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Abstract

Multilingual parallel data for speech-to-speech
translation is scarce and expensive to create
from scratch. This is all the more true for ex-
pressive speech translation, which aims at pre-
serving not only the semantics, but also the
overall prosody (e.g. style, emotion, rate-of-
speech). Existing corpora contain speech utter-
ances with the same meaning, yet the overall
prosody is typically different, as human anno-
tators are not tasked with reproducing these as-
pects, or crowed-sourced efforts do not specif-
ically target this kind of alignment in priority.
In this paper, we propose a novel alignment
algorithm, which automatically forms pairs of
speech segments aligned not only in meaning,
but also in expressivity. In order to validate
our approach, we train an expressive multilin-
gual speech-to-speech translation system on the
automatically aligned data. Our experiments
show that in comparison to semantic-only ap-
proaches, expressively aligned data yields large
improvements in source expressivity preserva-
tion (e.g. 43% uplift in speech rate preserva-
tion on average), while still maintaining con-
tent translation quality. In some scenarios, re-
sults also indicate that this alignment algorithm
can outperform standard, semantic-focused ap-
proaches even on content translation quality.

1 Introduction

In traditional machine translation (MT), the under-
lying goal is to preserve the meaning of the source.
However, more recently there have been efforts
to develop expressive speech-to-speech translation
systems (S2ST) (Seamless Communication et al.,
2023), where the aim is to maintain not only the
meaning, but also the expressivity of the source
speech (e.g. tone, emotion, style, etc). While dif-
ferent parts of translation models can be pretrained
in an unsupervised manner, large amounts of high-
quality end-to-end data remains crucial to achieve
the best performance. On one hand, human-curated
parallel data for the text domain (bitexts), are freely

available for several languages, for instance the
well known Europarl (Koehn, 2005) or UN corpora
(Ziemski et al., 2016). On the other hand, human
created aligned speech-to-speech parallel data is a
scarce resource. To complement existing speech
parallel data, automatic alignment algorithms have
evolved as an important technique to provide ad-
ditional data for a large number of languages and
domains (Duquenne et al., 2023a; Seamless Com-
munication et al., 2023).

However, these speech-to-speech alignment al-
gorithms search only for speech segments with
the same semantics, totally disregarding expressive
properties of the source and target speech. In this
paper, we extend similarity-based speech-to-speech
alignment with an expressive criterion. Our exper-
iments show that the use of expressively aligned
data substantially boosts the preservation of ex-
pressivity in a multilingual expressive S2ST sys-
tem. In addition, we observe that in some cases
the expressively aligned data also improves con-
tent translation quality on some test sets. The main
contributions of this work are:

• We propose the first speech-to-speech align-
ment algorithm which aligns not only the se-
mantics, but also the expressivity of the source
and target speech;

• We applied this approach to a publicly avail-
able raw corpus, and aligned approximately
12 thousand hours of English speech in five
languages (French, German, Italian, Chinese
Mandarin, and Spanish). The resulting dataset
and metadata can be found online1;

• We validate our approach by training a mul-
tilingual and expressive S2ST on the aligned
data, yielding uplifts in expressivity preser-

1https://github.com/facebookresearch/seamless_
communication/blob/main/docs/expressive/
seamless_align_expressive_README.md
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vation, while maintaining content translation
quality.

2 Methodology

Following Duquenne et al. (2023a), we first pre-
process the data by segmenting the speech signal
into plausible segments using a Voice Activity De-
tector model, followed by language identification
of each segment, and then subsequently encode
each speech segment into a multilingual embed-
ding space introduced by Duquenne et al. (2023c).
Once all segments are encoded, we then perform a
k-nearest-neighbor search in the embedding space
using the FAISS library (Douze et al., 2024) which
allows for efficient search at scale. We then cal-
culate a margin-based score over each candidate
neighbor which has been shown to yield align-
ments which have a similar meaning (Artetxe and
Schwenk, 2019a). In this work, we use the ratio
margin R, defined as:

R(x, y) =
cos(x, y)

∑
z∈NNk(x)

cos(x, z)

2k
+

∑
z∈NNk(y)

cos(y, z)

2k

where x and y are the source and target sentences,
cos(x, y) is the cosine similarity of x and y in the
multilingual embedding space, and NNk(x) de-
notes the k nearest neighbors of x.

Since the multilingual speech encoders are
trained with a teacher-student method using a text-
based encoder as the teacher, this forces the speech
representation to focus on semantics, ignoring other
elements of speech such as the prosody (Duquenne
et al., 2023a). Therefore, the k-nearest-neighbors
retrieved in the embedding space above are likely
based on semantic characteristics only. However,
it is possible that from the neighbors retrieved, that
the prosodic characteristics of some may better pre-
serve the source than others.

In order to capture such signals, in comparison
to previous approaches such as Duquenne et al.
(2023a) which choose a neighbor based on seman-
tics only, we instead choose a neighbor which max-
imises a blend of both semantics: R, with another
term related to the prosodic similarity of the speech
segments: P . We define our expressive scoring
function E as follows:

E(x, y) = α · R(x, y) + (1 − α) · P(x, y)

where α controls the trade-off between semantic
accuracy (R) and prosody preservation (P ).

Instead of modifying the nearest neighbor search,
a more straight-forward strategy could involve fil-
tering existing speech alignments such as SPEECH-
MATRIX (Duquenne et al., 2023a) with a prosodic
scoring function. However, the volume of the
resulting dataset would likely be drastically re-
duced as no explicit prosody-preservation goal was
enforced to begin with during the nearest neigh-
bor search (i.e. an expressively and semantically
aligned neighbor would be chosen by chance).

3 Experiment

In order to validate the effectiveness of expressive
alignments, we perform a controlled experiment
where we align a set of raw monolingual speech
data using both a semantic-only scoring function,
and our expressive scoring function. We then sub-
sequently train two expressive S2ST systems on
the resulting alignments from both approaches, and
evaluate the results.

Benchmark datasets. We evaluate our models
on the FLEURS, MEXPRESSO, MDRAL bench-
mark datasets. FLEURS (Conneau et al., 2023)
in a partially n-way speech dataset with align-
ments in 102 languages, which is an extension of
the text-based FLoRes-101 dataset (Goyal et al.,
2022). MEXPRESSO and MDRAL (Seamless Com-
munication et al., 2023) contain English speech
aligned in five different target languages: Spanish,
French, Italian, German, and Chinese (Mandarin).
MDRAL is an extension of the Dialogues Re-
enacted Across Languages (DRAL) Corpus (Ward
et al., 2023), which contains aligned fragments
from spontaneous conversations. MEXPRESSO on
the other hand contains scripted sentences which
are then recorded in various expressive styles (e.g.
happy, sad, confused etc).

Evaluation metrics. In order to ensure that the
expressive translation systems maintain content
translation quality, we measure ASR-BLEU by
transcribing the generated target audio using a
publicly available Whisper model2, and then sub-
sequently calculate a BLEU score using Sacre-
BLEU3.

For expressivity-based metrics we follow Seam-
less Communication et al. (2023). Firstly, we mea-
sure speaker style similarity by encoding the source

2https://huggingface.co/openai/
whisper-large-v2

313a tokenizer
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and target audios using a pre-trained WavLM-based
speaker style encoder (Chen et al., 2022), and then
calculate the speaker style similarity as the cosine
between source and target (Le et al., 2023). As
rhythmic patterns in speech are an important aspect
of expressivity, we also calculate both the speech
rate and pause alignment. The rate-of-speech is
calculated by measuring the number of syllables
spoken per second. We then report the Spearman
correlation of the number of syllables spoken be-
tween the source and target speech4. In addition
to the speech rate, the pause alignment captures
how well silences are preserved between the source
and translation. Silence was measured using the
Silero VAD system (Silero Team, 2021). For both
speech rate and pause alignment metrics, we used
the Rhythmic Toolkit implementation (Seamless
Communication et al., 2023).

Prosodic scoring function. We experiment with
various prosodic scoring functions P based on
different potential prosodic speech signals. w2v-
BERT (Chung et al., 2021) is a large-scale cross-
lingual speech representation, and various sub-
layers of w2v-BERT have been shown to contain
strong prosodic characteristics (Seamless Commu-
nication et al., 2023). We explore each sub-layer
of w2v-BERT for prosodic signals. PRETSSEL
(Seamless Communication et al., 2023) is an ex-
pressive unit-to-speech generator which contains
an expressive speech encoder capable of generating
expressivity embeddings from the source and tar-
get speech. SONAR Expressive (Duquenne et al.,
2023b) is a zero-shot expressive speech-to-speech
translation system. Similar to PRETSSEL, it con-
tains an expressivity encoder which has an explicit
knowledge of prosodic speech signals. Lastly, AU-
TOPCP (Seamless Communication et al., 2023)
is a neural-based model which is trained to pre-
dict Prosodic Consistency Protocol (PCP) scores
(Huang et al., 2023) for a pair of speech inputs.
PCP scores are measured on a likert scale between
1 and 4 (with 4 being the highest possible score),
and have been found to correlate with human judge-
ments. For the embedding-based prosodic signals,
P = cos(x, y), while for AUTOPCP we use a unit
normalized PCP score for each pair of source and
target speech segment.

In order to determine the optimal prosodic scor-
ing function, we measure the percentage of incor-
rect alignments when attempting to re-align the

4For Chinese Mandarin, characters are treated as syllables

MEXPRESSO development set using our expressive
scoring function E. As MEXPRESSO contains sen-
tences repeated in different styles, this makes it a
good choice of benchmark as we can not solely
rely on a semantic-based algorithm. In other words,
if each sentence in the benchmark contained a dif-
ferent meaning, we would not need any prosodic
signal in order to attempt to re-align the dataset.

We performed a grid-search over all possibilities
of both P and α5, yielding AUTOPCP as the best
overall prosodic signal. In-depth results for each
prosodic signal are reported in Appendix E. As
w2v-BERT can also contain important semantic
information, we also experimented using this as
the source of semantic signal (R), but it did not
improve results.

Aligning audio. Following the selection of
prosodic scoring function, we then began the align-
ment procedure. Starting from a large publicly
available source of diverse raw audio data totalling
approximately 3.9 million hours (Seamless Com-
munication et al., 2023), we applied audio segmen-
tation using the Silero VAD model (Silero Team,
2021), and then subsequently applied language
identification on each segment (Seamless Com-
munication et al., 2023). Each resulting segment
was then encoded into the semantic-based multi-
lingual embedding space (Duquenne et al., 2023c),
before we performed k-nearest neighbor search6

and then applied our expressive scoring function.
For semantic-only alignments we set α = 1 (i.e.
no contribution from the prosodic scoring func-
tion). In total we aligned 11.9k hours of English
source speech in five languages: Spanish, French,
German, Italian, and Chinese (Mandarin). The re-
sulting dataset and metadata can be found online7,
along with the code8.

Model training. Following the alignment of
source audios, we then trained two multilingual
expressive S2ST models with the same architec-
ture as SeamlessExpressive (Seamless Communi-
cation et al., 2023) on each alignment type sepa-
rately (semantic and expressive). Additionally as
the difference between a semantic and expressive

5We explored possible values for α in { k
10

| k ∈ [0, 10]}
6We set k=16 for all experiments
7https://github.com/facebookresearch/seamless_

communication/blob/main/docs/expressive/
seamless_align_expressive_README.md

8https://github.com/facebookresearch/stopes/
blob/main/website/docs/pipelines/expressive_
alignments.md
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Direction Corpus Alignment ASR-BLEU ↑ Vocal Style Similarity ↑ Speech Rate ↑ Pause ↑

xxx→eng

Fleurs Expressive 29.46 0.37 0.39 0.46
Semantic 29.60 0.36 0.33 0.45

mDRAL Expressive 35.28 0.25 0.35 0.25
Semantic 36.57 0.25 0.20 0.23

mExpresso Expressive 31.27 0.25 0.39 0.34
Semantic 30.39 0.25 0.30 0.30

eng→xxx

Fleurs Expressive 18.11 0.22 0.52 0.31
Semantic 17.35 0.22 0.53 0.32

mDRAL Expressive 22.88 0.30 0.33 0.20
Semantic 24.22 0.31 0.16 0.19

mExpresso Expressive 20.96 0.24 0.44 0.38
Semantic 20.33 0.24 0.34 0.38

Table 1: Model evaluation results (averaged over all languages) for both xxx→eng and eng→xxx directions.

alignment is a choice of neighbor in a shared knn
space, the number of resulting alignments from
both approaches is the same, which also controls
for performance differences due to dataset size. We
ensured that none of the aligned data was previ-
ously seen in any pre-training. The architecture
and hyperparameters of both models was identical,
and each was trained for the same number of steps.
More in-depth details can be found in Appendix C.

4 Results

Model evaluation results are shown in Table 1. On
average, both the speech rate and pause alignment
expressive metrics improve in relation to the model
trained on semantic alignments only. On average
we see a 43% relative improvement in speech rate,
while still maintaining content translation quality
(-0.08 BLEU on average). In particular, on the
MDRAL benchmark we see relative speech rate
improvements of 106% (0.16→0.33) on eng→xxx,
and 75% (0.20→0.35) on xxx→eng. For content
translation quality, in three instances we see that on
average the model trained on expressive alignments
even outperforms the semantic model. For exam-
ple, we see a +0.88 BLEU improvement on MEX-
PRESSO (xxx→eng). We observed that there was
very little difference between both models on vocal
style similarity. However, this is perhaps partially
due to the fact that the PRETSSEL unit-to-speech
component of the S2ST model which mostly affects
this metric was pre-trained beforehand (Seamless
Communication et al., 2023), suggesting this com-
ponent had previously converged. A more detailed
breakdown showing expanded results per language
for each dataset, along with supplemental ASR-
COMET scores can be seen in Appendix D.

5 Related Work

Research on aligning texts was initially based on
document meta-information (Resnik, 1999), cross-
lingual document retrieval (Munteanu and Marcu,
2005) or machine translation and information re-
trieval (Abdul-Rauf and Schwenk, 2009; Bouamor
and Sajjad, 2018). However, many current align-
ment techniques are based on a similarity measure
in a multilingual embedding space (Artetxe and
Schwenk, 2019b; Feng et al., 2020). One such tech-
nique for aligning text was introduced by Schwenk
et al. (2019), which uses a margin-based measure
of similarity (Artetxe and Schwenk, 2019a) in or-
der to determine the candidacy of potential align-
ments. This technique was then extended to the
speech modality (Duquenne et al., 2021), where it
was used to create high-quality speech-to-speech
aligned data such as SPEECHMATRIX (Duquenne
et al., 2023a) which covers seventeen languages,
and SEAMLESSALIGN (Seamless Communication
et al., 2023) which provides a total of 585k hours
in 95 languages. Both corpora consider only se-
mantics during the alignment procedure.

6 Conclusion

We introduce the first speech-to-speech alignment
method which can align speech not only in terms
of semantics, but also the expressivity. We validate
our method by performing large-scale speech-to-
speech alignment, and train an expressive S2ST
model on the resulting data. Our results show that
expressive alignments can further boost the capa-
bility of expressive models, where such speech-
to-speech data is extremely scarce, and in some
instances even improve content translation quality.
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7 limitations

We highlight three limitations of our work. The first
is that we only expressively align English with five
other high-resource languages: Spanish, French,
Italian, German, and Chinese (Mandarin). Given
the scarcity of such expressive speech data, it would
be hugely beneficial for the community to cover
more mid- and perhaps even some low-resource
languages, as these are at risk of underexposure.
However, as our expressive benchmark dataset used
to tune our alignment algorithm (MEXPRESSO) cur-
rently only supports these high-resource languages,
this would require additional annotation efforts.
Secondly, we experiment with two popular mul-
tilingual embedding spaces from Duquenne et al.
(2023c) and Chung et al. (2021). However, there
are other representations which would be interest-
ing to explore which may help retrieve even bet-
ter k-nearest-neighbors, and perhaps include some
with even more prosidic preservation of the source
speech, resulting in higher quality expressive align-
ments. Finally, we rely on automatic-based met-
rics in order to evaluate our models. However
these do not give us a perfect assessment, and a
human-based evaluation would yield more accu-
rate results.
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A Number of source hours per benchmark dataset

FLEURS MEXPRESSO MDRAL

dev test dev test dev test

cmn 1.27 3.07 3.51 6.40 0.35 0.22
deu 1.26 3.15 4.85 7.21 0.83 0.92
fra 0.80 1.95 5.31 6.82 0.50 0.24
ita 1.55 3.52 5.86 6.64 0.68 0.99

spa 1.35 3.09 5.20 6.94 0.46 0.32

B Hours of automatically aligned audio per language

Aligned hours

French 4,376
German 2,122
Italian 1,118
Mandarin 116
Spanish 4,242

Total 11,974

C Hyperparameters for S2ST system

text-to-unit encoder layers 4
text-to-unit encoder embed dim 1024
decoder layers 24
decoder attention heads 16
decoder embed dim 1024
decoder FFNN embed dim 8192
optimiser Adam
adam betas (0.9, 0.98)
learning rate 3e-5
dropout 0.1
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D Detailed model evaluation results

D.1 xxx→eng direction

Corpus Alignment xxx→eng ASR-BLEU ASR-COMET Vocal Style Similarity Speech Rate Pause

Fleurs

Expressive

cmn 21.21 0.80 0.36 0.10 0.45
deu 37.64 0.82 0.38 0.65 0.45
fra 33.60 0.81 0.37 0.36 0.45
ita 28.11 0.82 0.37 0.43 0.47
spa 26.75 0.81 0.35 0.41 0.48

Semantic

cmn 21.86 0.80 0.35 0.09 0.44
deu 37.82 0.82 0.38 0.53 0.44
fra 33.54 0.81 0.37 0.33 0.47
ita 28.24 0.82 0.37 0.31 0.44
spa 26.54 0.81 0.35 0.37 0.47

mDRAL

Expressive

cmn 22.69 0.76 0.24 0.19 0.06
deu 38.45 0.83 0.34 0.45 0.42
fra 34.91 0.84 0.21 0.34 0.30
ita 31.82 0.79 0.23 0.35 0.32
spa 48.53 0.84 0.25 0.40 0.17

Semantic

cmn 24.00 0.77 0.25 0.06 0.04
deu 39.88 0.84 0.34 0.28 0.39
fra 38.92 0.85 0.22 0.26 0.26
ita 32.61 0.80 0.22 0.18 0.29
spa 47.43 0.85 0.25 0.22 0.17

mExpresso

Expressive

cmn 20.79 0.75 0.27 0.42 0.29
deu 29.01 0.75 0.28 0.46 0.33
fra 30.78 0.77 0.21 0.36 0.39
ita 33.19 0.76 0.26 0.34 0.35
spa 42.57 0.80 0.25 0.36 0.36

Semantic

cmn 20.81 0.74 0.26 0.33 0.21
deu 27.61 0.73 0.27 0.38 0.29
fra 30.09 0.75 0.20 0.30 0.33
ita 31.82 0.75 0.25 0.23 0.32
spa 41.64 0.79 0.24 0.26 0.32
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D.2 eng→xxx direction

Corpus Alignment eng→xxx ASR-BLEU ASR-COMET Vocal Style Similarity Speech Rate Pause

Fleurs

Expressive

cmn 0.26 0.30 0.20 0.48 0.24
deu 19.47 0.61 0.21 0.52 0.32
fra 32.63 0.66 0.22 0.50 0.33
ita 18.51 0.66 0.22 0.55 0.34
spa 19.69 0.71 0.24 0.56 0.34

Semantic

cmn 0.26 0.31 0.19 0.47 0.24
deu 17.39 0.57 0.21 0.53 0.35
fra 31.76 0.66 0.21 0.54 0.34
ita 17.87 0.66 0.22 0.57 0.35
spa 19.45 0.71 0.24 0.55 0.35

mDRAL

Expressive

cmn 2.41 0.49 0.26 0.13 0.12
deu 18.54 0.65 0.41 0.55 0.29
fra 29.08 0.77 0.27 0.24 0.13
ita 26.79 0.80 0.30 0.32 0.30
spa 37.59 0.84 0.28 0.38 0.17

Semantic

cmn 2.70 0.48 0.26 0.10 0.15
deu 21.29 0.68 0.42 0.25 0.35
fra 31.06 0.79 0.27 0.01 0.06
ita 27.15 0.79 0.30 0.16 0.29
spa 38.91 0.84 0.29 0.25 0.12

mExpresso

Expressive

cmn 2.03 0.43 0.21 0.29 0.30
deu 15.85 0.63 0.27 0.52 0.38
fra 26.02 0.67 0.24 0.45 0.42
ita 26.01 0.74 0.25 0.46 0.40
spa 34.87 0.77 0.24 0.48 0.42

Semantic

cmn 2.03 0.43 0.21 0.26 0.32
deu 13.46 0.60 0.27 0.41 0.38
fra 25.02 0.65 0.24 0.34 0.41
ita 26.09 0.73 0.25 0.33 0.38
spa 35.06 0.77 0.24 0.36 0.40
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E Detailed alignment error rate on MEXPRESSO using expressive scoring function (E)

Direction Prosodic signal spa fra ita deu cmn average

xxx→eng

PRETSSEL 61.02 71.21 72.95 68.88 70.94 69.00
SONAR Expressive 58.79 72.69 66.70 67.68 64.98 66.17
w2v-bert-L0 63.80 74.42 69.79 73.50 65.76 69.45
w2v-bert-L1 58.70 72.12 64.98 70.45 63.02 65.85
w2v-bert-L2 56.77 70.81 64.38 69.21 62.66 64.77
w2v-bert-L3 56.84 70.01 63.69 66.37 62.78 63.94
w2v-bert-L4 56.00 69.49 61.74 64.31 61.72 62.65
w2v-bert-L5 55.42 69.40 61.73 62.10 60.92 61.91
w2v-bert-L6 53.40 68.58 60.82 59.93 60.42 60.63
w2v-bert-L7 49.92 66.13 57.78 57.32 58.60 57.95
w2v-bert-L8 49.82 65.87 57.68 58.17 59.22 58.15
w2v-bert-L9 49.48 65.26 57.56 58.02 58.31 57.73
w2v-bert-L10 48.95 65.01 57.21 57.70 58.31 57.44
w2v-bert-L11 49.11 65.43 57.19 57.95 59.48 57.83
w2v-bert-L12 49.62 65.76 57.02 58.00 59.80 58.04
w2v-bert-L13 50.10 65.90 57.63 57.77 61.20 58.52
w2v-bert-L14 49.08 65.29 57.37 56.99 60.72 57.89
w2v-bert-L15 48.73 65.71 57.07 55.31 61.16 57.60
w2v-bert-L16 48.16 65.95 56.05 53.58 60.58 56.86
w2v-bert-L17 48.52 65.48 56.85 53.74 59.26 56.77
w2v-bert-L18 49.60 66.13 57.87 55.33 59.50 57.69
w2v-bert-L19 51.50 66.37 59.31 55.45 59.26 58.38
w2v-bert-L20 54.40 67.42 62.30 60.25 63.66 61.61
w2v-bert-L21 61.06 73.89 66.30 64.36 65.14 66.15
w2v-bert-L22 84.86 85.72 84.35 83.67 82.59 84.24
w2v-bert-L23 84.86 85.70 84.36 83.69 82.55 84.23
AUTOPCP 47.64 62.9 53.94 55.9 58.09 55.69

Semantic baseline (α = 1) 84.86 85.53 84.38 83.81 82.67 84.25

Direction Prosodic signal spa fra ita deu cmn average

eng→xxx

PRETSSEL 65.31 75.65 71.63 72.41 71.72 71.34
SONAR Expressive 61.34 74.12 66.31 69.53 65.32 67.32
w2v-bert-L0 63.11 74.97 70.15 73.26 69.18 70.13
w2v-bert-L1 61.20 73.60 68.94 71.83 69.10 68.93
w2v-bert-L2 61.53 73.34 68.57 71.43 69.02 68.78
w2v-bert-L3 61.18 73.11 68.00 70.85 69.00 68.43
w2v-bert-L4 60.71 72.95 67.65 69.51 68.94 67.95
w2v-bert-L5 58.41 71.40 65.74 68.74 67.32 66.32
w2v-bert-L6 56.03 70.50 64.77 68.10 67.32 65.34
w2v-bert-L7 52.61 68.44 62.00 66.81 67.04 63.38
w2v-bert-L8 53.35 69.58 63.08 67.92 67.98 64.38
w2v-bert-L9 53.68 70.17 64.16 68.88 67.42 64.86
w2v-bert-L10 53.87 70.59 64.33 69.30 67.74 65.17
w2v-bert-L11 54.33 71.25 65.22 69.75 67.68 65.65
w2v-bert-L12 54.49 72.17 65.86 70.16 67.48 66.03
w2v-bert-L13 55.26 72.07 65.67 69.63 67.20 65.97
w2v-bert-L14 53.50 71.54 63.48 68.03 65.88 64.49
w2v-bert-L15 51.54 70.38 61.36 66.34 65.16 62.96
w2v-bert-L16 49.80 68.91 59.09 63.60 63.06 60.89
w2v-bert-L17 48.95 68.81 58.81 62.60 62.16 60.27
w2v-bert-L18 51.54 69.99 60.22 63.82 64.08 61.93
w2v-bert-L19 54.96 71.53 62.18 67.29 66.70 64.53
w2v-bert-L20 60.04 73.49 64.94 70.66 69.20 67.67
w2v-bert-L21 65.20 76.68 69.61 74.83 71.24 71.51
w2v-bert-L22 84.52 83.93 83.69 84.13 82.39 83.73
w2v-bert-L23 84.52 83.94 83.69 84.14 82.39 83.74
AUTOPCP 49.60 63.88 54.40 56.41 57.71 56.40

Semantic baseline (α = 1) 84.56 83.98 83.65 84.16 82.41 83.75
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