Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Nanomechanics

News and Updates

Projects and Programs

Nanotribology for Nanomanufacturing (Archived)

Completed
Friction and wear are major causes of mechanical failures and dissipative energy losses. These shortfalls account for a significant portion of the annual gross domestic product in the United States, amounting to approximately $800 billion in 2010. It is estimated that tens of billions of U.S

Strain Measurement for Semiconductor Devices

Ongoing
Mechanical strain is hugely important to semiconductor devices and packages while also being difficult to measure accurately. Strain is engineered into CMOS channels to improve carrier mobility for higher performance at lower power but is also intrinsically present from manufacturing processes where

Fundamentals of Deformation

Ongoing
• We have provided general users from industry, academia and national laboratories with a completely new class of X-ray imaging techniques for materials studies (ultra-small-angle X-ray scattering imaging), that we developed from basic concept to DOE-supported operations at the Advanced Photon

Nanoplasmonics and Three-Dimensional Plasmonic Metamaterials

Ongoing
Plasmonic materials are composed of metals and insulators that are ordered in geometric arrangements with dimensions that are fractions of the wavelength of light. Research groups are experimenting with a variety of geometric approaches, but all aim to exploit surface plasmons, which are light

Publications

Nonlinear Sideband Cooling to a Cat State of Motion

Author(s)
Bradley Hauer, Joshua Combes, John Teufel
The ability to prepare a macroscopic mechanical resonator into a quantum superposition state is an outstanding goal of cavity optomechanics. Here, we propose a