client.get_model_version(name, mv.version) print_model_version_info(mv)
Name: RandomForestRegression Version: 1 Tags: {'t': '1', 't1': '2'} -- Name: RandomForestRegression Version: 1 Tags: {}
-
delete_registered_model
(name: str)[source] Delete registered model. Backend raises exception if a registered model with given name does not exist.
- Parameters
name – Name of the registered model to delete.
import mlflow from mlflow import MlflowClient def print_registered_models_info(r_models): print("--") for rm in r_models: print(f"name: {rm.name}") print(f"tags: {rm.tags}") print(f"description: {rm.description}") mlflow.set_tracking_uri("sqlite:///mlruns.db") client = MlflowClient() # Register a couple of models with respective names, tags, and descriptions for name, tags, desc in [ ("name1", {"t1": "t1"}, "description1"), ("name2", {"t2": "t2"}, "description2"), ]: client.create_registered_model(name, tags, desc) # Fetch all registered models print_registered_models_info(client.search_registered_models()) # Delete one registered model and fetch again client.delete_registered_model("name1") print_registered_models_info(client.search_registered_models())
-- name: name1 tags: {'t1': 't1'} description: description1 name: name2 tags: {'t2': 't2'} description: description2 -- name: name2 tags: {'t2': 't2'} description: description2
-
delete_registered_model_alias
(name: str, alias: str) → None[source] Delete an alias associated with a registered model.
- Parameters
name – Registered model name.
alias – Name of the alias.
import mlflow from mlflow import MlflowClient from mlflow.models import infer_signature from sklearn.datasets import make_regression from sklearn.ensemble import RandomForestRegressor def print_model_info(rm): print("--Model--") print("name: {}".format(rm.name)) print("aliases: {}".format(rm.aliases)) def print_model_version_info(mv): print("--Model Version--") print("Name: {}".format(mv.name)) print("Version: {}".format(mv.version)) print("Aliases: {}".format(mv.aliases)) mlflow.set_tracking_uri("sqlite:///mlruns.db") params = {"n_estimators": 3, "random_state": 42} name = "RandomForestRegression" X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False) rfr = RandomForestRegressor(**params).fit(X, y) signature = infer_signature(X, rfr.predict(X)) # Log MLflow entities with mlflow.start_run() as run: mlflow.log_params(params) mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature) # Register model name in the model registry client = MlflowClient() client.create_registered_model(name) model = client.get_registered_model(name) print_model_info(model) # Create a new version of the rfr model under the registered model name model_uri = "runs:/{}/sklearn-model".format(run.info.run_id) mv = client.create_model_version(name, model_uri, run.info.run_id) print_model_version_info(mv) # Set registered model alias client.set_registered_model_alias(name, "test-alias", mv.version) print() print_model_info(model) print_model_version_info(mv) # Delete registered model alias client.delete_registered_model_alias(name, "test-alias") print() print_model_info(model) print_model_version_info(mv)
--Model-- name: RandomForestRegression aliases: {} --Model Version-- Name: RandomForestRegression Version: 1 Aliases: [] --Model-- name: RandomForestRegression aliases: {"test-alias": "1"} --Model Version-- Name: RandomForestRegression Version: 1 Aliases: ["test-alias"] --Model-- name: RandomForestRegression aliases: {} --Model Version-- Name: RandomForestRegression Version: 1 Aliases: []
-
delete_registered_model_tag
(name: str, key: str) → None[source] Delete a tag associated with the registered model.
- Parameters
name – Registered model name.
key – Registered model tag key.
import mlflow from mlflow import MlflowClient def print_registered_models_info(r_models): print("--") for rm in r_models: print(f"name: {rm.name}") print(f"tags: {rm.tags}") mlflow.set_tracking_uri("sqlite:///mlruns.db") client = MlflowClient() # Register a couple of models with respective names and tags for name, tags in [("name1", {"t1": "t1"}), ("name2", {"t2": "t2"})]: client.create_registered_model(name, tags) # Fetch all registered models print_registered_models_info(client.search_registered_models()) # Delete a tag from model `name2` client.delete_registered_model_tag("name2", "t2") print_registered_models_info(client.search_registered_models())
-- name: name1 tags: {'t1': 't1'} name: name2 tags: {'t2': 't2'} -- name: name1 tags: {'t1': 't1'} name: name2 tags: {}
-
delete_run
(run_id: str) → None[source] Deletes a run with the given ID.
- Parameters
run_id – The unique run id to delete.
from mlflow import MlflowClient # Create a run under the default experiment (whose id is '0'). client = MlflowClient() experiment_id = "0" run = client.create_run(experiment_id) run_id = run.info.run_id print(f"run_id: {run_id}; lifecycle_stage: {run.info.lifecycle_stage}") print("--") client.delete_run(run_id) del_run = client.get_run(run_id) print(f"run_id: {run_id}; lifecycle_stage: {del_run.info.lifecycle_stage}")
run_id: a61c7a1851324f7094e8d5014c58c8c8; lifecycle_stage: active run_id: a61c7a1851324f7094e8d5014c58c8c8; lifecycle_stage: deleted
-
delete_tag
(run_id: str, key: str) → None[source] Delete a tag from a run. This is irreversible.
- Parameters
run_id – String ID of the run.
key – Name of the tag.
from mlflow import MlflowClient def print_run_info(run): print(f"run_id: {run.info.run_id}") print(f"Tags: {run.data.tags}") # Create a run under the default experiment (whose id is '0'). client = MlflowClient() tags = {"t1": 1, "t2": 2} experiment_id = "0" run = client.create_run(experiment_id, tags=tags) print_run_info(run) print("--") # Delete tag and fetch updated info client.delete_tag(run.info.run_id, "t1") run = client.get_run(run.info.run_id) print_run_info(run)
run_id: b7077267a59a45d78cd9be0de4bc41f5 Tags: {'t2': '2', 't1': '1'} -- run_id: b7077267a59a45d78cd9be0de4bc41f5 Tags: {'t2': '2'}
-
delete_trace_tag
(request_id: str, key: str) → None[source] Note
Experimental: This function may change or be removed in a future release without warning.
Delete a tag on the trace with the given trace ID.
The trace can be an active one or the one that has already ended and recorded in the backend. Below is an example of deleting a tag on an active trace. You can replace the
request_id
parameter to delete a tag on an already ended trace.from mlflow import MlflowClient client = MlflowClient() root_span = client.start_trace("my_trace", tags={"key": "value"}) client.delete_trace_tag(root_span.request_id, "key") client.end_trace(root_span.request_id)
- Parameters
request_id – The ID of the trace to delete the tag from.
key – The string key of the tag. Must be at most 250 characters long, otherwise it will be truncated when stored.
-
delete_traces
(experiment_id: str, max_timestamp_millis: Optional[int] = None, max_traces: Optional[int] = None, request_ids: Optional[List[str]] = None) → int[source] Note
Experimental: This function may change or be removed in a future release without warning.
Delete traces based on the specified criteria.
Either max_timestamp_millis or request_ids must be specified, but not both.
max_traces can’t be specified if request_ids is specified.
- Parameters
experiment_id – ID of the associated experiment.
max_timestamp_millis – The maximum timestamp in milliseconds since the UNIX epoch for deleting traces. Traces older than or equal to this timestamp will be deleted.
max_traces – The maximum number of traces to delete. If max_traces is specified, and it is less than the number of traces that would be deleted based on the max_timestamp_millis, the oldest traces will be deleted first.
request_ids – A set of request IDs to delete.
- Returns
The number of traces deleted.
Example:
import mlflow import time client = mlflow.MlflowClient() # Delete all traces in the experiment client.delete_traces( experiment_id="0", max_timestamp_millis=time.time_ns() // 1_000_000 ) # Delete traces based on max_timestamp_millis and max_traces # Older traces will be deleted first. some_timestamp = time.time_ns() // 1_000_000 client.delete_traces( experiment_id="0", max_timestamp_millis=some_timestamp, max_traces=2 ) # Delete traces based on request_ids client.delete_traces(experiment_id="0", request_ids=["id_1", "id_2"])
-
download_artifacts
(run_id: str, path: str, dst_path: Optional[str] = None) → str[source] Download an artifact file or directory from a run to a local directory if applicable, and return a local path for it.
- Parameters
run_id – The run to download artifacts from.
path – Relative source path to the desired artifact.
dst_path – Absolute path of the local filesystem destination directory to which to download the specified artifacts. This directory must already exist. If unspecified, the artifacts will either be downloaded to a new uniquely-named directory on the local filesystem or will be returned directly in the case of the LocalArtifactRepository.
- Returns
Local path of desired artifact.
import os import mlflow from mlflow import MlflowClient features = "rooms, zipcode, median_price, school_rating, transport" with open("features.txt", "w") as f: f.write(features) # Log artifacts with mlflow.start_run() as run: mlflow.log_artifact("features.txt", artifact_path="features") # Download artifacts client = MlflowClient() local_dir = "/tmp/artifact_downloads" if not os.path.exists(local_dir): os.mkdir(local_dir) local_path = client.download_artifacts(run.info.run_id, "features", local_dir) print(f"Artifacts downloaded in: {local_path}") print(f"Artifacts: {os.listdir(local_path)}")
Artifacts downloaded in: /tmp/artifact_downloads/features Artifacts: ['features.txt']
-
end_span
(request_id: str, span_id: str, outputs: Optional[Dict[str, Any]] = None, attributes: Optional[Dict[str, Any]] = None, status: Union[SpanStatus, str] = 'OK', end_time_ns: Optional[int] = None)[source] Note
Experimental: This function may change or be removed in a future release without warning.
End the span with the given trace ID and span ID.
- Parameters
request_id – The ID of the trace to end.
span_id – The ID of the span to end.
outputs – Outputs to set on the span.
attributes – A dictionary of attributes to set on the span. If the span already has attributes, the new attributes will be merged with the existing ones. If the same key already exists, the new value will overwrite the old one.
status – The status of the span. This can be a
SpanStatus
object or a string representing the status code defined inSpanStatusCode
e.g."OK"
,"ERROR"
. The default status is OK.end_time_ns – The end time of the span in nano seconds since the UNIX epoch. If not provided, the current time will be used.
-
end_trace
(request_id: str, outputs: Optional[Dict[str, Any]] = None, attributes: Optional[Dict[str, Any]] = None, status: Union[SpanStatus, str] = 'OK', end_time_ns: Optional[int] = None)[source] Note
Experimental: This function may change or be removed in a future release without warning.
End the trace with the given trace ID. This will end the root span of the trace and log the trace to the backend if configured.
If any of children spans are not ended, they will be ended forcefully with the status
TRACE_STATUS_UNSPECIFIED
. If the trace is already ended, this method will have no effect.- Parameters
request_id – The ID of the trace to end.
outputs – Outputs to set on the trace.
attributes – A dictionary of attributes to set on the trace. If the trace already has attributes, the new attributes will be merged with the existing ones. If the same key already exists, the new value will overwrite the old one.
status – The status of the trace. This can be a
SpanStatus
object or a string representing the status code defined inSpanStatusCode
e.g."OK"
,"ERROR"
. The default status is OK.end_time_ns – The end time of the trace in nanoseconds since the UNIX epoch.
-
get_experiment
(experiment_id: str) → Experiment[source] Retrieve an experiment by experiment_id from the backend store
- Parameters
experiment_id – The experiment ID returned from
create_experiment
.- Returns
from mlflow import MlflowClient client = MlflowClient() exp_id = client.create_experiment("Experiment") experiment = client.get_experiment(exp_id) # Show experiment info print(f"Name: {experiment.name}") print(f"Experiment ID: {experiment.experiment_id}") print(f"Artifact Location: {experiment.artifact_location}") print(f"Lifecycle_stage: {experiment.lifecycle_stage}")
Name: Experiment Experiment ID: 1 Artifact Location: file:///.../mlruns/1 Lifecycle_stage: active
-
get_experiment_by_name
(name: str) → Optional[Experiment][source] Retrieve an experiment by experiment name from the backend store
- Parameters
name – The experiment name, which is case sensitive.
- Returns
An instance of
mlflow.entities.Experiment
if an experiment with the specified name exists, otherwise None.
from mlflow import MlflowClient # Case-sensitive name client = MlflowClient() experiment = client.get_experiment_by_name("Default") # Show experiment info print(f"Name: {experiment.name}") print(f"Experiment ID: {experiment.experiment_id}") print(f"Artifact Location: {experiment.artifact_location}") print(f"Lifecycle_stage: {experiment.lifecycle_stage}")
Name: Default Experiment ID: 0 Artifact Location: file:///.../mlruns/0 Lifecycle_stage: active
-
get_latest_versions
(name: str, stages: Optional[List[str]] = None) → List[ModelVersion][source] Warning
mlflow.tracking.client.MlflowClient.get_latest_versions
is deprecated since 2.9.0. Model registry stages will be removed in a future major release. To learn more about the deprecation of model registry stages, see our migration guide here: https://mlflow.org/docs/latest/model-registry.html#migrating-from-stagesLatest version models for each requests stage. If no
stages
provided, returns the latest version for each stage.- Parameters
name – Name of the registered model from which to get the latest versions.
stages – List of desired stages. If input list is None, return latest versions for for ALL_STAGES.
- Returns
List of
mlflow.entities.model_registry.ModelVersion
objects.
import mlflow.sklearn from mlflow import MlflowClient from mlflow.models import infer_signature from sklearn.datasets import make_regression from sklearn.ensemble import RandomForestRegressor def print_models_info(mv): for m in mv: print(f"name: {m.name}") print(f"latest version: {m.version}") print(f"run_id: {m.run_id}") print(f"current_stage: {m.current_stage}") mlflow.set_tracking_uri("sqlite:///mlruns.db") X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False) # Create two runs Log MLflow entities with mlflow.start_run() as run1: params = {"n_estimators": 3, "random_state": 42} rfr = RandomForestRegressor(**params).fit(X, y) signature = infer_signature(X, rfr.predict(X)) mlflow.log_params(params) mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature) with mlflow.start_run() as run2: params = {"n_estimators": 6, "random_state": 42} rfr = RandomForestRegressor(**params).fit(X, y) signature = infer_signature(X, rfr.predict(X)) mlflow.log_params(params) mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature) # Register model name in the model registry name = "RandomForestRegression" client = MlflowClient() client.create_registered_model(name) # Create a two versions of the rfr model under the registered model name for run_id in [run1.info.run_id, run2.info.run_id]: model_uri = f"runs:/{run_id}/sklearn-model" mv = client.create_model_version(name, model_uri, run_id) print(f"model version {mv.version} created") # Fetch latest version; this will be version 2 print("--") print_models_info(client.get_latest_versions(name, stages=["None"]))
model version 1 created model version 2 created -- name: RandomForestRegression latest version: 2 run_id: 31165664be034dc698c52a4bdeb71663 current_stage: None
-
get_metric_history
(run_id: str, key: str) → List[Metric][source] Return a list of metric objects corresponding to all values logged for a given metric.
- Parameters
run_id – Unique identifier for run.
key – Metric name within the run.
- Returns
A list of
mlflow.entities.Metric
entities if logged, else empty list.
from mlflow import MlflowClient def print_metric_info(history): for m in history: print(f"name: {m.key}") print(f"value: {m.value}") print(f"step: {m.step}") print(f"timestamp: {m.timestamp}") print("--") # Create a run under the default experiment (whose id is "0"). Since this is low-level # CRUD operation, the method will create a run. To end the run, you'll have # to explicitly end it. client = MlflowClient() experiment_id = "0" run = client.create_run(experiment_id) print(f"run_id: {run.info.run_id}") print("--") # Log couple of metrics, update their initial value, and fetch each # logged metrics' history. for k, v in [("m1", 1.5), ("m2", 2.5)]: client.log_metric(run.info.run_id, k, v, step=0) client.log_metric(run.info.run_id, k, v + 1, step=1) print_metric_info(client.get_metric_history(run.info.run_id, k)) client.set_terminated(run.info.run_id)
run_id: c360d15714994c388b504fe09ea3c234 -- name: m1 value: 1.5 step: 0 timestamp: 1603423788607 -- name: m1 value: 2.5 step: 1 timestamp: 1603423788608 -- name: m2 value: 2.5 step: 0 timestamp: 1603423788609 -- name: m2 value: 3.5 step: 1 timestamp: 1603423788610 --
-
get_model_version
(name: str, version: str) → ModelVersion[source] Converts the docstring args and returns to google style.
- Parameters
name – Name of the containing registered model.
version – Version number as an integer of the model version.
- Returns
A single
mlflow.entities.model_registry.ModelVersion
object.
import mlflow.sklearn from mlflow import MlflowClient from mlflow.models import infer_signature from sklearn.datasets import make_regression from sklearn.ensemble import RandomForestRegressor X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False) # Create two runs Log MLflow entities with mlflow.start_run() as run1: params = {"n_estimators": 3, "random_state": 42} rfr = RandomForestRegressor(**params).fit(X, y) signature = infer_signature(X, rfr.predict(X)) mlflow.log_params(params) mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature) with mlflow.start_run() as run2: params = {"n_estimators": 6, "random_state": 42} rfr = RandomForestRegressor(**params).fit(X, y) signature = infer_signature(X, rfr.predict(X)) mlflow.log_params(params) mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature) # Register model name in the model registry name = "RandomForestRegression" client = MlflowClient() client.create_registered_model(name) # Create a two versions of the rfr model under the registered model name for run_id in [run1.info.run_id, run2.info.run_id]: model_uri = f"runs:/{run_id}/sklearn-model" mv = client.create_model_version(name, model_uri, run_id) print(f"model version {mv.version} created") print("--") # Fetch the last version; this will be version 2 mv = client.get_model_version(name, mv.version) print(f"Name: {mv.name}") print(f"Version: {mv.version}")
model version 1 created model version 2 created -- Name: RandomForestRegression Version: 2
-
get_model_version_by_alias
(name: str, alias: str) → ModelVersion[source] Get the model version instance by name and alias.
- Parameters
name – Registered model name.
alias – Name of the alias.
- Returns
A single
mlflow.entities.model_registry.ModelVersion
object.import mlflow from mlflow import MlflowClient from mlflow.models import infer_signature from sklearn.datasets import make_regression from sklearn.ensemble import RandomForestRegressor def print_model_info(rm): print("--Model--") print("name: {}".format(rm.name)) print("aliases: {}".format(rm.aliases)) def print_model_version_info(mv): print("--Model Version--") print("Name: {}".format(mv.name)) print("Version: {}".format(mv.version)) print("Aliases: {}".format(mv.aliases)) mlflow.set_tracking_uri("sqlite:///mlruns.db") params = {"n_estimators": 3, "random_state": 42} name = "RandomForestRegression" X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False) rfr = RandomForestRegressor(**params).fit(X, y) signature = infer_signature(X, rfr.predict(X)) # Log MLflow entities with mlflow.start_run() as run: mlflow.log_params(params) mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature) # Register model name in the model registry client = MlflowClient() client.create_registered_model(name) model = client.get_registered_model(name) print_model_info(model) # Create a new version of the rfr model under the registered model name model_uri = "runs:/{}/sklearn-model".format(run.info.run_id) mv = client.create_model_version(name, model_uri, run.info.run_id) print_model_version_info(mv) # Set registered model alias client.set_registered_model_alias(name, "test-alias", mv.version) print() print_model_info(model) print_model_version_info(mv) # Get model version by alias alias_mv = client.get_model_version_by_alias(name, "test-alias") print() print_model_version_info(alias_mv)
--Model-- name: RandomForestRegression aliases: {} --Model Version-- Name: RandomForestRegression Version: 1 Aliases: [] --Model-- name: RandomForestRegression aliases: {"test-alias": "1"} --Model Version-- Name: RandomForestRegression Version: 1 Aliases: ["test-alias"] --Model Version-- Name: RandomForestRegression Version: 1 Aliases: ["test-alias"]
-
get_model_version_download_uri
(name: str, version: str) → str[source] Get the download location in Model Registry for this model version.
- Parameters
name – Name of the containing registered model.
version – Version number as an integer of the model version.
- Returns
A single URI location that allows reads for downloading.
import mlflow.sklearn from mlflow import MlflowClient from mlflow.models import infer_signature from sklearn.datasets import make_regression from sklearn.ensemble import RandomForestRegressor mlflow.set_tracking_uri("sqlite:///mlruns.db") params = {"n_estimators": 3, "random_state": 42} name = "RandomForestRegression" X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False) rfr = RandomForestRegressor(**params).fit(X, y) signature = infer_signature(X, rfr.predict(X)) # Log MLflow entities with mlflow.start_run() as run: mlflow.log_params(params) mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature) # Register model name in the model registry client = MlflowClient() client.create_registered_model(name) # Create a new version of the rfr model under the registered model name model_uri = f"runs:/{run.info.run_id}/sklearn-model" mv = client.create_model_version(name, model_uri, run.info.run_id) artifact_uri = client.get_model_version_download_uri(name, mv.version) print(f"Download URI: {artifact_uri}")
Download URI: runs:/027d7bbe81924c5a82b3e4ce979fcab7/sklearn-model
-
get_model_version_stages
(name: str, version: str) → List[str][source] Warning
mlflow.tracking.client.MlflowClient.get_model_version_stages
is deprecated since 2.9.0. Model registry stages will be removed in a future major release. To learn more about the deprecation of model registry stages, see our migration guide here: https://mlflow.org/docs/latest/model-registry.html#migrating-from-stagesThis is a docstring. Here is info.
- Returns
A list of valid stages.
import mlflow.sklearn from mlflow import MlflowClient from mlflow.models import infer_signature from sklearn.datasets import make_regression from sklearn.ensemble import RandomForestRegressor mlflow.set_tracking_uri("sqlite:///mlruns.db") params = {"n_estimators": 3, "random_state": 42} name = "RandomForestRegression" X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False) rfr = RandomForestRegressor(**params).fit(X, y) signature = infer_signature(X, rfr.predict(X)) # Log MLflow entities with mlflow.start_run() as run: mlflow.log_params(params) mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature) # Register model name in the model registry client = MlflowClient() client.create_registered_model(name) # Create a new version of the rfr model under the registered model name # fetch valid stages model_uri = f"runs:/{run.info.run_id}/models/sklearn-model" mv = client.create_model_version(name, model_uri, run.info.run_id) stages = client.get_model_version_stages(name, mv.version) print(f"Model list of valid stages: {stages}")
Model list of valid stages: ['None', 'Staging', 'Production', 'Archived']
-
get_parent_run
(run_id: str) → Optional[Run][source] Gets the parent run for the given run id if one exists.
- Parameters
run_id – Unique identifier for the child run.
- Returns
A single
mlflow.entities.Run
object, if the parent run exists. Otherwise, returns None.
import mlflow from mlflow import MlflowClient # Create nested runs with mlflow.start_run(): with mlflow.start_run(nested=True) as child_run: child_run_id = child_run.info.run_id client = MlflowClient() parent_run = client.get_parent_run(child_run_id) print(f"child_run_id: {child_run_id}") print(f"parent_run_id: {parent_run.info.run_id}")
child_run_id: 7d175204675e40328e46d9a6a5a7ee6a parent_run_id: 8979459433a24a52ab3be87a229a9cdf
-
get_registered_model
(name: str) → RegisteredModel[source] Get a registered model.
- Parameters
name – Name of the registered model to get.
- Returns
A single
mlflow.entities.model_registry.RegisteredModel
object.
import mlflow from mlflow import MlflowClient def print_model_info(rm): print("--") print(f"name: {rm.name}") print(f"tags: {rm.tags}") print(f"description: {rm.description}") name = "SocialMediaTextAnalyzer" tags = {"nlp.framework": "Spark NLP"} desc = "This sentiment analysis model classifies the tone-happy, sad, angry." mlflow.set_tracking_uri("sqlite:///mlruns.db") client = MlflowClient() # Create and fetch the registered model client.create_registered_model(name, tags, desc) model = client.get_registered_model(name) print_model_info(model)
-- name: SocialMediaTextAnalyzer tags: {'nlp.framework': 'Spark NLP'} description: This sentiment analysis model classifies the tone-happy, sad, angry.
-
get_run
(run_id: str) → Run[source] Fetch the run from backend store. The resulting
Run
contains a collection of run metadata –RunInfo
, as well as a collection of run parameters, tags, and metrics –RunData
. It also contains a collection of run inputs (experimental), including information about datasets used by the run –RunInputs
. In the case where multiple metrics with the same key are logged for the run, theRunData
contains the most recently logged value at the largest step for each metric.- Parameters
run_id – Unique identifier for the run.
- Returns
A single
mlflow.entities.Run
object, if the run exists. Otherwise, raises an exception.
import mlflow from mlflow import MlflowClient with mlflow.start_run() as run: mlflow.log_param("p", 0) # The run has finished since we have exited the with block # Fetch the run client = MlflowClient() run = client.get_run(run.info.run_id) print(f"run_id: {run.info.run_id}") print(f"params: {run.data.params}") print(f"status: {run.info.status}")
run_id: e36b42c587a1413ead7c3b6764120618 params: {'p': '0'} status: FINISHED
-
get_trace
(request_id: str, display=True) → Trace[source] Note
Experimental: This function may change or be removed in a future release without warning.
Get the trace matching the specified
request_id
.- Parameters
request_id – String ID of the trace to fetch.
display – If
True
, display the trace on the notebook.
- Returns
The retrieved
Trace
.
from mlflow import MlflowClient client = MlflowClient() request_id = "12345678" trace = client.get_trace(request_id)
-
list_artifacts
(run_id: str, path=None) → List[FileInfo][source] List the artifacts for a run.
- Parameters
run_id – The run to list artifacts from.
path – The run’s relative artifact path to list from. By default it is set to None or the root artifact path.
- Returns
List of
mlflow.entities.FileInfo
from mlflow import MlflowClient def print_artifact_info(artifact): print(f"artifact: {artifact.path}") print(f"is_dir: {artifact.is_dir}") print(f"size: {artifact.file_size}") features = "rooms zipcode, median_price, school_rating, transport" labels = "price" # Create a run under the default experiment (whose id is '0'). client = MlflowClient() experiment_id = "0" run = client.create_run(experiment_id) # Create some artifacts and log under the above run for file, content in [("features", features), ("labels", labels)]: with open(f"{file}.txt", "w") as f: f.write(content) client.log_artifact(run.info.run_id, f"{file}.txt") # Fetch the logged artifacts artifacts = client.list_artifacts(run.info.run_id) for artifact in artifacts: print_artifact_info(artifact) client.set_terminated(run.info.run_id)
artifact: features.txt is_dir: False size: 53 artifact: labels.txt is_dir: False size: 5
-
load_table
(experiment_id: str, artifact_file: str, run_ids: Optional[List[str]] = None, extra_columns: Optional[List[str]] = None) → pandas.DataFrame[source] Note
Experimental: This function may change or be removed in a future release without warning.
Load a table from MLflow Tracking as a pandas.DataFrame. The table is loaded from the specified artifact_file in the specified run_ids. The extra_columns are columns that are not in the table but are augmented with run information and added to the DataFrame.
- Parameters
experiment_id – The experiment ID to load the table from.
artifact_file – The run-relative artifact file path in posixpath format to which table to load (e.g. “dir/file.json”).
run_ids – Optional list of run_ids to load the table from. If no run_ids are specified, the table is loaded from all runs in the current experiment.
extra_columns – Optional list of extra columns to add to the returned DataFrame For example, if extra_columns=[“run_id”], then the returned DataFrame will have a column named run_id.
- Returns
- pandas.DataFrame containing the loaded table if the artifact exists
or else throw a MlflowException.
import mlflow import pandas as pd from mlflow import MlflowClient table_dict = { "inputs": ["What is MLflow?", "What is Databricks?"], "outputs": ["MLflow is ...", "Databricks is ..."], "toxicity": [0.0, 0.0], } df = pd.DataFrame.from_dict(table_dict) client = MlflowClient() run = client.create_run(experiment_id="0") client.log_table(run.info.run_id, data=df, artifact_file="qabot_eval_results.json") loaded_table = client.load_table( experiment_id="0", artifact_file="qabot_eval_results.json", run_ids=[ run.info.run_id, ], # Append a column containing the associated run ID for each row extra_columns=["run_id"], )
# Loads the table with the specified name for all runs in the given # experiment and joins them together import mlflow import pandas as pd from mlflow import MlflowClient table_dict = { "inputs": ["What is MLflow?", "What is Databricks?"], "outputs": ["MLflow is ...", "Databricks is ..."], "toxicity": [0.0, 0.0], } df = pd.DataFrame.from_dict(table_dict) client = MlflowClient() run = client.create_run(experiment_id="0") client.log_table(run.info.run_id, data=df, artifact_file="qabot_eval_results.json") loaded_table = client.load_table( experiment_id="0", artifact_file="qabot_eval_results.json", # Append the run ID and the parent run ID to the table extra_columns=["run_id"], )
-
log_artifact
(run_id, local_path, artifact_path=None) → None[source] Write a local file or directory to the remote
artifact_uri
.- Parameters
run_id – String ID of run.
local_path – Path to the file or directory to write.
artifact_path – If provided, the directory in
artifact_uri
to write to.
import tempfile from pathlib import Path from mlflow import MlflowClient # Create a run under the default experiment (whose id is '0'). client = MlflowClient() experiment_id = "0" run = client.create_run(experiment_id) # log and fetch the artifact with tempfile.TemporaryDirectory() as tmp_dir: path = Path(tmp_dir, "features.txt") path.write_text(features) client.log_artifact(run.info.run_id, path) artifacts = client.list_artifacts(run.info.run_id) for artifact in artifacts: print(f"artifact: {artifact.path}") print(f"is_dir: {artifact.is_dir}") client.set_terminated(run.info.run_id)
artifact: features.txt is_dir: False
-
log_artifacts
(run_id: str, local_dir: str, artifact_path: Optional[str] = None) → None[source] Write a directory of files to the remote
artifact_uri
.- Parameters
run_id – String ID of run.
local_dir – Path to the directory of files to write.
artifact_path – If provided, the directory in
artifact_uri
to write to.
import json import tempfile from pathlib import Path # Create some artifacts data to preserve features = "rooms, zipcode, median_price, school_rating, transport" data = {"state": "TX", "Available": 25, "Type": "Detached"} with tempfile.TemporaryDirectory() as tmp_dir: tmp_dir = Path(tmp_dir) with (tmp_dir / "data.json").open("w") as f: json.dump(data, f, indent=2) with (tmp_dir / "features.json").open("w") as f: f.write(features) # Create a run under the default experiment (whose id is '0'), and log # all files in "data" to root artifact_uri/states client = MlflowClient() experiment_id = "0" run = client.create_run(experiment_id) client.log_artifacts(run.info.run_id, tmp_dir, artifact_path="states") artifacts = client.list_artifacts(run.info.run_id) for artifact in artifacts: print(f"artifact: {artifact.path}") print(f"is_dir: {artifact.is_dir}") client.set_terminated(run.info.run_id)
artifact: states is_dir: True
-
log_batch
(run_id: str, metrics: Sequence[Metric] = (), params: Sequence[Param] = (), tags: Sequence[RunTag] = (), synchronous: Optional[bool] = None) → Optional[mlflow.utils.async_logging.run_operations.RunOperations][source] Log multiple metrics, params, and/or tags.
- Parameters
run_id – String ID of the run
metrics – If provided, List of Metric(key, value, timestamp) instances.
params – If provided, List of Param(key, value) instances.
tags – If provided, List of RunTag(key, value) instances.
synchronous – Experimental If True, blocks until the metric is logged successfully. If False, logs the metric asynchronously and returns a future representing the logging operation. If None, read from environment variable MLFLOW_ENABLE_ASYNC_LOGGING, which defaults to False if not set.
- Raises
mlflow.MlflowException – If any errors occur.
- Returns
When synchronous=True or None, returns None. When synchronous=False, returns an
mlflow.utils.async_logging.run_operations.RunOperations
instance that represents future for logging operation.
import time from mlflow import MlflowClient from mlflow.entities import Metric, Param, RunTag def print_run_info(r): print(f"run_id: {r.info.run_id}") print(f"params: {r.data.params}") print(f"metrics: {r.data.metrics}") print(f"tags: {r.data.tags}") print(f"status: {r.info.status}") # Create MLflow entities and a run under the default experiment (whose id is '0'). timestamp = int(time.time() * 1000) metrics = [Metric("m", 1.5, timestamp, 1)] params = [Param("p", "p")] tags = [RunTag("t", "t")] experiment_id = "0" client = MlflowClient() run = client.create_run(experiment_id) # Log entities, terminate the run, and fetch run status client.log_batch(run.info.run_id, metrics=metrics, params=params, tags=tags) client.set_terminated(run.info.run_id) run = client.get_run(run.info.run_id) print_run_info(run) # To log metric in async fashion client.log_metric(run.info.run_id, "m", 1.5, synchronous=False)
run_id: ef0247fa3205410595acc0f30f620871 params: {'p': 'p'} metrics: {'m': 1.5} tags: {'t': 't'} status: FINISHED
-
log_dict
(run_id: str, dictionary: Dict[str, Any], artifact_file: str) → None[source] Log a JSON/YAML-serializable object (e.g. dict) as an artifact. The serialization format (JSON or YAML) is automatically inferred from the extension of artifact_file. If the file extension doesn’t exist or match any of [“.json”, “.yml”, “.yaml”], JSON format is used, and we stringify objects that can’t be JSON-serialized.
- Parameters
run_id – String ID of the run.
dictionary – Dictionary to log.
artifact_file – The run-relative artifact file path in posixpath format to which the dictionary is saved (e.g. “dir/data.json”).
from mlflow import MlflowClient client = MlflowClient() run = client.create_run(experiment_id="0") run_id = run.info.run_id dictionary = {"k": "v"} # Log a dictionary as a JSON file under the run's root artifact directory client.log_dict(run_id, dictionary, "data.json") # Log a dictionary as a YAML file in a subdirectory of the run's root artifact directory client.log_dict(run_id, dictionary, "dir/data.yml") # If the file extension doesn't exist or match any of [".json", ".yaml", ".yml"], # JSON format is used. mlflow.log_dict(run_id, dictionary, "data") mlflow.log_dict(run_id, dictionary, "data.txt")
-
log_figure
(run_id: str, figure: Union[matplotlib.figure.Figure, plotly.graph_objects.Figure], artifact_file: str, *, save_kwargs: Optional[Dict[str, Any]] = None) → None[source] Log a figure as an artifact. The following figure objects are supported:
- Parameters
run_id – String ID of the run.
figure – Figure to log.
artifact_file – The run-relative artifact file path in posixpath format to which the figure is saved (e.g. “dir/file.png”).
save_kwargs – Additional keyword arguments passed to the method that saves the figure.
import mlflow import matplotlib.pyplot as plt fig, ax = plt.subplots() ax.plot([0, 1], [2, 3]) run = client.create_run(experiment_id="0") client.log_figure(run.info.run_id, fig, "figure.png")
import mlflow from plotly import graph_objects as go fig = go.Figure(go.Scatter(x=[0, 1], y=[2, 3])) run = client.create_run(experiment_id="0") client.log_figure(run.info.run_id, fig, "figure.html")
-
log_image
(run_id: str, image: Union[numpy.ndarray, PIL.Image.Image, mlflow.Image], artifact_file: Optional[str] = None, key: Optional[str] = None, step: Optional[int] = None, timestamp: Optional[int] = None, synchronous: Optional[bool] = None) → None[source] Logs an image in MLflow, supporting two use cases:
- Time-stepped image logging:
Ideal for tracking changes or progressions through iterative processes (e.g., during model training phases).
Usage:
log_image(image, key=key, step=step, timestamp=timestamp)
- Artifact file image logging:
Best suited for static image logging where the image is saved directly as a file artifact.
Usage:
log_image(image, artifact_file)
- The following image formats are supported:
-
mlflow.Image
: An MLflow wrapper around PIL image for convenient image logging.
- Numpy array support
data types:
bool (useful for logging image masks)
integer [0, 255]
unsigned integer [0, 255]
float [0.0, 1.0]
Warning
Out-of-range integer values will raise ValueError.
Out-of-range float values will auto-scale with min/max and warn.
shape (H: height, W: width):
H x W (Grayscale)
H x W x 1 (Grayscale)
H x W x 3 (an RGB channel order is assumed)
H x W x 4 (an RGBA channel order is assumed)
- Parameters
run_id – String ID of run.
image – The image object to be logged.
artifact_file – Specifies the path, in POSIX format, where the image will be stored as an artifact relative to the run’s root directory (for example, “dir/image.png”). This parameter is kept for backward compatibility and should not be used together with key, step, or timestamp.
key – Image name for time-stepped image logging. This string may only contain alphanumerics, underscores (_), dashes (-), periods (.), spaces ( ), and slashes (/).
step – Integer training step (iteration) at which the image was saved. Defaults to 0.
timestamp – Time when this image was saved. Defaults to the current system time.
synchronous – Experimental If True, blocks until the metric is logged successfully. If False, logs the metric asynchronously and returns a future representing the logging operation. If None, read from environment variable MLFLOW_ENABLE_ASYNC_LOGGING, which defaults to False if not set.
import mlflow import numpy as np image = np.random.randint(0, 256, size=(100, 100, 3), dtype=np.uint8) with mlflow.start_run() as run: client = mlflow.MlflowClient() client.log_image(run.info.run_id, image, key="dogs", step=3)
import mlflow from PIL import Image image = Image.new("RGB", (100, 100)) with mlflow.start_run() as run: client = mlflow.MlflowClient() client.log_image(run.info.run_id, image, key="dogs", step=3)
import mlflow from PIL import Image # Saving an image to retrieve later. Image.new("RGB", (100, 100)).save("image.png") image = mlflow.Image("image.png") with mlflow.start_run() as run: client = mlflow.MlflowClient() client.log_image(run.info.run_id, image, key="dogs", step=3)
import mlflow import numpy as np image = np.random.randint(0, 256, size=(100, 100, 3), dtype=np.uint8) with mlflow.start_run() as run: client = mlflow.MlflowClient() client.log_image(run.info.run_id, image, "image.png")
import mlflow from PIL import Image image = Image.new("RGB", (100, 100)) with mlflow.start_run() as run: client = mlflow.MlflowClient() client.log_image(run.info.run_id, image, "image.png")
-
log_inputs
(run_id: str, datasets: Optional[Sequence[DatasetInput]] = None) → None[source] Log one or more dataset inputs to a run.
- Parameters
run_id – String ID of the run.
datasets – List of
mlflow.entities.DatasetInput
instances to log.
- Raises
mlflow.MlflowException – If any errors occur.
-
log_metric
(run_id: str, key: str, value: float, timestamp: Optional[int] = None, step: Optional[int] = None, synchronous: Optional[bool] = None) → Optional[mlflow.utils.async_logging.run_operations.RunOperations][source] Log a metric against the run ID.
- Parameters
run_id – The run id to which the metric should be logged.
key – Metric name. This string may only contain alphanumerics, underscores (_), dashes (-), periods (.), spaces ( ), and slashes (/). All backend stores will support keys up to length 250, but some may support larger keys.
value – Metric value. Note that some special values such as +/- Infinity may be replaced by other values depending on the store. For example, the SQLAlchemy store replaces +/- Inf with max / min float values. All backend stores will support values up to length 5000, but some may support larger values.
timestamp – Time when this metric was calculated. Defaults to the current system time.
step – Integer training step (iteration) at which was the metric calculated. Defaults to 0.
synchronous – Experimental If True, blocks until the metric is logged successfully. If False, logs the metric asynchronously and returns a future representing the logging operation. If None, read from environment variable MLFLOW_ENABLE_ASYNC_LOGGING, which defaults to False if not set.
- Returns
When synchronous=True or None, returns None. When synchronous=False, returns an
mlflow.utils.async_logging.run_operations.RunOperations
instance that represents future for logging operation.
from mlflow import MlflowClient def print_run_info(r): print(f"run_id: {r.info.run_id}") print(f"metrics: {r.data.metrics}") print(f"status: {r.info.status}") # Create a run under the default experiment (whose id is '0'). # Since these are low-level CRUD operations, this method will create a run. # To end the run, you'll have to explicitly end it. client = MlflowClient() experiment_id = "0" run = client.create_run(experiment_id) print_run_info(run) print("--") # Log the metric. Unlike mlflow.log_metric this method # does not start a run if one does not exist. It will log # the metric for the run id in the backend store. client.log_metric(run.info.run_id, "m", 1.5) client.set_terminated(run.info.run_id) run = client.get_run(run.info.run_id) print_run_info(run) # To log metric in async fashion client.log_metric(run.info.run_id, "m", 1.5, synchronous=False)
run_id: 95e79843cb2c463187043d9065185e24 metrics: {} status: RUNNING -- run_id: 95e79843cb2c463187043d9065185e24 metrics: {'m': 1.5} status: FINISHED
-
log_param
(run_id: str, key: str, value: Any, synchronous: Optional[bool] = None) → Any[source] Log a parameter (e.g. model hyperparameter) against the run ID.
- Parameters
run_id – The run id to which the param should be logged.
key – Parameter name. This string may only contain alphanumerics, underscores (_), dashes (-), periods (.), spaces ( ), and slashes (/). All backend stores support keys up to length 250, but some may support larger keys.
value – Parameter value, but will be string-ified if not. All built-in backend stores support values up to length 6000, but some may support larger values.
synchronous – Experimental If True, blocks until the metric is logged successfully. If False, logs the metric asynchronously and returns a future representing the logging operation. If None, read from environment variable MLFLOW_ENABLE_ASYNC_LOGGING, which defaults to False if not set.
- Returns
When synchronous=True or None, returns parameter value. When synchronous=False, returns an
mlflow.utils.async_logging.run_operations.RunOperations
instance that represents future for logging operation.
from mlflow import MlflowClient def print_run_info(r): print(f"run_id: {r.info.run_id}") print(f"params: {r.data.params}") print(f"status: {r.info.status}") # Create a run under the default experiment (whose id is '0'). # Since these are low-level CRUD operations, this method will create a run. # To end the run, you'll have to explicitly end it. client = MlflowClient() experiment_id = "0" run = client.create_run(experiment_id) print_run_info(run) print("--") # Log the parameter. Unlike mlflow.log_param this method # does not start a run if one does not exist. It will log # the parameter in the backend store p_value = client.log_param(run.info.run_id, "p", 1) assert p_value == 1 client.set_terminated(run.info.run_id) run = client.get_run(run.info.run_id) print_run_info(run)
run_id: e649e49c7b504be48ee3ae33c0e76c93 params: {} status: RUNNING -- run_id: e649e49c7b504be48ee3ae33c0e76c93 params: {'p': '1'} status: FINISHED
-
log_table
(run_id: str, data: Union[Dict[str, Any], pandas.DataFrame], artifact_file: str) → None[source] Note
Experimental: This function may change or be removed in a future release without warning.
Log a table to MLflow Tracking as a JSON artifact. If the artifact_file already exists in the run, the data would be appended to the existing artifact_file.
- Parameters
run_id – String ID of the run.
data – Dictionary or pandas.DataFrame to log.
artifact_file – The run-relative artifact file path in posixpath format to which the table is saved (e.g. “dir/file.json”).
import mlflow from mlflow import MlflowClient table_dict = { "inputs": ["What is MLflow?", "What is Databricks?"], "outputs": ["MLflow is ...", "Databricks is ..."], "toxicity": [0.0, 0.0], } with mlflow.start_run() as run: client = MlflowClient() client.log_table( run.info.run_id, data=table_dict, artifact_file="qabot_eval_results.json" )
import mlflow import pandas as pd from mlflow import MlflowClient table_dict = { "inputs": ["What is MLflow?", "What is Databricks?"], "outputs": ["MLflow is ...", "Databricks is ..."], "toxicity": [0.0, 0.0], } df = pd.DataFrame.from_dict(table_dict) with mlflow.start_run() as run: client = MlflowClient() client.log_table(run.info.run_id, data=df, artifact_file="qabot_eval_results.json")
import mlflow import pandas as pd from mlflow import MlflowClient image = mlflow.Image([[1, 2, 3]]) table_dict = { "inputs": ["Show me a dog", "Show me a cat"], "outputs": [image, image], } df = pd.DataFrame.from_dict(table_dict) with mlflow.start_run() as run: client = MlflowClient() client.log_table(run.info.run_id, data=df, artifact_file="image_gen.json")
-
log_text
(run_id: str, text: str, artifact_file: str) → None[source] Log text as an artifact.
- Parameters
run_id – String ID of the run.
text – String containing text to log.
artifact_file – The run-relative artifact file path in posixpath format to which the text is saved (e.g. “dir/file.txt”).
from mlflow import MlflowClient client = MlflowClient() run = client.create_run(experiment_id="0") # Log text to a file under the run's root artifact directory client.log_text(run.info.run_id, "text1", "file1.txt") # Log text in a subdirectory of the run's root artifact directory client.log_text(run.info.run_id, "text2", "dir/file2.txt") # Log HTML text client.log_text(run.info.run_id, "<h1>header</h1>", "index.html")
-
rename_experiment
(experiment_id: str, new_name: str) → None[source] Update an experiment’s name. The new name must be unique.
- Parameters
experiment_id – The experiment ID returned from
create_experiment
.new_name – The new name for the experiment.
from mlflow import MlflowClient def print_experiment_info(experiment): print(f"Name: {experiment.name}") print(f"Experiment_id: {experiment.experiment_id}") print(f"Lifecycle_stage: {experiment.lifecycle_stage}") # Create an experiment with a name that is unique and case sensitive client = MlflowClient() experiment_id = client.create_experiment("Social NLP Experiments") # Fetch experiment metadata information experiment = client.get_experiment(experiment_id) print_experiment_info(experiment) print("--") # Rename and fetch experiment metadata information client.rename_experiment(experiment_id, "Social Media NLP Experiments") experiment = client.get_experiment(experiment_id) print_experiment_info(experiment)
Name: Social NLP Experiments Experiment_id: 1 Lifecycle_stage: active -- Name: Social Media NLP Experiments Experiment_id: 1 Lifecycle_stage: active
-
rename_registered_model
(name: str, new_name: str) → RegisteredModel[source] Update registered model name.
- Parameters
name – Name of the registered model to update.
new_name – New proposed name for the registered model.
- Returns
A single updated
mlflow.entities.model_registry.RegisteredModel
object.
import mlflow from mlflow import MlflowClient def print_registered_model_info(rm): print(f"name: {rm.name}") print(f"tags: {rm.tags}") print(f"description: {rm.description}") name = "SocialTextAnalyzer" tags = {"nlp.framework": "Spark NLP"} desc = "This sentiment analysis model classifies the tone-happy, sad, angry." # create a new registered model name mlflow.set_tracking_uri("sqlite:///mlruns.db") client = MlflowClient() client.create_registered_model(name, tags, desc) print_registered_model_info(client.get_registered_model(name)) print("--") # rename the model new_name = "SocialMediaTextAnalyzer" client.rename_registered_model(name, new_name) print_registered_model_info(client.get_registered_model(new_name))
name: SocialTextAnalyzer tags: {'nlp.framework': 'Spark NLP'} description: This sentiment analysis model classifies the tone-happy, sad, angry. -- name: SocialMediaTextAnalyzer tags: {'nlp.framework': 'Spark NLP'} description: This sentiment analysis model classifies the tone-happy, sad, angry.
-
restore_experiment
(experiment_id: str) → None[source] Restore a deleted experiment unless permanently deleted.
- Parameters
experiment_id – The experiment ID returned from
create_experiment
.
from mlflow import MlflowClient def print_experiment_info(experiment): print(f"Name: {experiment.name}") print(f"Experiment Id: {experiment.experiment_id}") print(f"Lifecycle_stage: {experiment.lifecycle_stage}") # Create and delete an experiment client = MlflowClient() experiment_id = client.create_experiment("New Experiment") client.delete_experiment(experiment_id) # Examine the deleted experiment details. experiment = client.get_experiment(experiment_id) print_experiment_info(experiment) print("--") # Restore the experiment and fetch its info client.restore_experiment(experiment_id) experiment = client.get_experiment(experiment_id) print_experiment_info(experiment)
Name: New Experiment Experiment Id: 1 Lifecycle_stage: deleted -- Name: New Experiment Experiment Id: 1 Lifecycle_stage: active
-
restore_run
(run_id: str) → None[source] Restores a deleted run with the given ID.
- Parameters
run_id – The unique run id to restore.
from mlflow import MlflowClient # Create a run under the default experiment (whose id is '0'). client = MlflowClient() experiment_id = "0" run = client.create_run(experiment_id) run_id = run.info.run_id print(f"run_id: {run_id}; lifecycle_stage: {run.info.lifecycle_stage}") client.delete_run(run_id) del_run = client.get_run(run_id) print(f"run_id: {run_id}; lifecycle_stage: {del_run.info.lifecycle_stage}") client.restore_run(run_id) rest_run = client.get_run(run_id) print(f"run_id: {run_id}; lifecycle_stage: {rest_run.info.lifecycle_stage}")
run_id: 7bc59754d7e74534a7917d62f2873ac0; lifecycle_stage: active run_id: 7bc59754d7e74534a7917d62f2873ac0; lifecycle_stage: deleted run_id: 7bc59754d7e74534a7917d62f2873ac0; lifecycle_stage: active
-
search_experiments
(view_type: int = 1, max_results: Optional[int] = 1000, filter_string: Optional[str] = None, order_by: Optional[List[str]] = None, page_token=None) → PagedList[Experiment][source] Search for experiments that match the specified search query.
- Parameters
view_type – One of enum values
ACTIVE_ONLY
,DELETED_ONLY
, orALL
defined inmlflow.entities.ViewType
.max_results – Maximum number of experiments desired. Certain server backend may apply its own limit.
filter_string –
Filter query string (e.g.,
"name = 'my_experiment'"
), defaults to searching for all experiments. The following identifiers, comparators, and logical operators are supported.- Identifiers
name
: Experiment namecreation_time
: Experiment creation timelast_update_time
: Experiment last update timetags.<tag_key>
: Experiment tag. Iftag_key
contains spaces, it must be wrapped with backticks (e.g.,"tags.`extra key`"
).
- Comparators for string attributes and tags
=
: Equal to!=
: Not equal toLIKE
: Case-sensitive pattern matchILIKE
: Case-insensitive pattern match
- Comparators for numeric attributes
=
: Equal to!=
: Not equal to<
: Less than<=
: Less than or equal to>
: Greater than>=
: Greater than or equal to
- Logical operators
AND
: Combines two sub-queries and returns True if both of them are True.
order_by –
List of columns to order by. The
order_by
column can contain an optionalDESC
orASC
value (e.g.,"name DESC"
). The default ordering isASC
, so"name"
is equivalent to"name ASC"
. If unspecified, defaults to["last_update_time DESC"]
, which lists experiments updated most recently first. The following fields are supported:experiment_id
: Experiment IDname
: Experiment namecreation_time
: Experiment creation timelast_update_time
: Experiment last update time
page_token – Token specifying the next page of results. It should be obtained from a
search_experiments
call.
- Returns
A
PagedList
ofExperiment
objects. The pagination token for the next page can be obtained via thetoken
attribute of the object.
import mlflow def assert_experiment_names_equal(experiments, expected_names): actual_names = [e.name for e in experiments if e.name != "Default"] assert actual_names == expected_names, (actual_names, expected_names) mlflow.set_tracking_uri("sqlite:///:memory:") client = mlflow.MlflowClient() # Create experiments for name, tags in [ ("a", None), ("b", None), ("ab", {"k": "v"}), ("bb", {"k": "V"}), ]: client.create_experiment(name, tags=tags) # Search for experiments with name "a" experiments = client.search_experiments(filter_string="name = 'a'") assert_experiment_names_equal(experiments, ["a"]) # Search for experiments with name starting with "a" experiments = client.search_experiments(filter_string="name LIKE 'a%'") assert_experiment_names_equal(experiments, ["ab", "a"]) # Search for experiments with tag key "k" and value ending with "v" or "V" experiments = client.search_experiments(filter_string="tags.k ILIKE '%v'") assert_experiment_names_equal(experiments, ["bb", "ab"]) # Search for experiments with name ending with "b" and tag {"k": "v"} experiments = client.search_experiments(filter_string="name LIKE '%b' AND tags.k = 'v'") assert_experiment_names_equal(experiments, ["ab"]) # Sort experiments by name in ascending order experiments = client.search_experiments(order_by=["name"]) assert_experiment_names_equal(experiments, ["a", "ab", "b", "bb"]) # Sort experiments by ID in descending order experiments = client.search_experiments(order_by=["experiment_id DESC"]) assert_experiment_names_equal(experiments, ["bb", "ab", "b", "a"])
-
search_model_versions
(filter_string: Optional[str] = None, max_results: int = 10000, order_by: Optional[List[str]] = None, page_token: Optional[str] = None) → PagedList[ModelVersion][source] Search for model versions in backend that satisfy the filter criteria.
- Parameters
filter_string –
Filter query string (e.g.,
"name = 'a_model_name' and tag.key = 'value1'"
), defaults to searching for all model versions. The following identifiers, comparators, and logical operators are supported.- Identifiers
name
: model name.source_path
: model version source path.run_id
: The id of the mlflow run that generates the model version.tags.<tag_key>
: model version tag. Iftag_key
contains spaces, it must be wrapped with backticks (e.g.,"tags.`extra key`"
).
- Comparators
=
: Equal to.!=
: Not equal to.LIKE
: Case-sensitive pattern match.ILIKE
: Case-insensitive pattern match.IN
: In a value list. Onlyrun_id
identifier supportsIN
comparator.
- Logical operators
AND
: Combines two sub-queries and returns True if both of them are True.
max_results – Maximum number of model versions desired.
order_by – List of column names with ASC|DESC annotation, to be used for ordering matching search results.
page_token – Token specifying the next page of results. It should be obtained from a
search_model_versions
call.
- Returns
A PagedList of
mlflow.entities.model_registry.ModelVersion
objects that satisfy the search expressions. The pagination token for the next page can be obtained via thetoken
attribute of the object.
import mlflow from mlflow import MlflowClient client = MlflowClient() # Get all versions of the model filtered by name model_name = "CordobaWeatherForecastModel" filter_string = f"name='{model_name}'" results = client.search_model_versions(filter_string) print("-" * 80) for res in results: print(f"name={res.name}; run_id={res.run_id}; version={res.version}") # Get the version of the model filtered by run_id run_id = "e14afa2f47a040728060c1699968fd43" filter_string = f"run_id='{run_id}'" results = client.search_model_versions(filter_string) print("-" * 80) for res in results: print(f"name={res.name}; run_id={res.run_id}; version={res.version}")
------------------------------------------------------------------------------------ name=CordobaWeatherForecastModel; run_id=eaef868ee3d14d10b4299c4c81ba8814; version=1 name=CordobaWeatherForecastModel; run_id=e14afa2f47a040728060c1699968fd43; version=2 ------------------------------------------------------------------------------------ name=CordobaWeatherForecastModel; run_id=e14afa2f47a040728060c1699968fd43; version=2
-
search_registered_models
(filter_string: Optional[str] = None, max_results: int = 100, order_by: Optional[List[str]] = None, page_token: Optional[str] = None) → PagedList[RegisteredModel][source] Search for registered models in backend that satisfy the filter criteria.
- Parameters
filter_string –
Filter query string (e.g., “name = ‘a_model_name’ and tag.key = ‘value1’”), defaults to searching for all registered models. The following identifiers, comparators, and logical operators are supported.
- Identifiers
name
: registered model name.tags.<tag_key>
: registered model tag. Iftag_key
contains spaces, it must be wrapped with backticks (e.g., “tags.`extra key`”).
- Comparators
=
: Equal to.!=
: Not equal to.LIKE
: Case-sensitive pattern match.ILIKE
: Case-insensitive pattern match.
- Logical operators
AND
: Combines two sub-queries and returns True if both of them are True.
max_results – Maximum number of registered models desired.
order_by – List of column names with ASC|DESC annotation, to be used for ordering matching search results.
page_token – Token specifying the next page of results. It should be obtained from a
search_registered_models
call.
- Returns
A PagedList of
mlflow.entities.model_registry.RegisteredModel
objects that satisfy the search expressions. The pagination token for the next page can be obtained via thetoken
attribute of the object.
import mlflow from mlflow import MlflowClient client = MlflowClient() # Get search results filtered by the registered model name model_name = "CordobaWeatherForecastModel" filter_string = f"name='{model_name}'" results = client.search_registered_models(filter_string=filter_string) print("-" * 80) for res in results: for mv in res.latest_versions: print(f"name={mv.name}; run_id={mv.run_id}; version={mv.version}") # Get search results filtered by the registered model name that matches # prefix pattern filter_string = "name LIKE 'Boston%'" results = client.search_registered_models(filter_string=filter_string) print("-" * 80) for res in results: for mv in res.latest_versions: print(f"name={mv.name}; run_id={mv.run_id}; version={mv.version}") # Get all registered models and order them by ascending order of the names results = client.search_registered_models(order_by=["name ASC"]) print("-" * 80) for res in results: for mv in res.latest_versions: print(f"name={mv.name}; run_id={mv.run_id}; version={mv.version}")
------------------------------------------------------------------------------------ name=CordobaWeatherForecastModel; run_id=eaef868ee3d14d10b4299c4c81ba8814; version=1 name=CordobaWeatherForecastModel; run_id=e14afa2f47a040728060c1699968fd43; version=2 ------------------------------------------------------------------------------------ name=BostonWeatherForecastModel; run_id=ddc51b9407a54b2bb795c8d680e63ff6; version=1 name=BostonWeatherForecastModel; run_id=48ac94350fba40639a993e1b3d4c185d; version=2 ----------------------------------------------------------------------------------- name=AzureWeatherForecastModel; run_id=5fcec6c4f1c947fc9295fef3fa21e52d; version=1 name=AzureWeatherForecastModel; run_id=8198cb997692417abcdeb62e99052260; version=3 name=BostonWeatherForecastModel; run_id=ddc51b9407a54b2bb795c8d680e63ff6; version=1 name=BostonWeatherForecastModel; run_id=48ac94350fba40639a993e1b3d4c185d; version=2 name=CordobaWeatherForecastModel; run_id=eaef868ee3d14d10b4299c4c81ba8814; version=1 name=CordobaWeatherForecastModel; run_id=e14afa2f47a040728060c1699968fd43; version=2
-
search_runs
(experiment_ids: List[str], filter_string: str = '', run_view_type: int = 1, max_results: int = 1000, order_by: Optional[List[str]] = None, page_token: Optional[str] = None) → PagedList[Run][source] Search for Runs that fit the specified criteria.
- Parameters
experiment_ids – List of experiment IDs, or a single int or string id.
filter_string – Filter query string, defaults to searching all runs.
run_view_type – one of enum values ACTIVE_ONLY, DELETED_ONLY, or ALL runs defined in
mlflow.entities.ViewType
.max_results – Maximum number of runs desired.
order_by – List of columns to order by (e.g., “metrics.rmse”). The
order_by
column can contain an optionalDESC
orASC
value. The default isASC
. The default ordering is to sort bystart_time DESC
, thenrun_id
.page_token – Token specifying the next page of results. It should be obtained from a
search_runs
call.
- Returns
A
PagedList
ofRun
objects that satisfy the search expressions. If the underlying tracking store supports pagination, the token for the next page may be obtained via thetoken
attribute of the returned object.
import mlflow from mlflow import MlflowClient from mlflow.entities import ViewType def print_run_info(runs): for r in runs: print(f"run_id: {r.info.run_id}") print(f"lifecycle_stage: {r.info.lifecycle_stage}") print(f"metrics: {r.data.metrics}") # Exclude mlflow system tags tags = {k: v for k, v in r.data.tags.items() if not k.startswith("mlflow.")} print(f"tags: {tags}") # Create an experiment and log two runs with metrics and tags under the experiment experiment_id = mlflow.create_experiment("Social NLP Experiments") with mlflow.start_run(experiment_id=experiment_id) as run: mlflow.log_metric("m", 1.55) mlflow.set_tag("s.release", "1.1.0-RC") with mlflow.start_run(experiment_id=experiment_id): mlflow.log_metric("m", 2.50) mlflow.set_tag("s.release", "1.2.0-GA") # Search all runs under experiment id and order them by # descending value of the metric 'm' client = MlflowClient() runs = client.search_runs(experiment_id, order_by=["metrics.m DESC"]) print_run_info(runs) print("--") # Delete the first run client.delete_run(run_id=run.info.run_id) # Search only deleted runs under the experiment id and use a case insensitive pattern # in the filter_string for the tag. filter_string = "tags.s.release ILIKE '%rc%'" runs = client.search_runs( experiment_id, run_view_type=ViewType.DELETED_ONLY, filter_string=filter_string ) print_run_info(runs)
run_id: 0efb2a68833d4ee7860a964fad31cb3f lifecycle_stage: active metrics: {'m': 2.5} tags: {'s.release': '1.2.0-GA'} run_id: 7ab027fd72ee4527a5ec5eafebb923b8 lifecycle_stage: active metrics: {'m': 1.55} tags: {'s.release': '1.1.0-RC'} -- run_id: 7ab027fd72ee4527a5ec5eafebb923b8 lifecycle_stage: deleted metrics: {'m': 1.55} tags: {'s.release': '1.1.0-RC'}
-
search_traces
(experiment_ids: List[str], filter_string: Optional[str] = None, max_results: int = 100, order_by: Optional[List[str]] = None, page_token: Optional[str] = None, run_id: Optional[str] = None) → PagedList[Trace][source] Note
Experimental: This function may change or be removed in a future release without warning.
Return traces that match the given list of search expressions within the experiments.
- Parameters
experiment_ids – List of experiment ids to scope the search. it will be associated with the run and you can filter on the run id to retrieve the trace.
filter_string – A search filter string.
max_results – Maximum number of traces desired.
order_by – List of order_by clauses.
page_token – Token specifying the next page of results. It should be obtained from a
search_traces
call.run_id – A run id to scope the search. When a trace is created under an active run,
- Returns
A
PagedList
ofTrace
objects that satisfy the search expressions. If the underlying tracking store supports pagination, the token for the next page may be obtained via thetoken
attribute of the returned object; however, some store implementations may not support pagination and thus the returned token would not be meaningful in such cases.
-
set_experiment_tag
(experiment_id: str, key: str, value: Any) → None[source] Set a tag on the experiment with the specified ID. Value is converted to a string.
- Parameters
experiment_id – String ID of the experiment.
key – Name of the tag.
value – Tag value (converted to a string).
from mlflow import MlflowClient # Create an experiment and set its tag client = MlflowClient() experiment_id = client.create_experiment("Social Media NLP Experiments") client.set_experiment_tag(experiment_id, "nlp.framework", "Spark NLP") # Fetch experiment metadata information experiment = client.get_experiment(experiment_id) print(f"Name: {experiment.name}") print(f"Tags: {experiment.tags}")
Name: Social Media NLP Experiments Tags: {'nlp.framework': 'Spark NLP'}
-
set_model_version_tag
(name: str, version: Optional[str] = None, key: Optional[str] = None, value: Optional[Any] = None, stage: Optional[str] = None) → None[source] Set a tag for the model version. When stage is set, tag will be set for latest model version of the stage. Setting both version and stage parameter will result in error.
- Parameters
name – Registered model name.
version – Registered model version.
key – Tag key to log. key is required.
value – Tag value to log. value is required.
stage – Registered model stage.
import mlflow.sklearn from mlflow import MlflowClient from mlflow.models import infer_signature from sklearn.datasets import make_regression from sklearn.ensemble import RandomForestRegressor def print_model_version_info(mv): print(f"Name: {mv.name}") print(f"Version: {mv.version}") print(f"Tags: {mv.tags}") mlflow.set_tracking_uri("sqlite:///mlruns.db") params = {"n_estimators": 3, "random_state": 42} name = "RandomForestRegression" X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False) rfr = RandomForestRegressor(**params).fit(X, y) signature = infer_signature(X, rfr.predict(X)) # Log MLflow entities with mlflow.start_run() as run: mlflow.log_params(params) mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature) # Register model name in the model registry client = MlflowClient() client.create_registered_model(name) # Create a new version of the rfr model under the registered model name # and set a tag model_uri = f"runs:/{run.info.run_id}/sklearn-model" mv = client.create_model_version(name, model_uri, run.info.run_id) print_model_version_info(mv) print("--") # Tag using model version client.set_model_version_tag(name, mv.version, "t", "1") # Tag using model stage client.set_model_version_tag(name, key="t1", value="1", stage=mv.current_stage) mv = client.get_model_version(name, mv.version) print_model_version_info(mv)
Name: RandomForestRegression Version: 1 Tags: {} -- Name: RandomForestRegression Version: 1 Tags: {'t': '1', 't1': '1'}
-
set_registered_model_alias
(name: str, alias: str, version: str) → None[source] Set a registered model alias pointing to a model version.
- Parameters
name – Registered model name.
alias – Name of the alias. Note that aliases of the format
v<number>
, such asv9
andv42
, are reserved and cannot be set.version – Registered model version number.
import mlflow from mlflow import MlflowClient from mlflow.models import infer_signature from sklearn.datasets import make_regression from sklearn.ensemble import RandomForestRegressor def print_model_info(rm): print("--Model--") print("name: {}".format(rm.name)) print("aliases: {}".format(rm.aliases)) def print_model_version_info(mv): print("--Model Version--") print("Name: {}".format(mv.name)) print("Version: {}".format(mv.version)) print("Aliases: {}".format(mv.aliases)) mlflow.set_tracking_uri("sqlite:///mlruns.db") params = {"n_estimators": 3, "random_state": 42} name = "RandomForestRegression" X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False) rfr = RandomForestRegressor(**params).fit(X, y) signature = infer_signature(X, rfr.predict(X)) # Log MLflow entities with mlflow.start_run() as run: mlflow.log_params(params) mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature) # Register model name in the model registry client = MlflowClient() client.create_registered_model(name) model = client.get_registered_model(name) print_model_info(model) # Create a new version of the rfr model under the registered model name model_uri = "runs:/{}/sklearn-model".format(run.info.run_id) mv = client.create_model_version(name, model_uri, run.info.run_id) print_model_version_info(mv) # Set registered model alias client.set_registered_model_alias(name, "test-alias", mv.version) print() print_model_info(model) print_model_version_info(mv)
--Model-- name: RandomForestRegression aliases: {} --Model Version-- Name: RandomForestRegression Version: 1 Aliases: [] --Model-- name: RandomForestRegression aliases: {"test-alias": "1"} --Model Version-- Name: RandomForestRegression Version: 1 Aliases: ["test-alias"]
-
set_registered_model_tag
(name, key, value) → None[source] Set a tag for the registered model.
- Parameters
name – Registered model name.
key – Tag key to log.
value – Tag value log.
import mlflow from mlflow import MlflowClient def print_model_info(rm): print("--") print("name: {}".format(rm.name)) print("tags: {}".format(rm.tags)) name = "SocialMediaTextAnalyzer" tags = {"nlp.framework1": "Spark NLP"} mlflow.set_tracking_uri("sqlite:///mlruns.db") client = MlflowClient() # Create registered model, set an additional tag, and fetch # update model info client.create_registered_model(name, tags, desc) model = client.get_registered_model(name) print_model_info(model) client.set_registered_model_tag(name, "nlp.framework2", "VADER") model = client.get_registered_model(name) print_model_info(model)
-- name: SocialMediaTextAnalyzer tags: {'nlp.framework1': 'Spark NLP'} -- name: SocialMediaTextAnalyzer tags: {'nlp.framework1': 'Spark NLP', 'nlp.framework2': 'VADER'}
-
set_tag
(run_id: str, key: str, value: Any, synchronous: Optional[bool] = None) → Optional[mlflow.utils.async_logging.run_operations.RunOperations][source] Set a tag on the run with the specified ID. Value is converted to a string.
- Parameters
run_id – String ID of the run.
key – Tag name. This string may only contain alphanumerics, underscores (_), dashes (-), periods (.), spaces ( ), and slashes (/). All backend stores will support keys up to length 250, but some may support larger keys.
value – Tag value, but will be string-ified if not. All backend stores will support values up to length 5000, but some may support larger values.
synchronous – Experimental If True, blocks until the metric is logged successfully. If False, logs the metric asynchronously and returns a future representing the logging operation. If None, read from environment variable MLFLOW_ENABLE_ASYNC_LOGGING, which defaults to False if not set.
- Returns
When synchronous=True or None, returns None. When synchronous=False, returns an mlflow.utils.async_logging.run_operations.RunOperations instance that represents future for logging operation.
from mlflow import MlflowClient def print_run_info(run): print(f"run_id: {run.info.run_id}") print(f"Tags: {run.data.tags}") # Create a run under the default experiment (whose id is '0'). client = MlflowClient() experiment_id = "0" run = client.create_run(experiment_id) print_run_info(run) print("--") # Set a tag and fetch updated run info client.set_tag(run.info.run_id, "nlp.framework", "Spark NLP") run = client.get_run(run.info.run_id) print_run_info(run)
run_id: 4f226eb5758145e9b28f78514b59a03b Tags: {} -- run_id: 4f226eb5758145e9b28f78514b59a03b Tags: {'nlp.framework': 'Spark NLP'}
-
set_terminated
(run_id: str, status: Optional[str] = None, end_time: Optional[int] = None) → None[source] Set a run’s status to terminated.
- Parameters
status – A string value of
mlflow.entities.RunStatus
. Defaults to “FINISHED”.end_time – If not provided, defaults to the current time.
from mlflow import MlflowClient def print_run_info(r): print(f"run_id: {r.info.run_id}") print(f"status: {r.info.status}") # Create a run under the default experiment (whose id is '0'). # Since this is low-level CRUD operation, this method will create a run. # To end the run, you'll have to explicitly terminate it. client = MlflowClient() experiment_id = "0" run = client.create_run(experiment_id) print_run_info(run) print("--") # Terminate the run and fetch updated status. By default, # the status is set to "FINISHED". Other values you can # set are "KILLED", "FAILED", "RUNNING", or "SCHEDULED". client.set_terminated(run.info.run_id, status="KILLED") run = client.get_run(run.info.run_id) print_run_info(run)
run_id: 575fb62af83f469e84806aee24945973 status: RUNNING -- run_id: 575fb62af83f469e84806aee24945973 status: KILLED
-
set_trace_tag
(request_id: str, key: str, value: str)[source] Note
Experimental: This function may change or be removed in a future release without warning.
Set a tag on the trace with the given trace ID.
The trace can be an active one or the one that has already ended and recorded in the backend. Below is an example of setting a tag on an active trace. You can replace the
request_id
parameter to set a tag on an already ended trace.from mlflow import MlflowClient client = MlflowClient() root_span = client.start_trace("my_trace") client.set_trace_tag(root_span.request_id, "key", "value") client.end_trace(root_span.request_id)
- Parameters
request_id – The ID of the trace to set the tag on.
key – The string key of the tag. Must be at most 250 characters long, otherwise it will be truncated when stored.
value – The string value of the tag. Must be at most 250 characters long, otherwise it will be truncated when stored.
-
start_span
(name: str, request_id: str, parent_id: str, span_type: str = 'UNKNOWN', inputs: Optional[Dict[str, Any]] = None, attributes: Optional[Dict[str, Any]] = None, start_time_ns: Optional[int] = None) → Span[source] Note
Experimental: This function may change or be removed in a future release without warning.
Create a new span and start it without attaching it to the global trace context.
This is an imperative API to manually create a new span under a specific trace id and parent span, unlike the higher-level APIs like
@mlflow.trace
decorator andwith mlflow.start_span()
context manager, which automatically manage the span lifecycle and parent-child relationship.This API is useful for the case where the automatic context management is not sufficient, such as callback-based instrumentation where span start and end are not in the same call stack, or multi-threaded applications where the context is not propagated automatically.
This API requires a parent span ID to be provided explicitly. If you haven’t started any span yet, use the
start_trace()
method to start a new trace and a root span.Warning
The span created with this method needs to be ended explicitly by calling the
end_span()
method. Otherwise the span will be recorded with the incorrect end time and statusTRACE_STATUS_UNSPECIFIED
.Tip
Instead of creating a root span with the
start_trace()
method, you can also use this method within the context of a parent span created by the fluent APIs like@mlflow.trace
andwith mlflow.start_span()
, by passing its span ids the parent. This flexibility allows you to use the imperative APIs in conjunction with the fluent APIs like below:import mlflow from mlflow import MlflowClient client = MlflowClient() with mlflow.start_span("parent_span") as parent_span: child_span = client.start_span( name="child_span", request_id=parent_span.request_id, parent_id=parent_span.span_id, ) # Do something... client.end_span( request_id=parent_span.request_id, span_id=child_span.span_id, )
However, the opposite does not work. You cannot use the fluent APIs within the span created by this MlflowClient API. This is because the fluent APIs fetches the current span from the managed context, which is not set by the MLflow Client APIs. Once you create a span with the MLflow Client APIs, all children spans must be created with the MLflow Client APIs. Please be cautious when using this mixed approach, as it can lead to unexpected behavior if not used properly.
- Parameters
name – The name of the span.
request_id – The ID of the trace to attach the span to. This is synonym to trace_id` in OpenTelemetry.
span_type – The type of the span. Can be either a string or a
SpanType
enum value.parent_id – The ID of the parent span. The parent span can be a span created by both fluent APIs like with mlflow.start_span(), and imperative APIs like this.
inputs – Inputs to set on the span.
attributes – A dictionary of attributes to set on the span.
start_time_ns – The start time of the span in nano seconds since the UNIX epoch. If not provided, the current time will be used.
- Returns
An
mlflow.entities.Span
object representing the span.
Example:
from mlflow import MlflowClient client = MlflowClient() span = client.start_trace("my_trace") x = 2 # Create a child span child_span = client.start_span( "child_span", request_id=span.request_id, parent_id=span.span_id, inputs={"x": x}, ) y = x**2 client.end_span( request_id=child_span.request_id, span_id=child_span.span_id, attributes={"factor": 2}, outputs={"y": y}, ) client.end_trace(span.request_id)
-
start_trace
(name: str, span_type: str = 'UNKNOWN', inputs: Optional[Dict[str, Any]] = None, attributes: Optional[Dict[str, str]] = None, tags: Optional[Dict[str, str]] = None, experiment_id: Optional[str] = None, start_time_ns: Optional[int] = None) → Span[source] Create a new trace object and start a root span under it.
This is an imperative API to manually create a new span under a specific trace id and parent span, unlike the higher-level APIs like
@mlflow.trace
andwith mlflow.start_span()
, which automatically manage the span lifecycle and parent-child relationship. You only need to call this method when using thestart_span()
method of MlflowClient to create spans.Attention
A trace started with this method must be ended by calling
MlflowClient().end_trace(request_id)
. Otherwise the trace will be not recorded.- Parameters
name – The name of the trace (and the root span).
span_type – The type of the span.
inputs – Inputs to set on the root span of the trace.
attributes – A dictionary of attributes to set on the root span of the trace.
tags – A dictionary of tags to set on the trace.
experiment_id – The ID of the experiment to create the trace in. If not provided, MLflow will look for valid experiment in the following order: activated using
mlflow.set_experiment()
,MLFLOW_EXPERIMENT_NAME
environment variable,MLFLOW_EXPERIMENT_ID
environment variable, or the default experiment as defined by the tracking server.start_time_ns – The start time of the trace in nanoseconds since the UNIX epoch.
- Returns
An
Span
object representing the root span of the trace.
Example:
from mlflow import MlflowClient client = MlflowClient() root_span = client.start_trace("my_trace") request_id = root_span.request_id # Create a child span child_span = client.start_span( "child_span", request_id=request_id, parent_id=root_span.span_id ) # Do something... client.end_span(request_id=request_id, span_id=child_span.span_id) client.end_trace(request_id)
-
transition_model_version_stage
(name: str, version: str, stage: str, archive_existing_versions: bool = False) → ModelVersion[source] Warning
mlflow.tracking.client.MlflowClient.transition_model_version_stage
is deprecated since 2.9.0. Model registry stages will be removed in a future major release. To learn more about the deprecation of model registry stages, see our migration guide here: https://mlflow.org/docs/latest/model-registry.html#migrating-from-stagesUpdate model version stage.
- Parameters
name – Registered model name.
version – Registered model version.
stage – New desired stage for this model version.
archive_existing_versions – If this flag is set to
True
, all existing model versions in the stage will be automatically moved to the “archived” stage. Only valid whenstage
is"staging"
or"production"
otherwise an error will be raised.
- Returns
A single
mlflow.entities.model_registry.ModelVersion
object.import mlflow.sklearn from mlflow import MlflowClient from mlflow.models import infer_signature from sklearn.datasets import make_regression from sklearn.ensemble import RandomForestRegressor def print_model_version_info(mv): print(f"Name: {mv.name}") print(f"Version: {mv.version}") print(f"Description: {mv.description}") print(f"Stage: {mv.current_stage}") mlflow.set_tracking_uri("sqlite:///mlruns.db") params = {"n_estimators": 3, "random_state": 42} name = "RandomForestRegression" desc = "A new version of the model using ensemble trees" X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False) rfr = RandomForestRegressor(**params).fit(X, y) signature = infer_signature(X, rfr.predict(X)) # Log MLflow entities with mlflow.start_run() as run: mlflow.log_params(params) mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature) # Register model name in the model registry client = MlflowClient() client.create_registered_model(name) # Create a new version of the rfr model under the registered model name model_uri = f"runs:/{run.info.run_id}/sklearn-model" mv = client.create_model_version(name, model_uri, run.info.run_id, description=desc) print_model_version_info(mv) print("--") # transition model version from None -> staging mv = client.transition_model_version_stage(name, mv.version, "staging") print_model_version_info(mv)
Name: RandomForestRegression Version: 1 Description: A new version of the model using ensemble trees Stage: None -- Name: RandomForestRegression Version: 1 Description: A new version of the model using ensemble trees Stage: Staging
-
update_model_version
(name: str, version: str, description: Optional[str] = None) → ModelVersion[source] Update metadata associated with a model version in backend.
- Parameters
name – Name of the containing registered model.
version – Version number of the model version.
description – New description.
- Returns
A single
mlflow.entities.model_registry.ModelVersion
object.import mlflow.sklearn from mlflow import MlflowClient from mlflow.models import infer_signature from sklearn.datasets import make_regression from sklearn.ensemble import RandomForestRegressor def print_model_version_info(mv): print(f"Name: {mv.name}") print(f"Version: {mv.version}") print(f"Description: {mv.description}") mlflow.set_tracking_uri("sqlite:///mlruns.db") params = {"n_estimators": 3, "random_state": 42} name = "RandomForestRegression" X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False) rfr = RandomForestRegressor(**params).fit(X, y) signature = infer_signature(X, rfr.predict(X)) # Log MLflow entities with mlflow.start_run() as run: mlflow.log_params(params) mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature) # Register model name in the model registry client = MlflowClient() client.create_registered_model(name) # Create a new version of the rfr model under the registered model name model_uri = f"runs:/{run.info.run_id}/sklearn-model" mv = client.create_model_version(name, model_uri, run.info.run_id) print_model_version_info(mv) print("--") # Update model version's description desc = "A new version of the model using ensemble trees" mv = client.update_model_version(name, mv.version, desc) print_model_version_info(mv)
Name: RandomForestRegression Version: 1 Description: None -- Name: RandomForestRegression Version: 1 Description: A new version of the model using ensemble trees
-
update_registered_model
(name: str, description: Optional[str] = None) → RegisteredModel[source] Updates metadata for RegisteredModel entity. Input field
description
should be non-None. Backend raises exception if a registered model with given name does not exist.- Parameters
name – Name of the registered model to update.
description – (Optional) New description.
- Returns
A single updated
mlflow.entities.model_registry.RegisteredModel
object.
def print_registered_model_info(rm): print(f"name: {rm.name}") print(f"tags: {rm.tags}") print(f"description: {rm.description}") name = "SocialMediaTextAnalyzer" tags = {"nlp.framework": "Spark NLP"} desc = "This sentiment analysis model classifies the tone-happy, sad, angry." mlflow.set_tracking_uri("sqlite:///mlruns.db") client = MlflowClient() client.create_registered_model(name, tags, desc) print_registered_model_info(client.get_registered_model(name)) print("--") # Update the model's description desc = "This sentiment analysis model classifies tweets' tone: happy, sad, angry." client.update_registered_model(name, desc) print_registered_model_info(client.get_registered_model(name))
name: SocialMediaTextAnalyzer tags: {'nlp.framework': 'Spark NLP'} description: This sentiment analysis model classifies the tone-happy, sad, angry. -- name: SocialMediaTextAnalyzer tags: {'nlp.framework': 'Spark NLP'} description: This sentiment analysis model classifies tweets' tone: happy, sad, angry.
-
update_run
(run_id: str, status: Optional[str] = None, name: Optional[str] = None) → None[source] Update a run with the specified ID to a new status or name.
- Parameters
run_id – The ID of the Run to update.
status – The new status of the run to set, if specified. At least one of
status
orname
should be specified.name – The new name of the run to set, if specified. At least one of
name
orstatus
should be specified.
from mlflow import MlflowClient def print_run_info(run): print(f"run_id: {run.info.run_id}") print(f"run_name: {run.info.run_name}") print(f"status: {run.info.status}") # Create a run under the default experiment (whose id is '0'). client = MlflowClient() experiment_id = "0" run = client.create_run(experiment_id) print_run_info(run) print("--") # Update run and fetch info client.update_run(run.info.run_id, "FINISHED", "new_name") run = client.get_run(run.info.run_id) print_run_info(run)
run_id: 1cf6bf8bf6484dd8a598bd43be367b20 run_name: judicious-hog-915 status: RUNNING -- run_id: 1cf6bf8bf6484dd8a598bd43be367b20 run_name: new_name status: FINISHED
-