@inproceedings{anastasopoulos-etal-2017-spoken,
title = "Spoken Term Discovery for Language Documentation using Translations",
author = "Anastasopoulos, Antonios and
Bansal, Sameer and
Chiang, David and
Goldwater, Sharon and
Lopez, Adam",
editor = "Ruiz, Nicholas and
Bangalore, Srinivas",
booktitle = "Proceedings of the Workshop on Speech-Centric Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-4607",
doi = "10.18653/v1/W17-4607",
pages = "53--58",
abstract = "Vast amounts of speech data collected for language documentation and research remain untranscribed and unsearchable, but often a small amount of speech may have text translations available. We present a method for partially labeling additional speech with translations in this scenario. We modify an unsupervised speech-to-translation alignment model and obtain prototype speech segments that match the translation words, which are in turn used to discover terms in the unlabelled data. We evaluate our method on a Spanish-English speech translation corpus and on two corpora of endangered languages, Arapaho and Ainu, demonstrating its appropriateness and applicability in an actual very-low-resource scenario.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="anastasopoulos-etal-2017-spoken">
<titleInfo>
<title>Spoken Term Discovery for Language Documentation using Translations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Antonios</namePart>
<namePart type="family">Anastasopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sameer</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sharon</namePart>
<namePart type="family">Goldwater</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="family">Lopez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Speech-Centric Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicholas</namePart>
<namePart type="family">Ruiz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Srinivas</namePart>
<namePart type="family">Bangalore</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Vast amounts of speech data collected for language documentation and research remain untranscribed and unsearchable, but often a small amount of speech may have text translations available. We present a method for partially labeling additional speech with translations in this scenario. We modify an unsupervised speech-to-translation alignment model and obtain prototype speech segments that match the translation words, which are in turn used to discover terms in the unlabelled data. We evaluate our method on a Spanish-English speech translation corpus and on two corpora of endangered languages, Arapaho and Ainu, demonstrating its appropriateness and applicability in an actual very-low-resource scenario.</abstract>
<identifier type="citekey">anastasopoulos-etal-2017-spoken</identifier>
<identifier type="doi">10.18653/v1/W17-4607</identifier>
<location>
<url>https://aclanthology.org/W17-4607</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>53</start>
<end>58</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Spoken Term Discovery for Language Documentation using Translations
%A Anastasopoulos, Antonios
%A Bansal, Sameer
%A Chiang, David
%A Goldwater, Sharon
%A Lopez, Adam
%Y Ruiz, Nicholas
%Y Bangalore, Srinivas
%S Proceedings of the Workshop on Speech-Centric Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F anastasopoulos-etal-2017-spoken
%X Vast amounts of speech data collected for language documentation and research remain untranscribed and unsearchable, but often a small amount of speech may have text translations available. We present a method for partially labeling additional speech with translations in this scenario. We modify an unsupervised speech-to-translation alignment model and obtain prototype speech segments that match the translation words, which are in turn used to discover terms in the unlabelled data. We evaluate our method on a Spanish-English speech translation corpus and on two corpora of endangered languages, Arapaho and Ainu, demonstrating its appropriateness and applicability in an actual very-low-resource scenario.
%R 10.18653/v1/W17-4607
%U https://aclanthology.org/W17-4607
%U https://doi.org/10.18653/v1/W17-4607
%P 53-58
Markdown (Informal)
[Spoken Term Discovery for Language Documentation using Translations](https://aclanthology.org/W17-4607) (Anastasopoulos et al., 2017)
ACL