Ubuntu Server is a version of the Ubuntu operating system designed and engineered as a backbone for the internet.

Ubuntu Server brings economic and technical scalability to your datacentre, public or private. Whether you want to
deploy an OpenStack cloud, a Kubernetes cluster or a 50,000-node render farm, Ubuntu Server delivers the best value
scale-out performance available.

In this documentation

Tutorials How-to guides
Get started - a hands-on introduction to Ubuntu Server for new users Step-by-step guides covering key operations and comn
Explanation Reference

Concepts - discussion and clarification of key topics Technical information - package specifications, APIs,

Project and community

Ubuntu Server is a member of the Ubuntu family. It’s an open source project that welcomes community projects,
contributions, suggestions, fixes and constructive feedback.

If you find any errors or have suggestions for improvements to pages, please use the link at the bottom of each topic
titled: “Help improve this document in the forum.” This link will take you to the Server Discourse forum for the
specific page you are viewing. There you can share your comments or let us know about bugs with any page.

¢ Read our Code of Conduct
e Get support

¢ Join the Discourse forum

o Download

e Find out how to contribute to the Server Guide, or let us know your feedback and suggestions.

Thinking about using Ubuntu Server for your next project? Get in touch!

PDFs and previous releases

Below are links to the previous Ubuntu Server release server guides as well as an offline copy of the current version of

this site:

Ubuntu 20.04 LTS (Focal Fossa) and later: PDF
Ubuntu 18.04 LTS (Bionic Beaver): Web and PDF

Navigation

Navigation

Level Path Navlink

0 Introduction

0

1 tutorials Tutorials

2 Core tutorial

3 installation Basic installation

3 install/general How to operate the server installer
3 install /step-by-step Screen-by-screen installer guide

3 install /storage Configuring storage

2 Next steps

3 install/subscription Attach your Ubuntu Pro subscription
3 install /reporting-problems Report a problem with the installer
0

1 how-to How-to guides

2 Advanced installation

3 install /netboot-amd64 amd64 netboot install

3 install/netboot-arm64 arm64 netboot install

3 install /netboot-ppc64el ppcb64el netboot install

3 install /ppc64el Virtual CDROM and Petitboot on ppc64el

https://ubuntu.com/community/code-of-conduct
https://ubuntu.com/support/community-support
https://discourse.ubuntu.com/c/server/17
https://ubuntu.com/server
https://ubuntu.com/server/contact-us?product=server
https://assets.ubuntu.com/ubuntu-server-guide
https://help.ubuntu.com/18.04/serverguide/index.html
https://help.ubuntu.com/18.04/serverguide/serverguide.pdf

Level

Path

Navlink

QO e R W N WWWWWHERE R EREWWHN WWWWWHEN WWWWWWWHhNWWWWWWWwmowwwwwnowwwm wwwowwwwtNn ww

install/$390x-zvimn
install/s390x-lpar

install/autoinstall

install /autoinstall-quickstart
install/autoinstall-quickstart-s390x
install/autoinstall-reference
install/autoinstall-schema
install/vm-autoinstall-on-s390x
install/Ipar-autoinstall-on-s390x

rock-images/introduction
rock-images/container-customization-with-docker

rock-images/multi-node-configuration-with-docker-compose

package-management
upgrade-introduction
third-party-apt-repositories
reporting-bugs
kernel-crash-dump

service-ldap-introduction
service-ldap
service-ldap-access-control
service-ldap-replication
service-ldap-usage
service-ldap-with-tls
service-ldap-backup-restore

kerberos-introduction

service-kerberos
service-kerberos-principals
kerberos-encryption-types
service-kerberos-secondary-kdc
service-kerberos-workstation-auth
service-kerberos-with-openldap-backend

service-sssd

service-sssd-ad
service-sssd-ldap
service-sssd-ldap-krb
service-sssd-troubleshooting

wireguard-vpn-introduction

wireguard-vpn-peer2site-introduction
wireguard-vpn-peer2site-router
wireguard-vpn-peer2site-inside
wireguard-vpn-site2site
wireguard-vpn-defaultgw
wireguard-vpn-other-tasks
wireguard-vpn-security
wireguard-vpn-troubleshooting

virtualization-gemu
virtualization-multipass
virtualization-uvt
virtualization-virt-tools
virtualization-libvirt

$390x install via z/VM

$390x install via LPAR
Automatic installation
Introduction

Autoinstall quickstart
Autoinstall quickstart on s390x
Autoinstall reference
Autoinstall schema

z/VM autoinstall on s390x
LPAR autoinstall on s390x
ROCK Images

Introduction

Container customization with Docker
Multi-node configuration with Docker-Compose
Software

Package management

Upgrade

Third party APT repositories
Reporting bugs

Kernel crash dump
OpenLDAP

Introduction

Installation

Access control

Replication

Simple LDAP user and group management
SSL/TLS

Backup and restore

Kerberos

Introduction

Kerberos server

Service principals

Kerberos encryption types
Secondary KDC

Basic workstation authentication
Kerberos with OpenLDAP backend
Network user authentication with SSSD
Introduction

Active Directory

LDAP

LDAP and Kerberos
Troubleshooting

WireGuard VPN

Introduction

Peer-to-site

Introduction

On router

Inside device

Site-to-site

Default gateway

Other tasks

Security tips

Troubleshooting

Virtualisation and containers
Virtual machines

QEMU

Multipass

UVtool

Virt-manager

libvirt and virsh

Containers

Level Path Navlink
containers-1xc LXC
containers-1xd LXD
docker-for-system-admins Docker for sysadmins
Network

LW WWWWWWHhNWWWWWNWWNDIHEOoOWWNhNhWWWWwWwwWwwWwowwwwwNhnwwwdhwwwdh kbt Wwwwwwwdhh WwWwwwwtNh b= =k

how-to-install-and-configure-isc-kea

how-to-install-and-configure-isc-dhcp-server

use-timedatectl-and-timesyncd

how-to-serve-the-network-time-protocol-with-chrony

openvswitch-dpdk

samba-active-directory
samba-file-server
samba-print-server
samba-share-access-control
samba-apparmor-profile

samba-domain-controller
samba-openldap-backend

mail-postfix
mail-dovecot
mail-exim4

backups-bacula
tools-rsnapshot
how-to-back-up-using-shell-scripts

how-to-install-a-squid-server
lamp-applications
how-to-install-apache2
how-to-configure-apache2-settings
how-to-use-apache2-modules
how-to-install-nginx
how-to-configure-nginx
how-to-use-nginx-modules
programming-php
programming-ruby-on-rails
how-to-install-and-configure-phpmyadmin
how-to-install-and-configure-wordpress

nvidia-drivers-installation
gpu-virtualization-with-gemu-kvm

explanation

about-apt-upgrade-and-phased-updates
changing-package-files

network-introduction
network-configuration
network-dhep
network-ntp
network-dpdk

introduction-to-crypto-libraries
openssl

gnutls

network-security-services-nss
java-cryptography-configuration
bind-9-dnssec-cryptography-selection
openssh-crypto-configuration

Install isc-kea

Install isc-dhcp-server
Synchronise time

Serve the NTP

Use Open vSwitch with DPDK
Samba

Join Active Directory
Set up a file server

Set up a print server
Share access controls
Create AppArmor profile
Legacy pages

NT4 domain controller
OpenLLDAP backend
Mail services

Install Postfix

Install Dovecot

Install Exim4

Backups

Install Bacula

Install rsnapshot

Backup with shell scripts
Web services

Install a Squid server
Get started with LAMP
Install Apache2

Apache2 settings
Apache2 modules

Install nginx

nginx settings

nginx modules

Install PHP

Install Ruby on Rails
Install phpMyAdmin
Install WordPress
Graphics

Install NVIDIA drivers
vGPU with QEMU/KVM

Explanation

Software

About apt upgrade and phased updates
Changing package files

Network

Networking key concepts

Configuring networks

About DHCP

Time synchronisation

The DPDK library

Cryptography

Introduction to crypto libraries
OpenSSL

GnuTLS

Network Security Services (NSS)

Java cryptography configuration

BIND 9 DNSSEC cryptography selection
OpenSSH crypto configuration

Level

Path

Navlink

LODND WWHN WWWWHEN WWWHEN WWWWWHNWWWWWEREWWWNWWWWNDWWWWDNDHFOoOWWWWwWwwmDnwwNDn wkrswdbs kb wNnw

troubleshooting-tls-ssl

vm-tools-in-the-ubuntu-space
using-qemu-for-microvms
upgrading-the-machine-type-of-your-vim

container-tools-in-the-ubuntu-space
about-openstack

about-web-servers
proxy-servers-squid

introduction-to-virtualization
introduction-to-networking
samba-introduction
introduction-to-web-services
mail-introduction
backups-introduction

reference

cloud-images/introduction
cloud-images/amazon-ec2
cloud-images/google-cloud-engine
find-ubuntu-images-on-azure

device-mapper-multipathing-introduction
device-mapper-multipathing-configuration
device-mapper-multipathing-setup
device-mapper-multipathing-usage-debug

security-introduction
security-users
security-smart-cards
security-smart-cards-ssh
security-apparmor
security-firewall
security-certificates
security-trust-store
security-console

ubuntu-ha-introduction
ubuntu-ha-pacemaker-resource-agents
ubuntu-ha-pacemaker-fence-agents
ubuntu-ha-drbd
ubuntu-ha-migrate-from-crmsh-to-pcs

databases-introduction
databases-mysql
databases-postgresql

logging-monitoring-alerting
logwatch

tools-munin

tools-nagios

basic-backup-shell-script
archive-rotation-shell-script

service-cups

Troubleshooting TLS/SSL
Virtualisation and containers
Virtual machines

VM tools overview

QEMU for microVMs
Upgrading machine type
Containers

Container tools overview
About OpenStack

Web servers

About web servers

About Squid proxy servers
Introduction to...
Virtualization

Networking

Samba

Web services

Mail services

Backups

Reference

Cloud Images
Introduction

Amazon EC2

Google Compute Engine (GCE)
Microsoft Azure
Multipath

Introduction
Configuration

Setup

Usage and debug
Security

Introduction

Users

Smart cards

SSH

AppArmor

Firewall

Certificates

CA trust store

Console

High Availability
Introduction

Pacemaker - resource agents
Pacemaker - fence agents

Distributed Replicated Block Device (DRBD)

Ubuntu HA - Migrate from crmsh to pcs
Databases

Introduction

MySQL

PostgreSQL

Monitoring

Logging, Monitoring and Alerting (LMA)
Install Logwatch

Install Munin

Install Nagios Core 3

Backups

Basic backup shell script

Archive rotation shell script

Other Services

CUPS

Level Path Navlink

3 service-debuginfod Debuginfod

4 service-debuginfod-faq Debuginfod FAQ
3 service-domain-name-service-dns Domain Name Service (DNS)
3 service-ftp FTP

3 service-iscsi iSCSI

3 service-nfs NFS

3 service-openssh OpenSSH

3 service-openvpn OpenVPN

3 service-gitolite gitolite

3 vpn-clients VPN clients

2 Tools

3 tools-byobu byobu

3 tools-etckeeper etckeeper

3 pam-motd pam_ motd

3 tools-puppet Puppet
Redirects

Mapping table

Path Location

/server /docs/introduction Ubuntu Server documentation
/server/docs/installation-advanced ~ Advanced Installation
/server/docs/installation-iscsi Installation - iISCSI
/server/docs/security-ecryptfs eCryptfs is deprecated

This section of our documentation contains step-by-step tutorials to help outline what Ubuntu Server is capable of
while helping you achieve specific aims.

We hope our tutorials make as few assumptions as possible and are broadly accessible to anyone with an interest in
Ubuntu Server. They should also be a good place to start learning about Ubuntu Server in general, how it works, and
what it’s capable of.

Core tutorial

In our core tutorial, you will learn how to set up an Ubuntu Server; from installing using a bootable USB device, to
navigating the Server installer menu.

Getting started
Basic installation

The Server installer
How to operate the Server installer
Screen-by-screen installer guide
Configuring storage

Next steps

Once your Ubuntu Server is up and running, you may be interested in this collection of related tutorials and topics
that will help you learn more about how it works and what’s available to you. These pages can be viewed in any order.

Ubuntu Pro

Attach your Ubuntu Pro subscription
The Server installer

Report a problem with the installer

https://discourse.ubuntu.com/t/installation-advanced/11577
https://discourse.ubuntu.com/t/installation-iscsi/11321
https://discourse.ubuntu.com/t/security-ecryptfs/11886

If you have a specific goal, but are already familiar with Ubuntu Server, take a look at our How-to guides. These have
more in-depth detail and can be applied to a broader set of applications.

Take a look at our Reference section when you need to determine what commands are available, and how to interact
with various tools.

Finally, for a better understanding of how Ubuntu Server works and how it can be used and configured, our Fzplanation
section enables you to expand your knowledge of the operating system and additional software.

This chapter provides an overview of how to install Ubuntu Server Edition. You can also refer to this guide on how to
operate the installer for more information on using the installer, and to this screen-by-screen reference guide for more
information about each of the installer screens.

Preparing to install

This section explains various aspects to consider before starting the installation.

System requirements

Ubuntu Server Edition provides a common, minimalist base for a variety of server applications, such as file/print
services, web hosting, email hosting, etc. This version supports four 64-bit architectures:

o amd64 (Intel/AMD 64-bit)

« arm64 (64-bit ARM)

o ppcbdel (POWERS and POWERY)
o 8390x (IBM Z and LinuxONE)

The recommended system requirements are:

e CPU: 1 gigahertz or better
« RAM: 1 gigabyte or more
e Disk: a minimum of 2.5 gigabytes

Perform a system back up
Before installing Ubuntu Server Edition you should make sure all data on the system is backed up.

If this is not the first time an operating system has been installed on your computer, it is likely you will need to
re-partition your disk to make room for Ubuntu.

Any time you partition your disk, you should be prepared to lose everything on the disk should you make a mistake or
something goes wrong during partitioning. The programs used in installation are quite reliable, most have seen years
of use, but they also perform destructive actions.

Download the server ISO

You can obtain the amd64 server download from https://releases.ubuntu.com/. Select the version you wish to install
and select the “server install image” download. Note that the server download includes the installer.

There are platform specific how-to guides for installations on:

e s390x LPAR
e z/VM
e ppcbdel

Create a bootable USB

There are many ways to boot the installer but the simplest and most common way is to create a bootable USB stick
to boot the system to be installed with (tutorials for other operating systems are also available).

Boot the installer
Plug the USB stick into the system to be installed and start it.

Most computers will automatically boot from USB or DVD, though in some cases this is disabled to improve boot
times. If you don’t see the boot message and the “Welcome” screen which should appear after it, you will need to set
your computer to boot from the install media.

https://releases.ubuntu.com/
https://ubuntu.com/tutorials/tutorial-create-a-usb-stick-on-ubuntu
https://ubuntu.com/search?q=%22create+a+bootable+USB+stick%22

There should be an on-screen message when the computer starts telling you what key to press for settings or a boot
menu. Depending on the manufacturer, this could be Escape, F2, F10 or F12. Simply restart your computer and hold
down this key until the boot menu appears, then select the drive with the Ubuntu install media.

If you are still having problems, check out the Ubuntu Community documentation on booting from
CD/DVD.

After a few moments, the installer will start in its language selection screen.

Hillkommen! Bienwenue! Welcome! AoSpo noxanoeate! Welkom! [Help 1

lse UP, DOKWM and EWTER k . to select your

L]
»
»
»
»
»
L]
»
]
»
]
»
]
»
]
»

Using the installer

The installer is designed to be easy to use and have sensible defaults so for a first install you can mostly just accept
the defaults for the most straightforward install:

e Choose your language

o Update the installer (if offered)

e Select your keyboard layout

e Do not configure networking (the installer attempts to configure wired network interfaces via DHCP, but you
can continue without networking if this fails)

e Do not configure a proxy or custom mirror unless you have to in your network

e For storage, leave “use an entire disk” checked, and choose a disk to install to, then select “Done” on the
configuration screen and confirm the install

e Enter a username, hostname and password

e On the SSH and snap screens, select “Done”

¢ You will now see log messages as the install is completed

e Select restart when this is complete, and log in using the username and password provided

This document explains how to use the installer in general terms. For a step-by-step guide through the screens of the
installer, you can use our screen-by-screen reference guide.

https://help.ubuntu.com/community/BootFromCD
https://help.ubuntu.com/community/BootFromCD

Get the installer

Installer images are made (approximately) daily and are available from https://cdimage.ubuntu.com/ubuntu-server/
daily-live/current/. These are not tested as extensively as the images from release day, but they contain the latest
packages and installer, so fewer updates will be required during or after installation.

You can download the server installer for amd64 from https://ubuntu.com/download/server and other architectures
from http://cdimage.ubuntu.com/releases/20.04/release/.

Installer UI navigation
In general, the installer can be used with the up and down arrows and space or Enter keys and a little typing.

Tab and Shift + Tab move the focus down and up respectively. Home / End / Page Up / Page Down can be used to
navigate through long lists more quickly in the usual way.

Running the installer over serial

By default, the installer runs on the first virtual terminal, ttyl. This is what is displayed on any connected monitor
by default. However, servers do not always have a monitor. Some out-of-band management systems provide a remote
virtual terminal, but some times it is necessary to run the installer on the serial port. To do this, the kernel command
line needs to have an appropriate console specified on it —a common value is console=ttyS0 but this is not something
that can be generically documented.

When running on serial, the installer starts in a basic mode that does using only the ASCII character set and black
and white colours. If you are connecting from a terminal emulator such as gnome-terminal that supports Unicode and
rich colours you can switch to “rich mode” which uses Unicode, colours and supports many languages.

Connecting to the installer over SSH

If the only available terminal is very basic, an alternative is to connect via SSH. If the network is up by the time the
installer starts, instructions are offered on the initial screen in basic mode. Otherwise, instructions are available from
the help menu once networking is configured.

In addition, connecting via SSH is assumed to be capable of displaying all Unicode characters, enabling more transla-
tions to be used than can be displayed on a virtual terminal.

Help menu

The help menu is always in the top right of the screen. It contains help — both general and for the currently displayed
screen — and some general actions.

Switching to a shell prompt
You can switch to a shell at any time by selecting “Enter shell” from the help menu, or pressing Control + Z or F2.

If you are accessing the installer via ttyl, you can also access a shell by switching to a different virtual terminal
(Control + Alt + arrow, or Control + Alt + number keys, move between virtual terminals).

Global keys

There are some global keys you can press at any time:

Key Action
ESC Go back
F1 Open help menu

Control + Z, F2 Switch to shell
Control + L, F3 Redraw screen
Control + T, F4 Toggle rich mode (colour, Unicode) on and off

The installer is designed to be easy to use without the need to refer to documentation. However, this reference guide
provides more information for each of the screens of the installer.

https://cdimage.ubuntu.com/ubuntu-server/daily-live/current/
https://cdimage.ubuntu.com/ubuntu-server/daily-live/current/
https://ubuntu.com/download/server
http://cdimage.ubuntu.com/releases/20.04/release/
https://www.kernel.org/doc/html/latest/admin-guide/serial-console.html

Language selection

Willkommen! Bienvenue! Welcome! Aofpo noxanoesaTts! Welkom! [Help 1]

Use UP, DOWW and EMTER keus fto select your lang

»
»
>
L J
L J
L J
| J
| J
| J
| J
»
»
»
»
>
L J

This screen selects the language for the installer and the default language for the installed system.

More languages can be displayed if you connect via SSH.

Refresh

Installer update availahle [Help]

5.2 of the installer is now available (20.04.3 is currently

each version at:
https://github.comsCanonicalltd/subiquitysreles

= to update, the update will be downl
will continue from here.

e to the new installer]
ue without upd

This screen is shown if there is an update for the installer available. This allows you to get any improvements and
bug fixes made since release.

If you choose to update, the new version will be downloaded and the installer will restart at the same point of the
installation.

10

Keyboard

[Help 1

ayout helow, or select “Identify kevhoard" to

Layout: [English (US) T]

Variant: [English (US)

[Identify keyboard]

[Done
[Back

Choose the layout and variant of keyboard attached to the system, if any. When running in a virtual terminal, it is
possible to guess the layout and variant by answering questions about the keyboard.

Zdev (s390x only)

Zdev setup

ID ONLINE NAMES ~

generic-ccw

|
0.0.0009 > |
0.0.000c > |
0.0.000d > |
0.0.000e > |
|
dasd-eckd |
0.0.0190 > |
0.0.0191 > |
0.0.019d > |
0.0.019% S————
0.0.0200 >|< (close) |
0.0.0300 >| Enable |
0.0.0400 >| Disable |
0.0.0592 s v

[Continue]
[Back]

11

This screen is only shown on $390x and allows z-specific configuration of devices.

The list of devices can be long. Home / End / Page Up / Page Down can be used to navigate through the list more
quickly.

Network

Metwark connections [Help 1

Config ‘ e th 1 use to talk to other machines,
and which p .

[Create bond =]

[Done
[Back

network800x 600 2.99 KB

This screen allows the configuration of the network. Ubuntu Server uses NetPlan to configure networking and the
UI of the installer can configure a subset of NetPlan’s capabilities. In particular it can configure DHCP or static
addressing, VLANs and bonds.

If networking is present (defined as “at least one interface has a default route”) then the installer will install updates
from the archive at the end of installation.

12

//ubuntucommunity.s3.dualstack.us-east-2.amazonaws.com/original/2X/2/28369a33c14efbbd4769a17e7235666b4c908d1a.png

Proxy

Configure proxy [Help 1

ires a proxy to connect to the internet, enter its details

proxy800x600 2.69 KB

The proxy configured on this screen is used for accessing the package repository and the snap store both in the installer
environment and in the installed system.

13

//ubuntucommunity.s3.dualstack.us-east-2.amazonaws.com/original/2X/6/6c7f84e37cda91e797f62b61148e10d1aa93c056.png

Mirror

Conf igure Ubuntu archive mirror [Help 1

If you use an alternative mirror for Ubuntu, enter its details here.

Mirror ado http://archive.ubuntu. comsubuntu

You may provide an archive mirror that will be used instead of

[Done
[Back

mirror800x 600 1.99 KB

The installer will attempt to use geoip to look up an appropriate default package mirror for your location. If you want
or need to use a different mirror, enter its URL here.

14

//ubuntucommunity.s3.dualstack.us-east-2.amazonaws.com/original/2X/3/30b527e810914da07ab11c3448750868809f88ac.png

Storage

[Help 1

9.997G new extd new partition of local disk =]

AVAILABLE DEWVICES

USED DEVICES

local disk

[_ L= ot
partition 2 new, to be formatted as extd, mounted at ¢

neuw,

storage_ config800x 600 3.89 KB

Storage configuration is a complicated topic and has its own page for documentation.

15

//ubuntucommunity.s3.dualstack.us-east-2.amazonaws.com/original/2X/7/7484e986d5be44cf83952ede99e2bb8aaf9ed9c7.png

e configuration [Help]

Confirm destructive action

ecting Continue below will hegin t llation pri

result in the 1o of data on the

You will not b return to this or a previous screen once the
installation has

Are Jyod sure you want to continue?

[Mo
[Continue

storage confirm800x600 3.71 KB

Once the storage configuration is confirmed, the install begins in the background.

16

//ubuntucommunity.s3.dualstack.us-east-2.amazonaws.com/original/2X/c/cc7abf276409bdb9cb0d653f700785c421afe332.png

Identity
Profile setup [Help 1]

EM. ¥OuU can
eded for

The name it u when it talks to other computers.

Confirm your pa

identity800x600 2.43 KB

The default user will be an administrator, able to use sudo (this is why a password is needed, even if SSH public key
access is enabled on the next screen).

17

//ubuntucommunity.s3.dualstack.us-east-2.amazonaws.com/original/2X/9/9e79b5ead9b27622c6eccb3e075bbafc8d6644dd.png

SSH

H Setup [Help]

all the Op ‘Bl [E > to enable CUre remote

[1 Install Op

[Done
[Back

ssh800x600 2.27 KB

A default Ubuntu install has no open ports. It is very common to administer servers via SSH so the installer allows
it to be installed with the click of a button.

You can import keys for the default user from GitHub or Launchpad.

If you import a key, then password authentication is disabled by default but it can be re-enabled again if you wish.

18

//ubuntucommunity.s3.dualstack.us-east-2.amazonaws.com/original/2X/f/fb7af722915a3fd55954df01e8ea418846055123.png

Snaps

[Help 1

onds.

a computer

MnC ime
. Judu kK

*
*
L
L
L
L]
L]
L]
L]
L]
L]
L]
*
*
L
L
L]
L]
L]
L]
L]
L]
L]
L]

snaps800x600 9.09 KB

If a network connection is enabled, a selection of snaps that are useful in a server environment are presented and can
be selected for installation.

19

//ubuntucommunity.s3.dualstack.us-east-2.amazonaws.com/original/2X/3/3bd814edad81fbdfd8a13d3c8b5e79eb2a55293c.png

Installation logs

[Help 1

ition:
format: fo
mount s mount-o0
conf

writ

bhiguity-config
true’

curtin
curtin

[Wiew full log

install _progress800x600 4.62 KB

The final screen of the installer shows the progress of the installer and allows viewing of the full log file. Once the
install has completed and security updates installed, the installer waits for confirmation before restarting.

20

//ubuntucommunity.s3.dualstack.us-east-2.amazonaws.com/original/2X/2/2e65fa0e78235d4a3b9f0dc071577d5f5e4d938d.png

Installation complete! [Help 1

running
runni

install done800x600 6.64 KB

21

//ubuntucommunity.s3.dualstack.us-east-2.amazonaws.com/original/2X/2/2e77da21332fcf631c1995271b58518a87b2dbd1.png

Guided options

Guided st conf igL [Help 1]

Configure a guided sto layout, or
entire d

[DEMU MWMe Ctrl_ 1234 local disk 10.¢

[¥]1 Set up this d an LYM group

[1 Encrypt the LWwM group with LUKS

tom stor . layout

Selecting “Use an entire disk” on the Guided storage configuration screen will install Ubuntu onto the selected disk,
replacing any partitions or data already there.

You can choose whether or not to set up LVM, and if you do, whether or not to encrypt the volume with LUKS. If
you encrypt the volume, you need to choose a passphrase that will need to be entered each time the system boots.

If you select “Custom storage layout”, no configuration will be applied to the disks.

In either case, the installer moves onto the main storage customisation screen.

22

The main storage screen

[Help 1

. FEw new LvH log volume L
hoot 1. neu td new partition of local disk »]

AVAILAELE DEWICES

[GEMU W¥Me Ctrl_S678 local di

[Create volume group (LWYM) *=]
USED DEVICES

[ubuntu- (new) LWH volume
uhbuntu- new, to he formatted as extd, mounted at ~

iy
o] (mn}

local di

, mount at sboot

This screen presents a summary of the current storage configuration. Each device or partition of a device corresponds
to a different row (which can be selected), and pressing Enter or space while a device is selected opens a menu of
actions that apply to that device.

Partitions

iﬂTD

fadd GPT Partition
Farmat

Use As Boot Dewvice

To add a partition to a device, select “Add GPT Partition” for that device.

23

configur [Help 1

Format: [extd

Mount: [shome

You can leave “Size” blank to use all the remaining space on the device.

24

RAID

[Help]

: software RAID ("MD') disk

Name :

RAID Lewvel:

Dewi

partition 1

partition 2

Linux software RAID (RAID stands for “Redundant Array of Inexpensive Disks”) can be used to combine several
disks into a single device that is (usually) tolerant to any one disk failure.

A software RAID device can be created out of entire disks or unformatted partitions. Select the “Create software
RAID (“MD”)” button to open the creation dialog.

The server installer supports creating devices with RAID level 0, 1, 5, 6 or 10. It does not allow customising other
options such as metadata format or RAID10 layout at this time. See the Linux RAID documentation for more details.

A software RAID device can be formatted and mounted directly, can be partitioned into several partitions, or even be
used as part of another RAID device or LVM volume group.

25

https://raid.wiki.kernel.org/index.php/Linux_Raid
https://raid.wiki.kernel.org/index.php/Linux_Raid

Logical Volume Manager (LVM)

Storage configuration

Create L¥M volume group

Name: R0

Devices: QEMU MN¥Me Ctrl_S678 10.0000G
[] partition 1 4, 000G

[] partition 2 4. 000G

[1 Create encrupted wolume

[Cancel

The LVM is a system of managing logical volumes, or filesystems, that is much more advanced and flexible than the
traditional method of partitioning a disk into one or more segments and formatting that partition with a filesystem.
It can be used to combine several disks into one larger pool of storage but it offers advantages even in a single disk
system, such as snapshots and easy resizing of logical volumes.

As with RAID, a LVM volume group can be created out of entire disks or unformatted partitions. Select the “Create
LVM volume group” button to open the creation dialog.

Once a volume group has been created, it can be divided into named logical volumes which can then be formatted
and mounted. It generally makes sense to leave some space in the volume group for storage of snapshots and creation
of more logical volumes as needed.

The server installer does not supported configuring any of the many, many options that LVM supports when creating
volume groups and logical volumes.

Selecting boot devices

[OEHMU NYMe Ctrl_1234 local disk 10, 000G =+ (close)
Info

[BEHU WWMe Ctrl_5673 local disk 10,0005 ™= Add GPT Fartition
Format

] Use A= Boot Dewvice
]

[Create software RAID (md)
[Create volume group (LYM)

L
L

On all architectures other than s390x, the bootloader needs to be installed to a disk in such a way that the system
firmware can find it on boot. By default, the first device to have a partition created on it is selected as a boot device

26

but this can be changed later.

On amd64 and arm64 systems, multiple disks can be selected as boot devices, which means a system can be configured
so that it will continue to boot after a failure of any one drive (assuming the root filesystem is placed on a RAID).
The bootloader will be installed to each of these drives, and the operating system configured to install new versions
of GRUB to each drive as it is updated.

amd64 systems use GRUB as the bootloader. amd64 systems can boot in either UEFI or legacy (sometimes called
“BIOS”) mode (many systems can be configured to boot in either mode) and the bootloader is located completely
differently in the two modes.

In legacy mode, the bootloader is read from the first “sector” of a hard drive (exactly which hard drive is up to the
system firmware, which can usually be configured in a vendor-specific way). The installer will write GRUB to the start
of all disks selected as a boot devices. As GRUB does not entirely fit in one sector, a small unformatted partition is
needed at the start of the disk, which will automatically be created when a disk is selected as a boot device (a disk
with an existing GPT partition table can only be used as a boot device if it has this partition).

In UEFI mode, the bootloader loaded from a “EFI System Partition” (ESP), which is a partition with a particular
type GUID. The installer automatically creates a 512MiB ESP on a disk when it is selected as a boot device and
will install GRUB there (a disk with an existing partition table can only be used as a boot device if it has an ESP
— bootloaders for multiple operating systems can be installed into a single ESP). UEFI defines a standard way to
configure the way in which the operating system is chosen on boot, and the installer uses this to configure the system
to boot the just-installed operating system. One of the ESPs must be mounted at /boot/efi.

Supported arm64 servers boot using UEFI, and are configured the same way as an UEFI-booting amd64 system.

ppc6del systems also load their bootloader (Petitboot, a small linux kernel) from a “PReP” partition with a special
flag, so in most ways they are similar to a UEFI system. The installer only supports one PReP partition at this time.

Limitations and workarounds

Currently, the installer cannot edit partition tables. You can use existing partitions or reformat a drive entirely but
you cannot, for example, remove a large partition and replace it with two smaller ones.

The installer allows the creation of LVM volume groups and logical volumes and MD raid devices, but does not allow
tweaking of the parameters — for example, all logical volumes are linear and all MD raid devices use the default
metadata format (1.2).

These limits can both be worked around in the same way: drop to a shell and use the usual shell commands to edit
the partition table or create the LV or RAID with desired parameters, and then select these partitions or devices as
mount points in the installer. Any changes you make while the installer is running but before altering the storage
configuration will reflected in the installer.

The installer cannot yet configure iSCSI mounts, ZFS at all, or btrfs subvolumes.

Attaching the Ubuntu Pro subscription to Ubuntu brings you the enterprise lifecycle, including Linux kernel livepatch-
ing, access to FIPS-validated packages, and compliance with security profiles such as CIS. This is not required for
Ubuntu Pro instances through public clouds such as AWS, Azure or GCP, since these are automatically attached from
launch.

Note:
Subscriptions are not just for enterprise customers. Anyone can get a personal subscription for free on up
to 5 machines, or 50 if you are an official Ubuntu Community member.

The following instructions explain how to attach your subscription to your Ubuntu systems.

Step 1: Install the Ubuntu Pro Client

This step is necessary for Ubuntu Pro users or holders of personal subscriptions. If you are an Ubuntu Pro user
through a public cloud offering, your subscription is already attached and you may skip these instructions.

We first need to make sure that we have the latest version of the Ubuntu Pro Client running. The package used to
access the Pro Client (pro) is ubuntu-advantage-tools:

sudo apt update
sudo apt install ubuntu-advantage-tools

If you already have ubuntu-advantage-tools installed, this install command will upgrade the package to the latest
version.

27

https://ubuntu.com/pro
https://ubuntu.com/about/release-cycle
https://ubuntu.com/security/livepatch
https://ubuntu.com/security/livepatch
https://ubuntu.com/security/fips
https://ubuntu.com/security/certifications
https://ubuntu.com/public-cloud
https://ubuntu.com/aws/pro
https://ubuntu.com/azure/pro
https://ubuntu.com/gcp/pro
https://ubuntu.com/pro
https://wiki.ubuntu.com/Membership

Step 2: Attach your subscription

Once you have the latest version of the Pro Client installed, you need to attach the Ubuntu Pro token to your Pro
Client to gain access to the services provided under Ubuntu Pro.

First you need to retrieve your Ubuntu Pro token from the Ubuntu Pro dashboard. To access your dashboard, you
need an Ubuntu One account. If you still need to create one, be sure to sign up using the email address used to create
your subscription.

The Ubuntu One account functions as a single-sign-on (SSO), so once logged in we can go straight to the Ubuntu Pro
dashboard at ubuntu.com/pro. Then click on the ‘Machines’ column in the ‘Your Paid Subscriptions’ table to reveal
your token.

Now we’re ready to attach our Ubuntu Pro token to the Pro Client:
sudo pro attach <your pro_ token>

You will know that the token has been successfully attached when you see the list of services, descriptions and their
enabled/disabled status in a table similar to this:

SERVICE ENTITLED STATUS DESCRIPTION

esm-apps yes enabled Expanded Security Maintenance for Applications
esm-infra yes enabled Expanded Security Maintenance for Infrastructure
livepatch yes enabled Canonical Livepatch service

realtime-kernel yes disabled Ubuntu kernel with PREEMPT RT patches integrated

Note that Extended Security Maintenance (ESM) and Livepatch will auto-enable once your token has been attached
to your machine.

After attaching the Pro Client with your token you can also use the Pro Client to activate most of the Ubuntu Pro
services, including Livepatch, FIPS, and the CIS Benchmark tool.

Further reading
e For more information about the Ubuntu Pro Client, you can read our documentation.

e For a guided tour through the most commonly-used commands available through the Ubuntu Pro Client, check
out this tutorial.

We always hope, of course, that every install with the server installer succeeds. But reality doesn’t always work that
way and there will sometimes be failures of various kinds. This section explains the most useful way to report any
failures so that we can fix the bugs causing them, and we’ll keep the topic up to date as the installer changes.

The first thing to do is to update your Subiquity snap. Not only because we fix issues that cause failures over time
but also because we’ve been working on features to make failure reporting easier.

A failure will result in a crash report being generated which bundles up all the information we need to fully diagnose
a failure. These live in /var/crash in the installer environment, and for Ubuntu 19.10 and newer this is persisted to
the install media by default (if there is space).

When an error occurs you are presented with a dialog that allows you to upload the report to the error tracker and
offers options for continuing. Uploads to the error tracker are non-interactive and anonymous, so they are useful for
tracking which kinds of errors are affecting most users, but they do not give us a way to ask you to help diagnose the
failure.

You can create a Launchpad bug report, which does let us establish this kind of two way communication, based on
the contents of a crash report by using the standard apport-cli tool that is part of Ubuntu. Copy the crash report to
another system, run:

apport-cli /path/to/report.crash
and follow the prompts.

You can also run apport-cli in the installer environment by switching to a shell but apport won’t be able to open a
browser to allow you to complete the report so you’ll have to type the URL by hand on another machine.

If you have a specific goal, but are already familiar with Ubuntu Server, our how-to guides have more in-depth detail
than our tutorials and can be applied to a broader set of applications. They’ll help you achieve an end result but may
require you to understand and adapt the steps to fit your specific requirements.

Advanced installation
amd64 netboot install

28

https://ubuntu.com/pro
https://login.ubuntu.com/
http://ubuntu.com/pro
https://canonical-ubuntu-pro-client.readthedocs-hosted.com/en/latest/
https://canonical-ubuntu-pro-client.readthedocs-hosted.com/en/latest/tutorials/basic_commands.html
https://canonical-ubuntu-pro-client.readthedocs-hosted.com/en/latest/tutorials/basic_commands.html

arm64 netboot install
ppcb64el netboot install
Virtual CDROM and Petitboot on ppc64el
$390x install via z/VM
$390x install via LPAR
Automatic installation
Introduction to Automated Server installer
Autoinstall quickstart
Autoinstall quickstart on s390x
Autoinstall config file reference
Autoinstall JSON schema
IBM z/VM autoinstall on s390x
IBM LPAR autoinstall on s390x
ROCK Images
Introduction
Container customization with Docker
Multi-node configuration with Docker-Compose
Software
Package management
Upgrade
Third party APT repositories
Reporting bugs
Kernel crash dump
OpenLDAP
Introduction
Installation
Access control
Replication
Simple LDAP user and group management
SSL/TLS
Backup and restore
Kerberos
Introduction
Kerberos server
Service principals
Kerberos encryption types
Secondary KDC
Basic workstation authentication
Kerberos with OpenLDAP backend
Network user authentication with SSSD
Introduction
Active directory
LDAP
LDAP and Kerberos
Troubleshooting
WireGuard VPN
Introduction
Peer to site
Introduction
On router
Inside device
Site to site
Default gateway
Other tasks
Security tips
Troubleshooting

Virtualization

Virtual machines (VMs)
QEMU
Create VMs with Multipass

29

Create cloud image VMs with UVtool

VM tooling

How to use the libvirt library with virsh

How to use virt-manager and other virt* tools
Containers

LXC

LXD

Docker for system admins

Networking

Networking tools
DHCP: Install isc-kea
DHCP: Install isc-dhcp-server
Time sync: Using timedatectl and timesyncd
Time sync: Serve the Network Time Protocol
Install Open vSwitch with DPDK
Samba
Join Active Directory
Set up a file server
Set up a print server
Set up share access control
Set up an AppArmor profile
NT4 domain controller (legacy)
OpenLDAP backend (legacy)

Mail services

These guides will help you get started with the most common and popular mail services. If you aren’t sure which
service to use, check out our overview of these options.

How to install and configure...
Postfix
Dovecot
Exim4

Backups

These guides focus on helping you set up backup systems. If you need guidance on these options, see our introduction
to system backups.

How to install and configure...
Bacula
Rsnapshot
Shell scripts
Backup with shell scripts

Web

Proxy servers
Install a Squid server

Apache

Install Apache2

Configure Apache?2

Extend Apache2 with modules
Nginx

Install nginx
Configure nginx

30

Extend nginx with modules
Web Programming
Install PHP
Install Ruby on Rails
LAMP applications
Get started with LAMP applications
Install phpMyAdmin
Install WordPress

Graphics

On-system GPU
Nvidia driver installation
Virtual GPU
Virtualized GPU with QEMU/KVM

amd64 systems boot in either UEFI or legacy (“BIOS”) mode (many systems can be configured to boot in either
mode). The precise details depend on the system firmware, but both modes usually support the “Preboot eXecution
Environment” (PXE) specification, which allows the provisioning of a bootloader over the network.

The process for network booting the live server installer is similar for both modes and goes like this:

1.
2. The DHCP/BOOTP server tells the machine its network configuration and where to get the bootloader.

3.

4. The bootloader downloads configuration, also over TFTP, telling it where to download the kernel, RAM Disk

6.
7.

The to-be-installed machine boots, and is directed to network boot.
The machine’s firmware downloads the bootloader over TFTP and executes it.

and kernel command line to use.

The RAM Disk looks at the kernel command line to learn how to configure the network and where to download
the server ISO from.

The RAM Disk downloads the ISO and mounts it as a loop device.

From this point on the install follows the same path as if the ISO was on a local block device.

The difference between UEFI and legacy modes is that in UEFT mode the bootloader is an EFI executable, signed so
that is accepted by Secure Boot, and in legacy mode it is PXELINUX. Most DHCP/BOOTP servers can be configured
to serve the right bootloader to a particular machine.

Configuring DHCP/BOOTP and TFTP

There are several implementations of the DHCP/BOOTP and TFTP protocols available. This document will briefly
describe how to configure dnsmasq to perform both of these roles.

1.

Install dnsmasq with:
sudo apt install dnsmasq
Put something like this in /etc/dnsmasq.conf.d/pxe.conf:

interface=<your interface>,lo

bind-interfaces

dhcp-range=<your interface>,192.168.0.100,192.168.0.200
dhcp-boot=pxelinux.0

dhcp-match=set:efi-x86 64,option:client-arch,?7
dhcp-boot=tag:efi-x86 64,bootx64.efi

enable-tftp

tftp-root=/srv/tftp

Note
This assumes several things about your network; read man dnsmasq or the default /etc/dnsmasq.conf for
lots more options.

Restart dnsmasq with:

sudo systemctl restart dnsmasq.service

31

https://wiki.syslinux.org/wiki/index.php?title=PXELINUX

Serving the bootloaders and configuration.
‘We need to make this section possible to write sanely
Ideally this would be something like:

apt install cd-boot-images-amd64
ln -s /usr/share/cd-boot-images-amd64 /srv/tftp/boot-amd64

Mode-independent set up
1. Download the latest live server ISO for the release you want to install:

wget http://cdimage.ubuntu.com/ubuntu-server/daily-live/current/focal-live-server-amd64.iso
2. Mount it.

mount ubuntu-19.10-live-server-amd64.iso /mnt
3. Copy the kernel and initrd from it to where the dnsmasq serves TF'TP from:

cp /mnt/casper/{vmlinuz,initrd} /srv/tftp/

Set up the files for UEFI booting
1. Copy the signed shim binary into place:

apt download shim-signed
dpkg-deb --fsys-tarfile shim-signed*deb | tar x ./usr/lib/shim/shimx64.efi.signed -0 > /srv/tftp/bootx64.efi

2. Copy the signed GRUB binary into place:

apt download grub-efi-amd64-signed
dpkg-deb --fsys-tarfile grub-efi-amd64-signed*deb | tar x ./usr/lib/grub/x86 64-efi-signed/grubnetx64.efi.signed -
0 > /srv/tftp/grubx64.efi

3. GRUB also needs a font to be available over TFTP:

apt download grub-common
dpkg-deb --fsys-tarfile grub-common*deb | tar x ./usr/share/grub/unicode.pf2 -0 > /srv/tftp/unicode.pf2

4. Create /srv/tftp/grub/grub.cfg that contains:

set default="0"
set timeout=-1

if loadfont unicode ; then
set gfxmode=auto
set locale dir=$prefix/locale
set lang=en_US

fi

terminal output gfxterm

set menu color normal=white/black
set menu color highlight=black/light-gray
if background color 44,0,30; then
clear
fi

function gfxmode {
set gfxpayload="${1}"
if ["${1}" = "keep" 1; then
set vt _handoff=vt.handoff=7
else
set vt handoff=
fi

set linux_gfx_mode=keep

export linux gfx_ mode

32

menuentry 'Ubuntu 20.04' {
gfxmode $linux_gfx_mode
linux /vmlinux $vt handoff quiet splash
initrd /initrd

Set up the files for legacy boot
1. Download pxelinux.0 and put it into place:

wget http://archive.ubuntu.com/ubuntu/dists/eoan/main/installer-amd64/current/images/netboot/ubuntu-
installer/amd64/pxelinux.0

mkdir -p /srv/tftp

mv pxelinux.0 /srv/tftp/

5. Make sure to have installed package syslinux-common and then:
cp /usr/lib/syslinux/modules/bios/ldlinux.c32 /srv/tftp/
6. Create /srv/tftp/pxelinux.cfg/default containing:

DEFAULT install
LABEL install
KERNEL vmlinuz
INITRD initrd
APPEND root=/dev/ram0 ramdisk size=1500000 ip=dhcp url=http://cdimage.ubuntu.com/ubuntu-server/daily-
live/current/focal-live-server-amd64.iso

As you can see, this downloads the ISO from Ubuntu’s servers. You may well want to host it somewhere on your
infrastructure and change the URL to match.

This configuration is obviously very simple. PXELINUX has many, many options, and you can consult its documen-
tation at https://wiki.syslinux.org/wiki/index.php?title=PXELINUX for more.

This document provides the steps needed to install an system via netbooting and subiquity in UEFI mode with Ubuntu
20.04 (or later). The process is applicable to both of the architectures, arm64 and amd64. This process is inpired by
this Ubuntu Discourse post for legacy mode, which is UEFI’s predecessor. Focal (20.04, 20.04.5) and Groovy (20.10)
have been tested with the following method.

Configuring TFTP

This article assumes that you have setup your tftp (and/or DHCP/bootp if necessary, depending on your LAN
configuration) by following this Ubuntu Discourse post, or you could also consider build your own tftp in this way if
your DNS and DHCP is already well configured:

$ sudo apt install tftpd-hpa
If the installation is successful, check the corresponding TFTP service is active by this command:
$ systemctl status tftpd-hpa.service

It is expected to show active (running) from the output messages. We will also assume your tftp root path is
/var/lib/tftpboot in the remaining of this article.

Serving Files

You can skip the whole section of the following manual setup instruction by using this non-official tool.
The tool will setup your TFTP server to serve necessary files for netbooting.

Necessary Files
There are several files needed for this process. The following files are needed:

o Ubuntu live server image
— For arm64 architecture, its image name has a -arm64 suffix. For example, ubuntu-20.04.5-live-server-
armb4.1so.
— For amd64 architecture, its image name has a -amd64 suffix. For example, ubuntu-20.04.5-live-server-
amdb64.1iso.
e grub efi binary (and the corresponding grub.cfg, which is a txt file)

33

https://wiki.syslinux.org/wiki/index.php?title=PXELINUX
https://discourse.ubuntu.com/t/netbooting-the-live-server-installer/14510
https://discourse.ubuntu.com/t/netbooting-the-live-server-installer/14510
https://github.com/dannf/ubuntu-server-netboot

— For arm64 architecture, it is grubnetaa64.efi.signed.
— For amd64 architecture, it is grubnetx64.efi.signed.
e initrd extracted from your target Ubuntu live server image (use hwe-initrd instread if you want to boot with
HWE kernel)
e vmlinuz extracted from your target Ubuntu live server image (use hwe-vmlinuz instead if you want to boot with

HWE kernel)

Examples
In the following sections, we will take arm64 image as an example. This means the following files are used:

e Ubuntu 20.04.5 live server image wubuntu-20.04.5-live-server-arm6.iso from https://cdimage.ubuntu.com/
ubuntu/releases/20.04.5 /release /ubuntu-20.04.5-live-server-arm64.iso

e grub efi binary grubnetaa64.efi.signed from http://ports.ubuntu.com/ubuntu-ports/dists/focal/main/uefi/
grub2-arm64/current/grubnetaa64.efi.signed

e initrd extracted from wbuntu-20.04.5-live-server-armé64.iso

e vmlinuz extracted from ubuntu-20.04.5-live-server-armé64.iso

Please replace the corresponding files when you want to work on amd64 image. For example, your files may be:

o Ubuntu 20.04.5 live server image ubuntu-20.04.5-live-server-amd64.iso from https://releases.ubuntu.com/20.04.
5 /ubuntu-20.04.5-live-server-amd64.iso

e grub efi binary grubnetx64.efi.signed from http://archive.ubuntu.com/ubuntu/dists/focal/main/uefi/grub2-
amd64 /current/grubnetx64.efi.signed

e initrd extracted from wbuntu-20.04.5-live-server-amd64.iso

e vmlinuz extracted from ubuntu-20.04.5-live-server-amd64.iso

Download and Serve Grub EFI Binary

The grub binary helps us redirect the downloading path to the target files via grub.cfg. You may refer to this discourse
post to get more information about the PXE process and why we need this binary.

$ sudo wget http://ports.ubuntu.com/ubuntu-ports/dists/focal/main/uefi/grub2-armé64/current/grubnetaa64.efi.signed -
0 /var/lib/tftpboot/grubnetaa64.efi.signed

Please note you may need to change the archive dists name from focal to your target distribution name.

Download and Serve More Files

Fetch the installer by downloading a Ubuntu arm server iso, e.g. 20.04.5 live server arm64 iso. Please note the prefix
live is significant. We will need the files available only in the live version.

Mount the iso and copy the target files we need to the TFTP folder

sudo mount ./ubuntu-20.04.5-live-server-arm64.iso /mnt
sudo mkdir /var/lib/tftpboot/grub /var/lib/tftpboot/casper
sudo cp /mnt/boot/grub/grub.cfg /var/lib/tftpboot/grub/
sudo cp /mnt/casper/initrd /var/1lib/tftpboot/casper/

sudo cp /mnt/casper/vmlinuz /var/lib/tftpboot/casper/

So, the TFTP root folder should look like this now:

“ A B A A

$ find /var/lib/tftpboot/
/var/lib/tftpboot/
/var/lib/tftpboot/grub
/var/lib/tftpboot/grub/grub.cfg
/var/lib/tftpboot/grubnetaa6b4.efi.signed
/var/lib/tftpboot/casper
/var/lib/tftpboot/casper/initrd
/var/lib/tftpboot/casper/vmlinuz

Finally, let’s customize the grub menu so we could install our target image by fetching it directly over the internet.

$ sudo chmod +w /var/lib/tftpboot/grub/grub.cfg
$ sudo vi /var/lib/tftpboot/grub/grub.cfg

Add an new entry

menuentry "Install Ubuntu Server (Focal 20.04.5) (Pull the iso from web)" {
set gfxpayload=keep

34

https://cdimage.ubuntu.com/ubuntu/releases/20.04.5/release/ubuntu-20.04.5-live-server-arm64.iso
https://cdimage.ubuntu.com/ubuntu/releases/20.04.5/release/ubuntu-20.04.5-live-server-arm64.iso
http://ports.ubuntu.com/ubuntu-ports/dists/focal/main/uefi/grub2-arm64/current/grubnetaa64.efi.signed
http://ports.ubuntu.com/ubuntu-ports/dists/focal/main/uefi/grub2-arm64/current/grubnetaa64.efi.signed
https://releases.ubuntu.com/20.04.5/ubuntu-20.04.5-live-server-amd64.iso
https://releases.ubuntu.com/20.04.5/ubuntu-20.04.5-live-server-amd64.iso
http://archive.ubuntu.com/ubuntu/dists/focal/main/uefi/grub2-amd64/current/grubnetx64.efi.signed
http://archive.ubuntu.com/ubuntu/dists/focal/main/uefi/grub2-amd64/current/grubnetx64.efi.signed
https://discourse.ubuntu.com/t/netbooting-the-live-server-installer/14510
https://discourse.ubuntu.com/t/netbooting-the-live-server-installer/14510
http://cdimage.ubuntu.com/ubuntu/releases/20.04.5/release/ubuntu-20.04.5-live-server-arm64.iso

linux /casper/vmlinuz url=http://cdimage.ubuntu.com/ubuntu/releases/20.04.5/release/ubuntu-20.04.5-
live-server-arm64.iso only-ubiquity ip=dhcp ---
initrd /casper/initrd

}

ip=dhcp is for the dhcp management setup in the lab. wrlis used to point to your target image download url. Remember
to change them according to your scenario.

If everything goes well, you should get into the expected grub menu of the ephemeral live prompt. Select the entry
you just put in grub.cfg, which is Install Ubuntu Server (Focal 20.04.5) (Pull the iso from web) in our example.
Waiting a bit for downloading the iso and then you will see the subiquity welcome message. Enjoy the installation!

Appendix
Always Make Sure of the Serving File Names

For example, please make sure the target file name for linuz and initrd is correct. For example, the default initrd
binary file name of 20.04.5 is initrd, and it is initrd.lz for 20.10. Always make sure you serve the right file names. This
is a frequent troubleshooting issue. Pay attention on this detail could save a lot of your time.

Booting Screenshots

If your setup is correct, your grub.cfg should redirect the process to an ephemeral environment to download your
target image assigned in the grub entry of grub.cfg. You will see a screen like this if you are able to access console or
monitor device of your target machine:

ubuntu-

Wait a bit to complete downloading. If you see this subiquity welcome page, the installer is successfully launched via
your UEFI PXE setup. Configurations!!

35

Willkommen! Bienvenue! Welcome! Aofpo n

NMOEATE ! Welkom!

T your lang

[Help]

L]
L]
=
L]
L]
L]
L]
-
L]
L
L]
L]
-
L]
L
L]
L
-
L]
L
L]
L
-

e Open a terminal window on your workstation and make sure the ‘ipmitool’ package is installed.

e Verify if you can reach the BMC of the IBM Power system via ipmitool with a simple ipmitool call like:

$ ipmitool -I lanplus -H Power9Box -U <user> -P <password> power status

Chassis Power is off

or:

$ ipmitool -I lanplus -H Power9Box -U <user> -P <password> fru print 47

Product Name : Op
Product Version 1 op
Product Extra :
Product Extra

Product Extra

Product Extra

Product Extra

Product Extra

Product Extra

or:

enPOWER Firmware
en-power-SUPERMICRO-P9DSU-V2.12-20190404-prod
op-build-1b9269e
buildroot-2018.11.3-12-9g222837a
skiboot-v6.0.19

hostboot-c00d44a-pb1307d7

occ-8fa3854

linux-4.19.30-openpowerl-p22d1df8
petitboot-v1.7.5-p8f5fc86

$ ipmitool -I lanplus -H Power9Box -U <user> -P <password> sol info

Set in progress

Enabled

Force Encryption

Force Authentication
Privilege Level

Character Accumulate Level
Character Send Threshold
Retry Count

Retry Interval (ms)
Volatile Bit Rate (kbps)
Non-Volatile Bit Rate (kbp
Payload Channel

Payload Port

: set-complete
: true
: false
: false
: OPERATOR
(ms) : O
1 0
0
1 0
: 115.2
s) : 115.2
;1 (0x01)
1 623

e Open a second terminal and activate serial-over-LAN (sol), so that you have two terminal windows open:

1. to control the BMC via IPMI
2. for the serial-over-LAN console

o Activate serial-over-LAN:

36

$ ipmitool -I lanplus -H Power9Box -U <user> -P <password> sol activate

e And power the system on in the ‘control terminal’ and watch the sol console:

$ ipmitool -I lanplus -H Power9Box -U <user> -P <password> power on

It takes some time to see the first lines in the sol console:

[SOL Session operational. Use ~? for help]
--== Welcome to Hostboot ==--

.77131|secure|SecureROM valid - enabling functionality
.15860|secure|Booting in secure mode.

.59684 |Booting from SBE side O on master proc=00050000
.60502|ISTEP 6. 5 - host_init fsi

.87228|ISTEP 6. 6 - host set ipl parms

.11032|ISTEP 6. 7 - host discover targets
.67868 | HWAS | PRESENT> DIMM[03]=A0A0000000000000
.67870 | HWAS | PRESENT> Proc[05]=8800000000000000
.67871 |HWAS | PRESENT> Core[07]=3FFFOC33FFC30000
.98988|ISTEP 6. 8 - host update master tpm
.22711|SECURE|Security Access Bit> 0xC000000000000000
.22711|SECURE|Secure Mode Disable (via Jumper)> 0x0000000000000000
.22731|ISTEP 6. 9 - host gard

.43353 | HWAS | FUNCTIONAL> DIMM[03]=A0A0000000000000
.43354 | HWAS | FUNCTIONAL> Proc[05]=8800000000000000
.43356 | HWAS | FUNCTIONAL> Core[07]=3FFFOC33FFC30000
.44509|ISTEP 6.10 - host revert sbe mcs setup

N N N NN NN OOOOO0OO0OO0 Uil WwN

e After a moment the system reaches the Petitboot screen:

Petitboot (v1.7.5-p8f5fc86) 9006-12P 1302NXA

[Network: enP2plsQf0® / 0c:c4:7a:87:04:d8]
Execute
netboot enP2plsOf® (pxelinux.0)

[CD/DVD: sr@ / 2019-10-17-13-35-12-00]
Install Ubuntu Server

[Disk: sda2 / 295f571b-b731-4ebb-b752-60aadc80fclb]
Ubuntu, with Linux 5.4.0-14-generic (recovery mode)
Ubuntu, with Linux 5.4.0-14-generic
Ubuntu

System information
System configuration
System status log
Language

Rescan devices

Retrieve config from URL
Plugins (0)

*Exit to shell

Enter=accept, e=edit, n=new, x=exit, l=language, g=log, h=help
Select ‘*Exit to shell’

Notice:

Make sure you really watch the sol, since the petitboot screen (above) has a time out (usually 10 or 30 seconds)
and afterwards it automatically proceeds and it tries to boot from the configured devices (usually disk). This
can be prevented by just navigating in petitboot.

The petitboot shell is small Linux based OS:

37

Exiting petitboot. Type 'exit' to return.
You may run 'pb-sos' to gather diagnostic data

Notice:
In case one needs to gather system details and diagnostic data for IBM support, this can be done here by running
‘pb-sos’ (see msg).

o Now download the ‘live-server’ ISO image (notice that ‘focal-live-server-ppc64el.iso’ uses subiquity, ‘focal-server-
$390x.is0” uses d-i):
Again for certain web locations a proxy needs to be used:

/ # export http proxy=http://squid.proxy:3128 # in case a proxy is required

/ #

/ # wget http://cdimage.ubuntu.com/ubuntu-server/daily-live/current/focal-live-server-ppc64el.iso
Connecting to <proxy-ip>:3128 (<proxy-ip>:3128)

focal-live-server-pp 100% |...........oivuunnn. | 922M 0:00:00 ETA

e Next is to loop-back mount the ISO:

/ # mkdir iso
/ # mount -o loop focal-live-server-ppc64el.iso iso

Or in case autodetect of type is09660 is not supported or not working, explicitly specify the ‘is09660’ type:
/ # mount -t 1509660 -o loop focal-live-server-ppc64el.iso iso
e Now load kernel and initrd from the loop-back mount, specify any needed kernel parameters and get it going;:

/ # kexec -1 ./iso/casper/vmlinux --initrd=./iso/casper/initrd.gz --append="ip=dhcp url=http://cdimage.ubuntu.com/
server/daily-live/current/focal-live-server-ppc6del.iso http proxy=http://squid.proxy:3128 --- quiet"

/ # kexec -e

The system is going down NOW!

Sent SIGTERM to all processes

Sent SIGKILL to all processes

Note that in order to boot with and install the hwe kernel (if available), just substitute vmlinux with vmlinux-hwe in
the first kexec line.

e The system now performs the initial boot of the installer:

[1200.687004] kexec core: Starting new kernel

[1277.493883374,5] OPAL: Switch to big-endian 0S

[1280.465061219,5] OPAL: Switch to little-endian 0S

1n: /tmp/mountroot-fail-hooks.d//scripts/init-premount/lvm2: No such file or directory
Internet Systems Consortium DHCP Client 4.4.1

Copyright 2004-2018 Internet Systems Consortium.

All rights reserved.

For info, please visit https://www.isc.org/software/dhcp/
Listening on LPF/enP2pls0f3/0c:c4:7a:87:04:db

Sending on LPF/enP2pls0f3/0c:c4:7a:87:04:db

Listening on LPF/enP2pls0f2/0c:c4:7a:87:04:da

Sending on LPF/enP2pls0f2/0c:c4:7a:87:04:da

Listening on LPF/enP2pls0fl/0c:c4:7a:87:04:d9

Sending on LPF/enP2pls0fl/0c:c4:7a:87:04:d9

Listening on LPF/enP2pls0f0/0c:c4:7a:87:04:d8

Sending on LPF/enP2pls0f0/0c:c4:7a:87:04:d8

Sending on Socket/fallback

DHCPDISCOVER on enP2plsOf3 to 255.255.255.255 port 67 interval 3
(x1d=0x8d5704c)

DHCPDISCOVER on enP2pls0f2 to 255.255.255.255 port 67 interval 3
(x1d=0x94b25b28)

DHCPDISCOVER on enP2pls0fl to 255.255.255.255 port 67 interval 3
(x1id=0x4edd0558)

DHCPDISCOVER on enP2plsOf® to 255.255.255.255 port 67 interval 3
(x1d=0x61c90d28)

DHCPOFFER of 10.245.71.102 from 10.245.71.3

DHCPREQUEST for 10.245.71.102 on enP2pls0f@ to 255.255.255.255 port 67
(x1d=0x280dc961)

38

DHCPACK of 10.245.71.102 from 10.245.71.3 (xid=0x61c90d28)
bound to 10.245.71.102 -- renewal in 236 seconds.
Connecting to 91.189.89.11:3128 (91.189.89.11:3128)

focal-live-server-pp
focal-live-server-pp
focal-live-server-pp
focal-live-server-pp
focal-live-server-pp
focal-live-server-pp
focal-live-server-pp
focal-live-server-pp
focal-live-server-pp
focal-live-server-pp
focal-live-server-pp
focal-live-server-pp
focal-live-server-pp
focal-live-server-pp
focal-live-server-pp
focal-live-server-pp
focal-live-server-pp
focal-live-server-pp
focal-live-server-pp
focal-live-server-pp
focal-live-server-pp
focal-live-server-pp
focal-live-server-pp
focal-live-server-pp
focal-live-server-pp
focal-live-server-pp
focal-live-server-pp
focal-live-server-pp
focal-live-server-pp
focal-live-server-pp
focal-live-server-pp

1%

|*

8% |**

11% | ***

14% | ***x

17% | **xk

20% | *Hkkxk

248 | rHkkE Rk

27% | *RKREERKK

309 | *rEkEERKK

348 | xrkRAARRKK

379 | rorkkk Rk

L

4295 | HREKAAKKKA KKK

459 | HREKFARKIKA KKK

485 | *rEKAAA KKK A KKK

L

L R

509 | Hkkkkakkk kA Ak

£2% | HRERAAKKKAA KKK A A KKK

B5% | *oREAAA KA KKAA A KKK

£O% | *orHkA KA A A KKK

728 | rorkkskk ok ko ko

759 | Horkkk skt kR R ok

TO% | HoREARAARKKAAAKIAAA KKK KA KKK

825 | HREKAARKKAAAKKAAAKKIAAA KK
859 | *orkkk KA A KA A A A A KKK
885 | Hrdkk kA A A KK
Q185 | ookttt o R o ok
0395 | KKK AAAKKAAAKKKAAAKIKAA KKK KKK
0795 | *RkAAARKIAAAKKAAAAKKAAA KKK KKK

focal-live-server-pp 100%

|********************************|

922M

[l ol oo oMo oo oo o oMo Mo Mo Mo o o o o o o o o o o o Mo oo oo

:01:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:

04
38
33
31
29
27
26
25
23
22
21
20
19
18
17
16
15
14
13
11
10
09
08
07
06
05
04
03
02
01
00
00

ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA
ETA

mount: mounting /cow on /root/cow failed: No such file or directory

Connecting to plymouth: Connection refused

passwd: password expiry information changed.

[47.202736] /dev/loop3: Can't open blockdev

[52.672550] cloud-init[3759]: Cloud-init v. 20.1-10-g71af48df-0Oubuntul running
'init-local' at Wed, 18 Mar 2020 15:18:07 +0000. Up 51.87 seconds.

e And you will eventually reach the initial subiquity installer screen:

|
Willkommen! Bienvenue! Welcome! [obpo noxanoBatb! Welkom
N S N O I

Use UP, DOWN and ENTER keys to select your language.

[English >]
[Asturianu >]
[Catala >]
[Hrvatski >]
[Nederlands >]
[Suomi >]
[Francgais >]
[Deutsch >]
[EAAnViKd& >]
[Magyar >]
[Latviesu >]
[Norsk bokmal >]
[Polski >]
[Pyccknit >]

[Espafiol
[YkpaiHcbka

v
[EN——

v

* The rest is (subiquity-) installation as usual...
There is also documentation on booting the installer over the network.

o Notice:
Not all IBM Power machines come with the capability to install via a virtual CDROM !

o A separate system (ideally in the same network, because of ipmitool) is needed to host the ppc64el ISO Image
file, that is later used as virtual CDROM.

e Login to this separate host and make sure that the ipmitool package is installed:
$ sudo apt install ipmitool
as well as Samba:
$ sudo apt install samba

o Next is to setup and configure Samba:

$ sudo touch /etc/samba/smb.conf && sudo tee -a /etc/samba/smb.conf <<EOF
[winshare]

path=/var/winshare

browseable = yes

read only = no

guest ok = yes
EOF

And do a quick verification that the required lines are in:

$ tail -n 5 /etc/samba/smb.conf
[winshare]

path=/var/winshare

browseable = yes

read only = no

guest ok = yes

» (Optional)
For downloading the image you may have to use a proxy server:

$ sudo touch ~/.wgetrc && sudo tee -a ~/.wgetrc <<EOF
use_proxy=yes

http _proxy=squid.proxy:3128

https proxy=squid.proxy:3128

EOF

e The ISO image needs to be downloaded now:

$ wget http://cdimage.ubuntu.com/ubuntu/releases/focal/release/ubuntu-20.04-1ive-server-ppc64el.iso --
directory-prefix=/var/winshare

The proxy can also be passed over as wget argument, like this:

$ wget -e use proxy=yes -e http proxy=squid.proxy:3128 http://cdimage.ubuntu.com/ubuntu/releases/focal/release/ubl
20.04-1live-server-ppcb4el.iso --directory-prefix=/var/winshare

e Change file mode of the ISO image file:

$ sudo chmod -R 755 /var/winshare/
$ 1s -1 /var/winshare/
-rwxr-xr-x 1 ubuntu ubuntu 972500992 Mar 23 08:02 focal-live-server-ppc64el.iso

¢ Restart and check the Samba service:

$ sudo service smbd restart
$ sudo service smbd status
® smbd.service - Samba SMB Daemon
Loaded: loaded (/lib/systemd/system/smbd.service; enabled; vendor
preset: ena
Active: active (running) since Tue 2020-02-04 15:17:12 UTC; 4s ago

40

https://ubuntu.com/server/docs/install/netboot-ppc64el

Docs: man:smbd(8)
man:samba(7)
man:smb.conf(5)
Main PID: 6198 (smbd)
Status: "smbd: ready to serve connections...
Tasks: 4 (limit: 19660)
CGroup: /system.slice/smbd.service
6198 /usr/sbin/smbd --foreground --no-process-group
6214 /usr/sbin/smbd --foreground --no-process-group
6215 /usr/sbin/smbd --foreground --no-process-group
L6220 /usr/sbin/smbd --foreground --no-process-group
Feb 04 15:17:12 host systemd[1]: Starting Samba SMB Daemon..
Feb 04 15:17:12 host systemd[1]: Started Samba SMB Daemon.

Test Samba, share:

ubuntu@host:~$ smbclient -L localhost
WARNING: The "syslog" option is deprecated
Enter WORKGROUP\ubuntu's password:

Sharename Type Comment

print$ Disk Printer Drivers

winshare Disk

IPC$ IPC IPC Service (host server (Samba, Ubuntu))
Reconnecting with SMB1 for workgroup listing.

Server Comment

Workgroup Master

WORKGROUP host

Get the IP address of the Samba host:

$ ip -4 -brief address show

lo UNKNOWN 127.0.0.1/8
ibmveth2 UNKNOWN 10.245.246.42/24
(Optional)

Even more testing if the Samba share is accessible from remote:

user@workstation:~$ mkdir -p /tmp/test

user@workstation:~$ sudo mount -t cifs -o

username=guest,password=guest //10.245.246.42/winshare /tmp/test/
user@workstation:~$ ls -la /tmp/test/

total 1014784

drwxr-xr-x 2 root root 0 May 4 15:46 .

drwxrwxrwt 18 root root 420 May 4 19:25 ..

-rwxr-xr-x 1 root root 1038249984 May 3 19:37 ubuntu-20.04-live-server-ppc64del.iso

Now use a browser and navigate to the BMC of the Power system that should be installed (let’s assume the
BMC’s IP address is 10.245.246.247):

firefox http://10.245.246.247/

Login to the BMC and find and select:
Virtual Media --> CDROM

Enter the IP address of the Samba share:
10.245.246.42
and the path to the Samba share:

\winshare\focal-live-server-ppc64el.iso

Click Save and Mount
(make sure that the virtual CDROM is really properly mounted !)

CD-ROM Image:

This option allows you to share a CD-ROM image over a Windows Share with a

41

maximum size of 4.7GB. This image will be emulated to the host as USB device.

Device 1 There is an iso file mounted.
Device 2 No disk emulation set.
Device 3 No disk emulation set.

<Refresh Status>

Share host: 10.245.246.42

Path to image: \winshare\focal-live-server-ppc64el.iso
User (optional):

Password (optional):

<Save> <Mount> <Unmount>

e Notice:
It’s important that you see a status like:

Device 1 There is an iso file mounted

Only in this case the virtual CDROM is properly mounted and you will see the boot / install from CDROM
entry in petitboot:

[CD/DVD: sr@ / 2020-03-23-08-02-42-00]
Install Ubuntu Server

e Now use the ipmitool to boot the system into the petitboot loader:

$ ipmitool -I lanplus -H 10.245.246.247 -U ADMIN -P <password> power status
$ ipmitool -I lanplus -H 10.245.246.247 -U ADMIN -P <password> sol activate
$ ipmitool -I lanplus -H 10.245.246.247 -U ADMIN -P <password> power on
Chassis Power Control: Up/On

¢ And reach the Petitboot screen:

Petitboot (v1.7.5-p8f5fc86) 9006-12C B0S0026

[Network: enP2pls0f0 / ac:1f:6b:09:c0:52]
execute
netboot enP2pls0f® (pxelinux.0)

System information
System configuration
System status log
Language

Rescan devices

Retrieve config from URL
*Plugins (0)

Exit to shell

Enter=accept, e=edit, n=new, x=exit, l=language, g=log, h=help
Default boot cancelled

e And make sure that booting from CDROM is enabled:

Petitboot (v1.7.5-p8f5fc86) 9006-12C B0S0026

[Network: enP2pls@f0® / ac:1f:6b:09:c0:52]
Execute
netboot enP2plsOfO (pxelinux.0)

[Disk: sda2 / ebdb022b-96b2-4f4f-ae63-69300ded13f4]
Ubuntu, with Linux 5.4.0-12-generic (recovery mode)
Ubuntu, with Linux 5.4.0-12-generic
Ubuntu

System information
System configuration
System status log
Language

Rescan devices

42

Retrieve config from URL
*Plugins (0)
Exit to shell

Enter=accept, e=edit, n=new, x=exit, l=language, g=log, h=help
[sda3] Processing new Disk device

Petitboot System Configuration

Autoboot: () Disabled
(*) Enabled

Boot Order: (0) Any CD/DVD device
(1) disk: sda2 [uuid: ebdb022b-96b2-4f4f-ae63-69300ded13f4]
(2) net: enP2pls0fO [mac: ac:1f:6b:09:c0:52]

[Add Device]
[Clear & Boot Any]
[Clear]
Timeout: 30 seconds
Network: (*) DHCP on all active interfaces

() DHCP on a specific interface
() Static IP configuration

tab=next, shift+tab=previous, x=exit, h=help

Petitboot System Configuration

Network: (*) DHCP on all active interfaces
() DHCP on a specific interface
() Static IP configuration

DNS Server(s): (eg. 192.168.0.2)
(if not provided by DHCP server)

HTTP Proxy:

HTTPS Proxy:

Disk R/W: () Prevent all writes to disk
(*) Allow bootloader scripts to modify disks

Boot console: (*) /dev/hvcO [IPMI / Serial]
() /dev/ttyl [VGA]

Current interface: /dev/hvcO

[0K 1 [Help 1 [Cancel 1

tab=next, shift+tab=previous, x=exit, h=help
o Now select the ‘Install Ubuntu Server’ entry below the CD/DVD entry:

[CD/DVD: sr@ / 2020-03-23-08-02-42-00]
* Install Ubuntu Server

o And let Petitboot boot from the (virtual) CDROM image:

Sent SIGKILL to all processes
[119.355371] kexec core: Starting new kernel
[194.483947394,5] OPAL: Switch to big-endian 0S

43

[197.454615202,5] OPAL: Switch to little-endian 0S

o Finally the initial subiquity installer screen will show up in the console:

]
Willkommen! Bienvenue! Welcome! [obpo noxanosatb! Welkom
]

Use UP, DOWN and ENTER keys to select your language.

[English >]
[Asturianu >]
[Catala >]
[Hrvatski >]
[Nederlands >]
[Suomi >]
[Francais >]
[Deutsch >]
[EAANV1KA >]
[Magyar >]
[Latviedu >]
[Norsk bokmdl >]
[Polski >]
[Pycckun >]
[Espafiol >]
[YkpaiHcbka >]

o The rest of the installation is business as usual ...

Doing a manual live installation as described here - meaning without specifying a parmfile - is supported since Ubuntu
Server LTS 20.04.5 (‘Focal’) and any newer release, like 20.10 (‘Groovy’).

The following guide assumes that a z/VM guest has been defined, and that it is able to either reach the public
cdimage.ubuntu.com server or an internal FTP or HTTP server that hosts an Ubuntu Server 20.04 installer image, like
this 20.04 (a.k.a. Focal) daily live image here: http://cdimage.ubuntu.com/ubuntu/releases/20.04.5/release/ubuntu-
20.04.5-live-server-s390x.iso

¢ Find a place to download the installer image:

user@workstation:~$ wget
http://cdimage.ubuntu.com/ubuntu/releases/20.04.5/release/ubuntu-20.04.5-1ive-server-s390x.1iso

--2020-08-08 16:01:52--
http://cdimage.ubuntu.com/ubuntu/releases/20.04.5/release/ubuntu-20.04.5-1ive-server-s390x.1iso

Resolving cdimage.ubuntu.com (cdimage.ubuntu.com)... 2001:67c:1560:8001::1d, 2001:67c:1360:8001::27, 2001:67c: 136
Connecting to cdimage.ubuntu.com

(cdimage.ubuntu.com) |2001:67c:1560:8001::1d|:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 705628160 (673M) [application/x-1509660-image]

Saving to: ‘ubuntu-20.04.5-live-server-s390x.iso’

ubuntu-20.04.5-1ive 100%] >] 672.94M 37.1MB/s in
17s

2020-08-08 16:02:10 (38.8 MB/s) - ‘ubuntu-20.04.5-live-server-s390x.iso’ saved
[705628160/705628160]

o Now loop-back mount the ISO to extract four files that are needed for a z/VM guest installation:

user@workstation:~$ mkdir iso
user@workstation:~$ sudo mount -o loop ubuntu-20.04.5-live-server-s390x.iso iso
user@workstation:~$

user@workstation:~$ ls -1 ./iso/boot/{ubuntu.exec,parmfile.*,kernel.u*,initrd.u*}
./1iso/boot/initrd.ubuntu

./1iso/boot/kernel.ubuntu

./iso/boot/parmfile.ubuntu

./iso/boot/ubuntu.exec

44

http://cdimage.ubuntu.com/ubuntu/releases/20.04.5/release/ubuntu-20.04.5-live-server-s390x.iso
http://cdimage.ubuntu.com/ubuntu/releases/20.04.5/release/ubuntu-20.04.5-live-server-s390x.iso

o Now transfer these four files to your z/VM guest (for example to its ‘A’ file mode), using either the 3270 terminal
emulator or ftp.

e Then log on to your z/VM guest that you want to use for the installation. In this example it will be guest
‘10.222.111.24".

e Execute the ubuntu REXX script to kick-off the installation:

ubuntu

00: 0000004 FILES PURGED

00: RDR FILE 0125 SENT FROM 10.222.111.24 PUN WAS 0125 RECS 101K CPY 001 A NOHOLD NO

KEEP

00: RDR FILE 0129 SENT FROM 10.222.111.24 PUN WAS 0129 RECS 0001 CPY 001 A NOHOLD NO

KEEP

00: RDR FILE 0133 SENT FROM 10.222.111.24 PUN WAS 0133 RECS 334K CPY 001 A NOHOLD NO

KEEP

00: 0000003 FILES CHANGED

00: 0000003 FILES CHANGED

01: HCPGSP26271 The virtual machine is placed in CP mode due to a SIGP initial CPU reset from CPU 00.
02: HCPGSP2627I The virtual machine is placed in CP mode due to a SIGP initial CPU reset from CPU 00.
03: HCPGSP2627I The virtual machine is placed in CP mode due to a SIGP initial CPU reset from CPU 00.
- 0.390935| Initramfs unpacking failed: Decoding failed

Unable to find a medium container a live file system

e In the usual case that no parmfile was configured, the installation system now offers to interactively configure
the basic network:

Attempt interactive netboot from a URL?
yes no (default yes): yes
Available geth devices:
0.0.0600 0.0.0603
zdev to activate (comma separated, optional): 0600
QETH device 0.0.0600:0.0.0601:0.0.0602 configured
Two methods available for IP configuration:
* static: for static IP configuration
* dhcp: for automatic IP configuration
static dhcp (default 'dhcp'): static
ip: 10.222.111.24
gateway (default 10.222.111.1):
dns (default .):
vlan id (optional):
http://cdimage.ubuntu.com/ubuntu/releases/20.04.5/release/ubuntu-20.04.5-1ive-server-s390x.iso (default)
url: ftp://10.11.12.2:21/ubuntu-live-server-20.04.5/ubuntu-20.04.5-1ive-server-s390x.1iso
http proxy (optional):

e Make sure that the same version of the ISO image that was used to extract the installer files — kernel and
initrd — is referenced at the ‘url:’ setting. It can be at a different location, for example directly referencing
the public cdimage.ubuntu.com server: http://cdimage.ubuntu.com/ubuntu/releases/20.04.5 /release/ubuntu-20.
04.5-live-server-s390x.iso

e The boot-up of the live-server installation now completes:

Configuring networking...

QETH device 0.0.0600:0.0.0601:0.0.0602 already configured

IP-Config: enc600 hardware address 02:28:0a:00:00:39 mtu 1500

IP-Config: enc600 guessed broadcast address 10.222.111255

IP-Config: enc600 complete:

address: 10.222.111.24 broadcast: 10.222.111255 netmask: 255.255.255.0

gateway: 10.222.111.1 dns0 1 10.222.111.1 dnsl : 0.0.0.0

rootserver: 0.0.0.0 rootpath:

filename
Connecting to 10.11.12.2:21 (10.11.12.2:21)

focal-live-server-s 5% !* ! 35.9M 0:00:17 ETA
focal-live-server-s 19% |¥¥kokokk ' 129M 0:00:08 ETA
focal-live-server-s 33% [!¥¥kkfxdokiork ! 225M 0:00:05 ETA

45

http://cdimage.ubuntu.com/ubuntu/releases/20.04.5/release/ubuntu-20.04.5-live-server-s390x.iso
http://cdimage.ubuntu.com/ubuntu/releases/20.04.5/release/ubuntu-20.04.5-live-server-s390x.iso

focal-live-server-s 49% !¥ikfikdtiokiitx ! 330M 0:00:04 ETA
focal-live-server-s 60% !*¥xkikikiokitiokitirk ! 4063M 0:00:03 ETA
focal-live-server-s 768 |¥xkkkiiokidktooktioktkkoktkx ! 506M 0:00:01 ETA
focal-live-server-s 89% !F¥iiikiiokidoiikiioftiofrtotoktiok ! 594M 0:00:00 ETA
focal-live-server-s 100% !*¥¥fiktiokokioktdofokfroktokrksx] 663M 0:00:00 ETA

passwd: password expiry information changed.
QETH device 0.0.0600:0.0.0601:0.0.0602 already configured
no search or nameservers found in /run/net-enc600.conf /run/net-*.conf /run/net6

- %

-

-

-

1

.conf

594.766372| /dev/loop3: Can't open blockdev
595.610434| systemd-1|: multi-user.target: Job getty.target/start deleted to
break ordering cycle starting with multi-user.target/start

-0;1;31m SKIP

-0m| Ordering cycle found, skipping

-0;1;39mLogin Prompts -0m

595.623027| systemd-1|: Failed unmounting /cdrom.

—-0;1;31mFAILED -Om| Failed unmounting

=-0;1;39m/cdrom —-0m.

598.973538| cloud-init-1256|: Cloud-init v. 20.2-45-g5f7825e2-0ubuntul runnin

g 'init-local' at Thu, 04 Jun 2020 12:06:46 +0000. Up 598.72 seconds.
- 599.829069| cloud-init-1288|: Cloud-init v. 20.2-45-9g5f7825e2-0ubuntul runnin
g 'init' at Thu, 04 Jun 2020 12:06:47 +0000. Up 599.64 seconds.
- 599.829182| cloud-init-1288|: ci-info: ++++++ttttttttttttttttttttttt+++++++Ne
t device infot+++++t+tttttttttttttttttttttt b+t
- 599.829218| cloud-init-1288|: ci-info: +-------- +o----- LR LR
R e Fommmm e T +
= 599.829255| cloud-init-1288|: ci-info: ! Device ! Up ! Address

! Mask ! Scope ! Hw-Address !
- 599.829292| cloud-init-1288|: ci-info: +-------- +o----- L R T
L SR Fommmea T +
- 599.829333| cloud-init-1288|: ci-info: ! enc600 ! True ! 10.222.111.24

! 255.255.255.0 ! global ! 02:28:02:00:00:39 !
- 599.829376| cloud-init-1288|: ci-info: ! enc600 ! True ! fe80::28:aff:feb0:3
/64 ! . ! link ! 02:28:0a2:00:00:39 !
- 599.829416| cloud-init-1288]|: ci-info: ! lo I True ! 127.0.0.1

! 255.0.0.0 ! host ! . !
- 599.829606| cloud-init-1288|: ci-info: ! lo ! True ! 1117128

! . ! host ! . !
- 599.829684| cloud-init-1288|: ci-info: +-------- +o----- L R R
L ST T Fommama LT +
-~ 599.829721| cloud-init-1288|: ci-info: ++++++ttttttttttttttt+++++++++Route IP
V4 info+++ttttttttttttttttttttt
- 599.829754| cloud-init-1288|: ci-info: +------- R R
o o toamenn- +
- 599.829789| cloud-init-1288|: ci-info: ! Route ! Destination ! Gateway
! Genmask ! Interface ! Flags !
- 599.829822| cloud-init-1288|: ci-info: +------- T R
oo R LR o +
- 599.829858| cloud-init-1288|: ci-info: ! 0 ! 0.0.0.0 1 160.222.111.1
! 0.0.0.0 ! enc600 ! uGg !
- 599.829896| cloud-init-1288|: ci-info: ! 1 1 10.222.1110 ! 0.0.0.0
! 255.255.255.0 ! enc600 ! U !
- 599.829930| cloud-init-1288|: ci-info: +------- R LT R
. R R +
- 599.829962| cloud-init-1288|: ci-info: +++++++++++++++++++Route IPV6 info++++
B S
- 599.829998| cloud-init-1288|: ci-info: +------- R L +-----
------ s
- 599.830031| cloud-init-1288|: ci-info: ! Route ! Destination ! Gateway ! Inte
rface ! Flags !
- 599.830064| cloud-init-1288|: ci-info: +------- R e L +o----
------ T
- 599.830096| cloud-init-1288|: ci-info: ! 1 I fe80::/64 ! HH ! en
c600 ! U !
- 599.830131| cloud-init-1288|: ci-info: ! 3 ! local ! HH ! en

46

c600 ! U !

~ 599.830164| cloud-init-1288|:

c600 ! U !

- 599.830212| cloud-init-1288]|:

------ Fommee ot

~ 601.077953| cloud-init-1288]:
~ 601.078101| cloud-init-1288]:

ssh_host rsa key

- 601.078136| cloud-init-1288]:

host rsa key.pub

- 601.078170| cloud-init-1288]:
- 601.078203| cloud-init-1288]:

fJO0 root§ubuntu-server
- 601.078236]
- 601.078274|
- 601.078307|
- 601.078340]
- 601.078373]
- 601.078406|
- 601.078439]
- 601.078471|
- 601.078503]
- 601.078537|
- 601.078570]
- 601.078602]
- 601.078635]
- 601.078671|
ssh _host dsa key

~ 601.078704| cloud-init-1288]:

host dsa key.pub

- 601.078736| cloud-init-1288]:
- 601.078767| cloud-init-1288]:

Pg0 root§ubuntu-server

~ 601.078800| cloud-init-1288|:
~ 601.078835| cloud-init-1288|:
~ 601.078867| cloud-init-1288]:
~ 601.078899| cloud-init-1288]:
~ 601.078932| cloud-init-1288]:
~ 601.078964| cloud-init-1288|:
~ 601.078996| cloud-init-1288]:
~ 601.079029| cloud-init-1288]:
~ 601.079061| cloud-init-1288]:
~ 601.079094| cloud-init-1288]:
~ 601.079135| cloud-init-1288]:
~ 601.079167| cloud-init-1288]:
~ 601.079199| cloud-init-1288]:
- 601.079231| cloud-init-1288]:

ssh _host ecdsa key

- 601.079263| cloud-init-1288]:

host ecdsa key.pub

- 601.079295| cloud-init-1288]:
- 601.079327| cloud-init-1288]:

i8k root§ubuntu-server
- 601.079362|
- 601.079394|
- 601.079426|
- 601.079458]
- 601.079491|
- 601.079525]|
- 601.079557|
- 601.079589|
- 601.079621|
- 601.079653]

cloud-init-1288|:
cloud-init-1288|:
cloud-init-1288]:
cloud-init-1288]:
cloud-init-1288]:
cloud-init-1288]:
cloud-init-1288]:
cloud-init-1288]:
cloud-init-1288]:
cloud-init-1288]:
cloud-init-1288]:
cloud-init-1288]:
cloud-init-1288]:
cloud-init-1288]:

cloud-init-1288]:
cloud-init-1288]:
cloud-init-1288]:
cloud-init-1288|:
cloud-init-1288]:
cloud-init-1288]:
cloud-init-1288]:
cloud-init-1288]:
cloud-init-1288]:
cloud-init-1288]:

ci-info: ! 4 ! ffo0::/8 !

Generating public/private rsa key pair.
Your identification has been saved in /etc/ssh/

Your public key has been saved in /etc/ssh/ssh

The key fingerprint is:

SHA256 : kHtkABZwk8AE80TyOKPzTRcYpht4iXdZmJ37Cgi3

The key's randomart image is:
+----RSA 3072|----+
lTo+*+B++* . . !
! 0. X+=+=+ !
' +.0.= oo !
I ++.+.=0 !
! *.=.050 !
! = +.E . !

+----~SHA256] - - - - - +

Generating public/private dsa key pair.
Your identification has been saved in /etc/ssh/

Your public key has been saved in /etc/ssh/ssh_

The key fingerprint is:

SHA256: ZBNyksVVYZVhKJelL+PWKpsdUcn21yiceX/DboXQd

The key's randomart image is:
+----DSA 1024|----+
! Ot++...+=+0 !

! .+ !
+-----SHA256| - - - - - +

Generating public/private ecdsa key pair.
Your identification has been saved in /etc/ssh/

Your public key has been saved in /etc/ssh/ssh_

The key fingerprint is:

SHA256:Bitar9fVHUH2FnYVSJInldprdAcM5EstOdmRWFTU

The key's randomart image is:
+----ECDSA 256]|---+
! 0**0%& !
! 0.0B+=!
! . B *o+!

47

- 601.079685| cloud-init-1288|: ! . !

- 601.079717| cloud-init-1288|: +-----SHA256|----- +

- 601.079748| cloud-init-1288|: Generating public/private ed25519 key pair.

- 601.079782| cloud-init-1288|: Your identification has been saved in /etc/ssh/
ssh _host ed25519 key

- 601.079814| cloud-init-1288|: Your public key has been saved in /etc/ssh/ssh_
host ed25519 key.pub

- 601.079847| cloud-init-1288|: The key fingerprint is:

- 601.079879| cloud-init-1288|: SHA256:yWsZ/5+7u7D3SIcd7HYnyajXyeWnt5nQ+ZI3So3b
eN8 root&ubuntu-server

- 601.079911| cloud-init-1288|: The key's randomart image is:

- 601.079942| cloud-init-1288|: +---ED25519 256|--+

- 601.079974| cloud-init-1288|: !

- 601.080010| cloud-init-1288|: !

- 601.080042| cloud-init-1288|: !

- 601.080076| cloud-init-1288|: ! - .

- 601.080107| cloud-init-1288|: ! S o !
- 601.080139| cloud-init-1288|: ! = o=++!
- 601.080179| cloud-init-1288|: ! + . 0**§=|
- 601.080210| cloud-init-1288|: ! . 00+&B% !
- 601.080244| cloud-init-1288|: ! . .0%%/E!
- 601.080289| cloud-init-1288|: +-----SHA256|----- +

- 612.293731| cloud-init-2027|: Cloud-init v. 20.2-45-9g5f7825e2-0ubuntul runnin

'modules:config' at Thu, 04 Jun 2020 12:06:59 +0000. Up 612.11 seconds.
612.293866| cloud-init-2027|: Set the following 'random' passwords
612.293940| cloud-init-2027|: installer:wgYsAPzYQbFYqU2X2hYm

ci-info: no authorized SSH keys fingerprints found for user installer.

<14>Jun 4 12:07:00 ec2:

<14>Jun 4 12:07:00 ec2: #H##H###HHHHHHHHHHTHHHHH T

HAHRRH

<14>Jun 4 12:07:00 ec2: ----- BEGIN SSH HOST KEY FINGERPRINTS-----

<14>Jun 4 12:07:00 ec2: 1024 SHA256:ZBNyksVVYZVhKJelL+PWKpsdUcn2lyiceX/DboXQdPq0
root§ubuntu-server (DSA)

<14>Jun 4 12:07:00 ec2: 256 SHA256:Bitar9fVHUH2FnYVSJJInldprdAcM5EstOdmRWFTUi8k
root§ubuntu-server (ECDSA)

<14>Jun 4 12:07:00 ec2: 256 SHA256:yWsZ/5+7u7D3SIcd7HYnyajXyeWnt5nQ+ZI3So3beN8
root§ubuntu-server (ED25519)

<14>Jun 4 12:07:00 ec2: 3072 SHA256:kHtkABZwk8AE80fyOKPzTRcYpht4iXdZmJ37Cgi3fJl0
root§ubuntu-server (RSA)

<14>Jun 4 12:07:00 ec2: ----- END SSH HOST KEY FINGERPRINTS-----

<14>Jun 4 12:07:00 ecC2: #HH#H#HHHHAAHHHHHHHHHHHHHHHAAHHH AR R R HHHH A A

HHH#HHH

Q

1

1

ecdsa-sha2-nistp256 AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBIXM6t1/
350t/aPI59ThIJBzg+qGJJI17+1ZVHfzMEDbsTwpM7e9pstPZUM7W1IHWgDvLQDBmM/hGg4u8ZGEqmIMI=
root§ubuntu-server
ssh-ed25519 AAAAC3NzaCllZDIINTES5AAAAIN7QtU+en+RGruj2zuxwWgkMgLmh+35/GR/0EOD16k4nA
root§ubuntu-server
ssh-rsa AAAAB3NzaClyc2EAAAADAQABAAABgQDJIdKT7iUAvSjkUQI113fHysE+Gj7ulwGgGjYh639px
kcHEbbS3V48eR0Y9IBmMDISEHT j YXGY2wEHOtGJ jNRROGIhZIVNR+qAqIBioj9d/TwXEgwLP8eAy9aVtIB
K1rIylnMQltx/SIhgiymjHLCtK1VoIS410frTI9FiF54Q1i/JeJ1lwGIIW3W2XgcY90DTOQ5g3PSm1Z8KTR
imTfOFy7WIEPAO8b3fimYWsz9enuS/gECEUGV3M1MvrzpAQju27NUEOpSMZHR62IMXGVIjYIu3dUkAzm
MBdwxHdLMQ8rI8PehyHDiFr6g2Ifxoy5QLmb3hISKlq/R6pLLeXbb748gN2i8WCVKOAEGTa/kIDW3RNU
VYd+ACBBzyhVbiw7W1CQW/ohik3wyosUyi9nJq2Iq0A7kkGH+1XoYq/e4/MogxhIK/oaiudYAkaCWmP1
r/fBa3h1fof7mVHvXA3tWZc2wYUxFPTmePvpydP2PSctHMhgboaHrGIY2CdSqg8SUdPKrOE= root§ub
untu-server

- 612.877357| cloud-init-2045|: Cloud-init v. 20.2-45-9g5f7825e2-0ubuntul runnin
g 'modules:final' at Thu, 04 Jun 2020 12:07:00 +0000. Up 612.79 seconds.

- 612.877426| cloud-init-2045|: ci-info: no authorized SSH keys fingerprints fo
und for user installer.

- 612.877468| cloud-init-2045|: Cloud-init v. 20.2-45-9g5f7825e2-0ubuntul finish
ed at Thu, 04 Jun 2020 12:07:00 +0000. Datasource DataSourceNoCloud -seed=/var/1l

48

ib/cloud/seed/nocloud|—~dsmode=net|. Up 612.87 seconds

- 612.877509| cloud-init-2045|: Welcome to Ubuntu Server Installerl

- 612.877551| cloud-init-2045|: Above you will find SSH host keys and a random
password set for the “installer” user. You can use these credentials to ssh-in a
nd complete the installation. If you provided SSH keys in the cloud-init datasou
rce, they were also provisioned to the installer user.

- 612.877634| cloud-init-2045|: If you have access to the graphical console, 1i
ke TTY1 or HMC ASCII terminal you can complete the installation there too.

It is possible to connect to the installer over the network, which
might allow the use of a more capable terminal.

To connect, SSH to installer§l10.222.111.24.
The password you should use is "KRuXtz5dURAyPkcjcUvA".
The host key fingerprints are:

RSA SHA256: 3IvYMKUO51QSKBx0VZUIMzdtXpz3RI13dEQsg3UWc54

ECDSA SHA256:xd1xnkBpn49DUbuP8uWro2mulGM4MtngR2WEWg1fS30

ED25519 SHA256:Hk3+/4+X7NJBH16/e/6xFhNXsbHBsOvt6i8YEFUepko
Ubuntu Focal Fossa (development branch) ubuntu-server ttySo

e The next step is to remotely connect to the install system and to proceed with the Subiquity installer.

o Please notice that at the end of the installer boot-up process, all necessary data is provided to proceed with
running the installer in a remote SSH shell. The command to execute locally is:

user@workstation:~$ ssh installer@l10.222.111.24

e A temporary random password for the installation was created and shared as well, which should be used without
the leading and trailing double quotes:

"KRuXtz5dURAyPkcjcUvA"

user@workstation:~$ ssh installer@l0.222.111.24

The authenticity of host '10.222.111.24 (10.222.111.24)"' can't be established.
ECDSA key fingerprint is

SHA256 : xd1xnkBpn49DUbuP8uWro2mulGM4MtngR2WEWg1fS30.

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added '10.222.111.24' (ECDSA) to the list of known hosts.
installer@l0.222.111.24's password: KRuXtz5dURAyPkcjcUvA

¢ One may now temporarily see some login messages like these:
Welcome to Ubuntu Focal Fossa (development branch) (GNU/Linux 5.4.0-42-generic s390x)
* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/pro

System information as of Wed Jun 3 17:32:10 UTC 2020

System load: 0.0 Memory usage: 2% Processes: 146
Usage of /home: unknown Swap usage: 0% Users logged in: 0

0 updates can be installed immediately.
0 of these updates are security updates.

The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described in the

individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by applicable law.

o Eventually, the initial Subiquity installer screen appears:

49

Willkommen! Bienvenue! Welcome! ??7?7?? ??2???2?7??! Welkom!

Use UP, DOWN and ENTER keys to select your language.

[English

[Asturianu
[Cataln

[Hrvatski

[Nederlands
[Suomi

[Francais

[Deutsch

[Magyar

[Latvie?u

[Norsk bokm?1
[Polski

[Espanol

V V.V V V V V V V V V VvV V

e From here just proceed with the installation as usual ...
(I'm leaving some pretty standard screenshots here just to give an example for a basic installation ...)

Keyboard configuration

Please select your keyboard layout below, or select "Identify keyboard" to

detect your layout automatically.

Layout: [English (US) v 1]

Variant: [English (US) v]

[Identify keyboard]

[Done 1
[Back 1
Zdev setup
ID ONLINE NAMES ~

generic-ccw
0.0.0009
0.0.000c
0.0.000d
0.0.000e

vV V. V VvV

dasd-eckd
.0.0190
.0191
.019d
.019%e
.0200
.0300
.0400

(ol ol ol oo oo
[clol oo ool

vV V.V V VvV V VvV

50

0.0.0592 > v
[Continue]
[Back]

o If the list is long, hit the End key that will automatically scroll you down to the bottom of the Z devices list and
screen.

Zdev setup

ID ONLINE NAMES ~

generic-ccw
0.0.0009
0.0.000c
0.0.000d
0.0.000e

vV V. V VvV

dasd-eckd

.0.0190 >

.0191 >

.019d >

.019%e S———
.0200 >|< (close) |
.0300 >| Enable |

.0400 >| Disable |
.0592 e v

[cl ool ool o ool
(ol ol ool o ool

[Continue
[Back]

—

Zdev setup

ID ONLINE NAMES ~

generic-ccw
0.0.0009
0.0.000c
0.0.000d
0.0.000e

vV V vV VvV

dasd-eckd
.0.0190
.0191
.019d
.019%e
.0200 online dasda
.0300
.0400
.0592

[cl ol ol ool o ool
(ol ool oo oo

vV V.V V V V V VvV

—

[Continue
[Back 1

Zdev setup

dasd-eckd
0.0.0190
0.0.0191
0.0.019d
0.0.019%e

vV V VvV VvV

51

0.0.0200 online dasda
0.0.0300
0.0.0400
0.0.0592

vV V. VvV VvV

geth
0.0.0600:0.0.0601:0.0.0602 enc600
0.0.0603:0.0.0604:0.0.0605

dasd-eckd
0.0.1607 >

\
< —_——

[Continue]
[Back

—_—

Network connections

Configure at least one interface this server can use to talk to other
machines, and which preferably provides sufficient access for updates.

NAME TYPE NOTES
[enc600 eth - >]
static 10.222.111.24/24
02:28:0a:00:00:39 / Unknown Vendor / Unknown Model

[Create bond >]

—

[Done
[Back]

Configure proxy

If this system requires a proxy to connect to the internet, enter its
details here.

Proxy address:
If you need to use a HTTP proxy to access the outside world,
enter the proxy information here. Otherwise, leave this
blank.

The proxy information should be given in the standard form
of "http://[[user][:pass]@]host[:port]/".

[Done
[Back |

—_—

52

Configure Ubuntu archive mirror

If you use an alternative mirror for Ubuntu, enter its details here.

Mirror address: http://ports.ubuntu.com/ubuntu-ports
You may provide an archive mirror that will be used instead
of the default.

[Done]
[Back]

Guided storage configuration

Configure a guided storage layout, or create a custom one:

(X) Use an entire disk

[0X0200 local disk 6.876G v]

[1 Set up this disk as an LVM group

[1 Encrypt the LVM group with LUKS

Passphrase:

Confirm passphrase:

() Custom storage layout

[Done]
[Back |
Storage configuration
FILE SYSTEM SUMMARY ~
MOUNT POINT SIZE TYPE DEVICE TYPE
[/ 6.875G new ext4 new partition of local disk >]

AVAILABLE DEVICES

No available devices

[Create software RAID (md) >]
[Create volume group (LVM) >]

53

USED DEVICES

v
[Done]
[Reset 1
[Back 1

Storage configuration

FILE SYSTEM SUMMARY ~

Confirm destructive action

Selecting Continue below will begin the installation process and
result in the loss of data on the disks selected to be formatted.

You will not be able to return to this or a previous screen once the
installation has started.

Are you sure you want to continue?

[No |
[Continue]

[Reset]
[Back]

Profile setup

Enter the username and password you will use to log in to the system. You
can configure SSH access on the next screen but a password is still needed
for sudo.

Your name: Ed Example

Your server's name: 10.222.111.24

The name it uses when it talks to other computers.

Pick a username: ubuntu

Choose a password: kxkksiokx

Confirm your password: k¥*x*xxxx

[Done]

SSH Setup

You can choose to install the OpenSSH server package to enable secure remote
access to your server.

[1 Install OpenSSH server

54

Import SSH identity: [No v]
You can import your SSH keys from Github or Launchpad.

Import Username:

[X] Allow password authentication over SSH

[Done |
[Back]

e It’s a nice and convenient new feature to add the user’s SSH keys during the installation to the system, since
that makes the system login password-less on the initial login!

SSH Setup

You can choose to install the OpenSSH server package to enable secure remote
access to your server.

[X] Install OpenSSH server

Import SSH identity: [from Launchpad v]

You can import your SSH keys from Github or Launchpad.

Launchpad Username: user
Enter your Launchpad username.

[X] Allow password authentication over SSH

[Done
[Back]

—

SSH Setup

You can choose to install the OpenSSH server package to enable secure remote
access to your server.

Confirm SSH keys

T 1
| |
| Keys with the following fingerprints were fetched. Do you want to |
| use them? |
| |
| 2048 SHA256:j0GsdfW7NbJRkgl7sRyXaegoR0iZEdDWAROHpbc2KIw user@wW520 |
| (RSA)

| 521 SHA256:T3JzxvB6K1GzXJIpP5NFgX4yXvk0jhhgvbwO1F7/fZ2c

| frank.heimes@canonical.com (ECDSA)

|

|

|

|

L

[Yes 1
[No |
[Done 1

55

[Back]

Featured Server Snaps

These are popular snaps in server environments. Select or deselect with
SPACE, press ENTER to see more details of the package, publisher and

versions available.

docker
mosquitto
etcd
stress-ng
sabnzbd
wormhole
slcli
doctl
keepalived
juju

—_—r—— e e e e e e
— e e e e e e e el e

kata-containers Lightweight virtual machines that seamlessly plug into >

Docker container runtime >
Eclipse Mosquitto MQTT broker >
Resilient key-value store by Core0S

A tool to load, stress test and benchmark a computer s
SABnzbd

get things from one computer to another, safely

Python based SoftLayer API Tool.

DigitalOcean command line tool >
High availability VRRP/BFD and load-balancing for Linu >
Simple, secure and stable devops. Juju keeps complexit >

V V. V VvV Vv

[Done
[Back]

—

Install complete!

T
| configuring raid (mdadm) service
| installing kernel

| setting up swap

| apply networking config

| writing etc/fstab

| configuring multipath

| updating packages on target system
| configuring pollinate user-agent on target
| updating initramfs configuration
| finalizing installation
| running 'curtin hook'
| curtin command hook
| executing late commands
| final system configuration
| configuring cloud-init
|

L

< —

installing openssh-server |
[View full log]
Installation complete!
Finished install!
apply networking config ~

T
|

| writing etc/fstab

| configuring multipath

| updating packages on target system
| configuring pollinate user-agent on target
| updating initramfs configuration

| finalizing installation

| running 'curtin hook'

| curtin command hook

| executing late commands

56

| final system configuration

| configuring cloud-init

| installing openssh-server

| restoring apt configuration

< —

|downloading and installing security updates
|

[View full log]

[Reboot]
Installation complete!
T Finished install! 1
| apply networking config ~|
| writing etc/fstab |
| configuring multipath |
| updating packages on target system |
| configuring pollinate user-agent on target
| updating initramfs configuration |
| finalizing installation |
| running 'curtin hook' |
| curtin command hook |
| executing late commands |
| final system configuration |
| configuring cloud-init |
| installing openssh-server |
| restoring apt configuration ||
|downloading and installing security updates v
| |

[Connection to 10.222.111.24 closed by remote host. [Rebooting...]

Connection to 10.222.111.24 closed.
user@workstation:~$

e Type reset to clear the screen and to revert it back to the defaults.
e Now remove the old host key, since the system got a new one during the installation:

user@vorkstation:~$ ssh-keygen -f "/home/user/.ssh/known hosts" -R "10.222.111.24"
Host 10.222.111.24 found: line 159

/home/user/.ssh/known_hosts updated.

Original contents retained as /home/user/.ssh/known_hosts.old

user@workstation:~$

o And finally login to the newly installed z/VM guest:

user@workstation:~$ ssh ubuntu@l0.222.111.24

Warning: Permanently added the ECDSA host key for IP address
'10.222.111.24"' to the list of known hosts.

Welcome to Ubuntu 20.04.5 LTS (GNU/Linux 5.4.0-42-generic s390x)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/pro

System information as of Wed 03 Jun 2020 05:50:05 PM UTC

System load: 0.08 Memory usage: 2% Processes: 157
Usage of /: 18.7% of 6.70GB Swap usage: 0% Users logged in: 0

0 updates can be installed immediately.
0 of these updates are security updates.

The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described in the individual files in /usr/share/doc/*/copyright.

57

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by applicable law.

To run a command as administrator (user "root"), use "sudo <command>".
See "man sudo root" for details.

ubuntu@10.222.111.24:~$ uptime
17:50:09 up 1 min, 1 user, load average: 0.08, 0.11, 0.05
ubuntu@l0.222.111.24:~$ 1lsb _release -a
No LSB modules are available.
Distributor ID: Ubuntu
Description: Ubuntu 20.04.5 LTS
Release: 20.04
Codename: focal
ubuntu@l10.222.111.24:~$ uname -a
Linux 10.222.111.24 5.4.0-42-generic #30-Ubuntu SMP Wed Aug 05 16:57:22 UTC 2020 s390x s390x s390x GNU/Linux
ubuntu@l0.222.111.24:~$ exit
logout
Connection to 10.222.111.24 closed.
user@workstation:~$

Done !

Doing a manual live installation like described here - meaning without specifying a parmfile - is supported since Ubuntu
Server LTS 20.04.5 (‘Focal’) and any newer release, like 22.04 (‘Jammy’).

The following guide assumes that an FTP server to host the installation files is in place, which can be used by the
‘Load from Removable Media and Server’ task of the Hardware Management Console (HMC).

o Download the ‘focal daily live image’ from here (later 20.04.5 image):
http://cdimage.ubuntu.com/ubuntu/releases/20.04.5/release/ubuntu-20.04.5-live-server-s390x.iso

e Now loop-back mount the ISO to extract four files that are needed for the installation:

user@workstation:~$ mkdir iso
user@workstation:~$ sudo mount -o loop ubuntu-20.04.5-live-server-s390x.iso iso
user@workstation:~$

user@workstation:~$ ls -1 ./iso/boot/{ubuntu.exec,parmfile.*,kernel.u*,initrd.u*}
./iso/boot/initrd.ubuntu

./1iso/boot/kernel.ubuntu

./1iso/boot/parmfile.ubuntu

./1so/boot/ubuntu.exec

o Now make the files available via your FTP server.

e Open the IBM Z HMC and navigate to ‘Systems Management’ on your machine.

e Select the LPAR that you are going to install Ubuntu Server on. In this example we use LPAR s11pll.
o Now select menu: ‘Recovery’ --> ‘Load from Removable Media or Server’ task.

o Fill out the ‘Load from Removable Media or Server’ form as follows (adapt the settings to your particular
installation environment):

Load from Removable Media, or Server - <machine>:sllpll
Use this task to load operating system software or utility programs
from a CD / DVD-ROM or a server that can be accessed using FTP.
Select the source of the software:
o Hardware Management Console CD / DVD-ROM
o Hardware Management Console CD / DVD-ROM and assign for operating system use
o Hardware Management Console USB flash memory drive
o Hardware Management Console USB flash memory drive and assign for operating system use
* FTP Source
Host computer: install-server
User ID: ftpuser
Password: *¥xxikokox
Account (optional):
File location (optional): ubuntu-live-server-20.04.5/boot

58

http://cdimage.ubuntu.com/ubuntu/releases/20.04.5/release/ubuntu-20.04.5-live-server-s390x.iso

You may need to adjust the file’s location according to your install server environment.
Confirm the entered data:

Load from Removable Media or Server - Select Software to Install -

<machine>:s1llpll

Select the software to install.

Select Name Description

* ubuntu-live-server-20.04.5/boot/ubuntu.ins Ubuntu for IBM Z (default kernel)

Confirm again that jobs might be cancelled if proceeding;:

Load from Removable Media or Server Task Confirmation -
<machine>:s1lpll

Load will cause jobs to be cancelled.

Do you want to continue with this task?

ACT33501

And confirm a last time that it’s understood that the task is disruptive:

Disruptive Task Confirmation : Load from Removable Media or Server -
<machine>:s1lpll

Attention: The Load from Removable Media or Server task is disruptive.

Executing the Load from Removable Media or Server task may

adversely affect the objects listed below. Review the confirmation text
for each object before continuing with the Load from Removable Media

or Server task.

Objects that will be affected by the Load from Removable Media or
Server task

System Name Type 0S Name Status Confirmation Text
<machine>:s1llpll Image Operating Load from Removable Media
or Server causes operations to be disrupted, since the target is

currently in use and operating normally.

Do you want to execute the Load from Removable Media or Server task?
The ‘Load from Removable media or Server’ task is now executed:

Load from Removable media or Server Progress - POOB8F67:S1LPB

Turn on context sensitive help.

Function duration time: 00:55:00

Elapsed time: 00:00:04

Select Object Name Status

* <machine> s1lpll Please wait while the image is being loaded.

This may take a moment, but you will soon see:

Load from Removable media or Server Progress - <machine>:sllpll
Function duration time: 00:55:00

Elapsed time: 00:00:21

Select Object Name Status

* <machine> sl1lpll Success

Close the ‘Load from Removable media or Server’ task and open the console a.k.a. ‘Operating System Messages’
instead.

If no parmfile was configured or provided, one will find the following lines in the ‘Operating System Messages’
task:

Operating System Messages - <machine>:sllpll
Message
Unable to find a medium container a live file system

Attempt interactive netboot from a URL?
yes no (default yes):

59

o By default, one will now see the interactive network configuration menu (again, only if no parmfile was prepared
with sufficient network configuration information).

e Proceed with the interactive network configuration — in this case in a VLAN environment:

Unable to find a medium container a live file system
Attempt interactive netboot from a URL?

yes no (default yes):

yes

Available geth devices:

0.0.c000 0.0.c603 0.0.c006 0.0.c009 0.0.c00c 0.0.cO0f
zdev to activate (comma separated, optional):
0.0.c000

QETH device 0.0.c000:0.0.c001:0.0.c002 configured

Two methods available for IP configuration:

* static: for static IP configuration

* dhcp: for automatic IP configuration

static dhcp (default 'dhcp'):

static

ip:

10.222.111.11

gateway (default 10.222.111.1):

10.222.111.1

dns (default 10.222.111.1):

10.222.111.1

vlan id (optional):

1234
http://cdimage.ubuntu.com/ubuntu/releases/20.04.5/release/ubuntu-20.04.5-1ive-server-s390x.iso (default)
url:
ftp://10.11.12.2:21/ubuntu-1live-server-20.04.5/ubuntu-20.04.5-1ive-server-s390x.iso
http proxy (optional):

o After the last interactive step here (that this is about an optional proxy configuration), the installer will complete
its boot-up process:

Configuring networking...

IP-Config: encc000.1234 hardware address 3e:00:10:55:00:ff mtu 1500
IP-Config: encc000.1234 guessed broadcast address 10.222.111.255

IP-Config: encc000.1234 complete:

address: 10.222.111.11 broadcast: 10.222.111.255 netmask: 255.255.255.0

gateway: 10.222.111.1 dns0 1 10.222.111.1 dnsl : 0.0.0.0
rootserver: 0.0.0.0 rootpath:

filename
Connecting to 10.11.12.2:21 (10.11.12.2:21)

focal-live-server-s 10% |*** | 72.9M 0:00:08 ETA
focal-live-server-s 25% |*¥k¥kiokk | 168M 0:00:05 ETA
focal-live-server-s 42% |*x¥fiktiokikrx | 279M 0:00:04 ETA
focal-live-server-s 58% |¥xikidiiokiohokfokokk | 390M ©0:00:02 ETA
focal-live-server-s 75% |¥xkkkfokdotookfoodoodkofotkofok | 561M 0:00:01 ETA
focal-live-server-s 89% |X¥i¥kiiokiodokakiaokfoodrokkokfokok | 595M 0:00:00 ETA
focal-live-server-s 99% |¥¥iiikiiokidiokiioftikoktokttkrk®x | 662M 0:00:00 ETA
focal-live-server-s 100% |**¥*iktiokikioktdoftttoktoktkrksx | 663M 0:00:00 ETA

ip: RTNETLINK answers: File exists

no search or nameservers found in /run/net-encc000.1234.conf / run/net-*.conf /run/net6-*.conf
[399.808930] /dev/loop3: Can't open blockdev

[[0;1;31m SKIP [0Om] Ordering cycle found, skipping [0;1;39mLogin Prompts[Om

[401.547705] systemd[1]: multi-user.target: Job getty.target/start deleted to
break ordering cycle starting with multi-user.target/start

[406.241972] cloud-init[1321]: Cloud-init v. 20.2-45-g5f7825e2-0Qubuntul running
‘init-local' at Wed, 03 Jun 2020 17:07:39 +0000. Up 406.00 seconds.

[407.025557] cloud-init[1348]: Cloud-init v. 20.2-45-g5f7825e2-0ubuntul running
'init' at Wed, 03 Jun 2020 17:07:40 +0000. Up 406.87 seconds.

[407.025618] cloud-init[1348]: ci-info: ++++Net device info++++

60

[407.025658] cloud-init[1348]: ci-info: +-------------- +o----- R
--------------- e s e T o

[407.025696] cloud-init[1348]: ci-info: | Device | Up | Addr
ess | Mask | Scope | Hw-Address |

[407.025731] cloud-init[1348]: ci-info: +-------------- +o----- T R
--------------- LTt e S LR -

[407.025766] cloud-init[1348]: ci-info: | encc000 | True | fe80::3ca7:10f
f:fea5:c69e/64 | . | link | 72:5d:0d:09:ea:76 |

[407.025802] cloud-init[1348]: ci-info: | encc000.1234 | True | 10.245.
236.11 | 255.255.255.0 | global | 72:5d:0d:09:ea:76 |

[407.025837] cloud-init[1348]: ci-info: | encc000.1234 | True | fe80::3ca7:10f
f:fea5:c69e/64 | . | link | 72:5d:0d:09:ea:76 |

[407.025874] cloud-init[1348]: ci-info: | lo | True | 127.0
.0.1 | 255.0.0.0 | host |

[407.025909] cloud-init[1348]: ci-info: | lo | True | 1/
128 | . | host | |

[407.025944] cloud-init[1348]: ci-info: +-------------- +o----- Fommme -
--------------- e s e

[407.025982] cloud-init[1348]: ci-info: +++++++++++++Route I

Pv4 info++++++++++++++

[407.026017] cloud-init[1348]: ci-info: +------- R LR R
Fommmm e Fomm oo Fommmm- +

[407.026072] cloud-init[1348]: ci-info: | Route | Destination | Gateway

| Genmask | Interface | Flags |

[407.026107] cloud-init[1348]: ci-info: +------- R o
o o ommenn- +

[407.026141] cloud-init[1348]: ci-info: | 0 | 0.0.0.0 | 10.222.111.1
| 0.0.0.0 | encc000.1234 | uGc |

[407.026176] cloud-init[1348]: ci-info: | 1 | 10.222.111.0 | 0.0.0.0

| 255.255.255.0 | encc000.1234 | U |

[407.026212] cloud-init[1348]: ci-info: +------- R LR R
LT R LT tommmme- +

[407.026246] cloud-init[1348]: ci-info: ++++++++++++++++++++Route IPv6 info+++
T

[407.026280] cloud-init[1348]: ci-info: +------- R R +-----
--------- .

[407.026315] cloud-init[1348]: ci-info: | Route | Destination | Gateway | Int
erface | Flags |

[407.026355] cloud-init[1348]: ci-info: +------- R L +-----
--------- s

[407.026390] cloud-init[1348]: ci-info: | 1 | fe80::/64 | B | en
cc000 | U |

[407.026424] cloud-init[1348]: ci-info: | 2 | fe80::/64 | HH | encc
000.1234 | U |

[407.026458] cloud-init[1348]: ci-info: | 4 | local | HH | en
cc000 | U |

[407.026495] cloud-init[1348]: ci-info: | 5 | local | HH | encc
000.1234 | U |

[407.026531] cloud-init[1348]: ci-info: | 6 | ff00::/8 | - | en
cc000 | U |

[407.026566] cloud-init[1348]: ci-info: | 7 | ff00::/8 | HH | encc
000.1234 | U |

[407.026600] cloud-init[1348]: ci-info: +------- e e +o----

_________ R,

[407.883058]
[407.883117]

- -+
cloud-init[1348]:
cloud-init[1348]:

ssh _host rsa key

[407.883154]

cloud-init[1348]:

host rsa key.pub

[407.883190]
[407.883232]

cloud-init[1348]:
cloud-init[1348]:

RTA root@ubuntu-server

[407.883267]

cloud-init[1348]:

Generating public/private rsa key pair.
Your identification has been saved in /etc/ssh/

Your public key has been saved in /etc/ssh/ssh_

The key fingerprint is:
SHA256 : KX5cHC4YL9dXpvhnP6eSfS+1/zmKgg9zdlEzaEb+

The key's randomart image is:

61

[407.883302]
[407.883338]
[407.883374]
[407.883408]
[407.883443]
[407.883478]
[407.883512]
[407.883546]
[407.883579]
[407.883613]
[407.883648]
[407.883682]
[407.883716]
ssh_host dsa key

[407.883750] cloud-init[1348]:

host dsa key.pub

[407.883784] cloud-init[1348]:
[407.883817] cloud-init[1348]:

Am@ root@ubuntu-server
[407.
[407
[407.
[407.
[407.
[407.
[407.
[407.
[407.
[407
[407.
[407.
[407.
[407.
ssh_host ecdsa key

[407.884352] cloud-init[1348]:

host ecdsa key.pub

[407.884388] cloud-init[1348]:
[407.884422] cloud-init[1348]:

gdE root@ubuntu-server
[407.884456]
[407.884490]
[407.884524]
[407.884558]
[407.884591]
[407.884625]
[407.884660]
[407.884694]
[407.884728]
[407.884762]
[407.884795]
[407.884829]
[407.884862]
[407.884896]
ssh _host ed25519 key

[407.884930] cloud-init[1348]:

host ed25519 key.pub

[407.884966] cloud-init[1348]:
[407.884999] cloud-init[1348]:

hZ0 root@ubuntu-server

[407.885033] cloud-init[1348]:
[407.885066] cloud-init[1348]:
[407.885100] cloud-init[1348]:
[407.885133] cloud-init[1348]:

cloud-init[1348]:
cloud-init[1348]:
cloud-init[1348]:
cloud-init[1348]:
cloud-init[1348]:
cloud-init[1348]:
cloud-init[1348]:
cloud-init[1348]:
cloud-init[1348]:
cloud-init[1348]:
cloud-init[1348]:
cloud-init[1348]:
cloud-init[1348]:

883851] cloud-init[1348]:
.883905] cloud-init[1348]:
883941] cloud-init[1348]:
883975] cloud-init[1348]:
884008] cloud-init[1348]:
884042] cloud-init[1348]:
884076] cloud-init[1348]:
884112] cloud-init[1348]:
884145] cloud-init[1348]:
.884179] cloud-init[1348]:
884212] cloud-init[1348]:
884246] cloud-init[1348]:
884280] cloud-init[1348]:
884315] cloud-init[1348]:

cloud-init[1348]:
cloud-init[1348]:
cloud-init[1348]:
cloud-init[1348]:
cloud-init[1348]:
cloud-init[1348]:
cloud-init[1348]:
cloud-init[1348]:
cloud-init[1348]:
cloud-init[1348]:
cloud-init[1348]:
cloud-init[1348]:
cloud-init[1348]:
cloud-init[1348]:

+---[RSA 3072]----+
|
|
|
|
|
|
|
|

| A
+----[SHA256]----- +

Generating public/private dsa key pair.
Your identification has been saved in /etc/ssh/

Your public key has been saved in /etc/ssh/ssh

The key fingerprint is:

SHA256: xu3v1G1BReKDy3DsuMZc/1g5y/+nhzlEmLDk/qFZ

The key's randomart image is:
+---[DSA 1024]----+

| ..0]|

| 0. 0 0 |
| +.0+0+ |
| ...E*o00.. |
| S+o =.. |
[. +0+00.0 |
| **+o*o |
| .00.*+00 |
| 4 ===
+----[SHA256]----- +

Generating public/private ecdsa key pair.
Your identification has been saved in /etc/ssh/

Your public key has been saved in /etc/ssh/ssh_

The key fingerprint is:

SHA256 : P+hBF3fj /pub+0KaywUYii3Lyuc09Za9/a2elCDO

The key's randomart image is:
+---[ECDSA 256]---+

| I
|
|
|
| 0 +S.+..
|
|
|

| 00. . +.
+----[SHA256]----- +

Generating public/private ed25519 key pair.
Your identification has been saved in /etc/ssh/

Your public key has been saved in /etc/ssh/ssh_

The key fingerprint is:

SHA256: CbZpkR9eFHUB1sCDZwSdSdwlzy9FpsIWRIyc9ers

The key's randomart image is:
+--[ED25519 256]--+
| . /%X..00 |
| .=0&*+= |

62

[407.885167] cloud-init[1348]: |

[407.885200] cloud-init[1348]: |

[407.885238] cloud-init[1348]: | .o
[407.885274] cloud-init[1348]: | . 000
[407.885308] cloud-init[1348]: |

[407.885345] cloud-init[1348]: | .o

[407.885378] cloud-init[1348]: | .

[407.885420] cloud-init[1348]: +----[SHA256]----- +

[418.521933] cloud-init[2185]: Cloud-init v. 20.2-45-g5f7825e2-0Qubuntul runnin
g 'modules:config' at Wed, 03 Jun 2020 17:07:52 +0000. Up 418.40 seconds.

[418.522012] cloud-init[2185]: Set the following 'random' passwords

[418.522053] cloud-init[2185]: installer:C7BZrW76s4mJzmpf4ely

ci-info: no authorized SSH keys fingerprints found for user installer.

<14>Jun 3 17:07:52 ec2:

<14>Jun 3 17:07:52 ecC2: #HH##HHHHAHAHHHHHHHBHHHHHHHAHHHH R
HHH

<14>Jun 3 17:07:52 ec2: ----- BEGIN SSH HOST KEY FINGERPRINTS-----

<14>Jun 3 17:07:52 ec2: 1024 SHA256:xu3v1G1BReKDy3DsuMZc/1g5y/+nhz1EmLDk/qFZAmO
root@ubuntu-server (DSA)

<14>Jun 3 17:07:52 ec2: 256 SHA256:P+hBF3fj/pu6+0KaywUYii3Lyuc09Za9/a2elCDOgdE

root@ubuntu-server (ECDSA)

<14>Jun 3 17:07:52 ec2: 256 SHA256:CbZpkR9eFHuB1sCDZwSdSdwlzy9FpsIWRIyc9ershz0

root@ubuntu-server (ED25519)

<14>Jun 3 17:07:52 ec2: 3072 SHA256:KX5cHC4YL9dXpvhnP6eSfS+J/zmKgg9zd1EzaEb+RTA
root@ubuntu-server (RSA)

<1l4>Jun 3 17:07:52 ec2: ----- END SSH HOST KEY FINGERPRINTS-----
<14>Jun 3 17:07:52 eC2: ###H##HHHHHHIHHHHHHH
HHHHAHR

ecdsa-sha2-nistp256 AAAAE2VjZHNhLXNoYTItbmlzdHAYNTYAAAAIbmlzdHAYNTYAAABBBC2zp4Fq
r1+NJOIEQIISbX+EzeJ6ucXSLi2xEvurgwq8iMYT6yYOXBOPc/XzeFabvBCDZk3SSSW6Lq83y7VmdRQ=
root@ubuntu-server

ssh-ed25519 AAAAC3NzaCllZDIINTE5AAAAIIFzgips94nINoR4QumiyqlJoS1Z48P+NVrd7zgD5k4T
root@ubuntu-server

ssh-rsa AAAAB3NzaClyc2EAAAADAQABAAABgQChKo060715FAjd6ImK7qZbWnL/cpgQ2A2gQEqFNO+1
joF/41ygxuw5aGOIQ0bWFpV9jDsMF5z4qHKzX8tFCpKCOs4uR8QBxh1dDm4wcwcgtAfVLgh754/R9Sqa
IFnkCzxThhNeMarcRrutYOmIzspmCg/QvfElwrXJz1+Rt0J7GiuHHgpm76fX+6ZF1BYhkA87dXQiID2R
yUubSXKGgONtz1gSzPqD3GB+HXRHHHLT5/Xg+njPq8jIUpgSoHtkBupsyVmcD9gDbz6vng2PuBHWZP9X
17QtyOwxddxk4xIXaTup4g8bHloF/czsWqVxNdfB7XqzROFUOD9rMIB+DwBihsmH1kRik4wwLi6IH4hu
xrykKvfblxcZe65kR420DI7JbBwxvxGrOKx8DrEXnBpOWozS0IDm2ZPh3ci/OuCJ4LTItByyCfAe/gyR
5514SkmXrIXf5BnErZRgyJnfxKXmsFaSh7wf15w6GmsgzyD9sI2jES9+4By32ZzY01Dpids= root@ub
untu-server

[418.872320] cloud-init[2203]: Cloud-init v. 20.2-45-g5f7825e2-0ubuntul runnin
g 'modules:final' at Wed, 03 Jun 2020 17:07:52 +0000. Up 418.79 seconds.

[418.872385] cloud-init[2203]: ci-info: no authorized SSH keys fingerprints fo
und for user installer.

[418.872433] cloud-init[2203]: Cloud-init v. 20.2-45-g5f7825e2-0Qubuntul finish
ed at Wed, 03 Jun 2020 17:07:52 +0000. Datasource DataSourceNoCloud [seed=/var/l
ib/cloud/seed/nocloud] [dsmode=net]. Up 418.86 seconds

[418.872484] cloud-init[2203]: Welcome to Ubuntu Server Installer!

[418.872529] cloud-init[2203]: Above you will find SSH host keys and a random
password set for the “installer’ user. You can use these credentials to ssh-in a
nd complete the installation. If you provided SSH keys in the cloud-init datasou
rce, they were also provisioned to the installer user.

[418.872578] cloud-init[2203]: If you have access to the graphical console, 1i
ke TTY1 or HMC ASCII terminal you can complete the installation there too.

It is possible to connect to the installer over the network, which
might allow the use of a more capable terminal.

To connect, SSH to installer@l0.222.111.11.

63

The password you should use is "C7BZrW76s4mJzmpfdeUly".
The host key fingerprints are:

RSA SHA256 : KX5cHC4YL9dXpvhnP6eSTS+]1/zmKgg9zdlEzaEb+RTA
ECDSA SHA256:P+hBF3fj/pu6+0KaywUYii3Lyuc09Za9/a2e1CDOgdE
ED25519 SHA256:CbZpkR9eFHuB1sCDZwSdSdwlzy9FpsIWRIyc9ershz0

Ubuntu Focal Fossa (development branch) ubuntu-server sclp_line0
ubuntu-server login:

e At this point you can proceed with the regular installation either by using ‘Recovery’ --> ‘Integrated ASCII
Console’ or with a remote SSH session.

o If the ‘Integrated ASCII Console’ was opened (you can hit F3to refresh the task), the initial Subiquity installation
screen is presented, which looks like this:

Willkommen! Bienvenue! Welcome! ????? ?2727?7?777??! Welkom! [Help]

Use UP, DOWN and ENTER keys to select your language.
[English

[Asturianu

[Cataln

[Hrvatski

[Nederlands

[Suomi

[Francais

[Deutsch

[Magyar

[Latvie?u

[Norsk bokm?1l

[Polski

[Espanol

V V.V V V V V V V V V VvV V

]
]
]
]
]
]
]
]
]
]
]
]
]

e Since the user experience is nicer in a remote SSH session, we recommend using that.
However, with certain network environments it’s just not possible to use a remote shell, and the ‘Integrated
ASCII Console’ will be the only option.

Note:
At the end of the installer boot-up process, all necessary information is provided to proceed with a remote
shell.

e The command to execute locally is:
user@workstation:~$ ssh installer@l0.222.111.11

e A temporary random password for the installation was created and shared as well, which you should use without
the leading and trailing double quotes:

"C7BZrW76s4mJzmpfdely"
e Hence the remote session for the installer can be opened by:

user@workstation:~$ ssh installer@l0.222.111.11

The authenticity of host '10.222.111.11 (10.222.111.11)"' can't be established.
ECDSA key fingerprint is SHA256:P+hBF3fj/pu6+0KaywlYii3Lyuc09Za9/a2elCD0OgdE.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added '10.222.111.11' (ECDSA) to the list of known hosts.
installer@l0.222.111.11's password: C7BZrW76s4mJzmpf4ely

e One may swiftly see some login messages like the following ones:
Welcome to Ubuntu Focal Fossa (development branch) (GNU/Linux 5.4.0-42-generic s390x)
* Documentation: https://help.ubuntu.com

* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/pro

64

System information as of Wed Jun 3 17:32:10 UTC 2020

System load: 0.0 Memory usage: 2% Processes: 146
Usage of /home: unknown Swap usage: 0% Users logged in: 0

0 updates can be installed immediately.
0 of these updates are security updates.

The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described in the

individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.

Eventually the initial Subiquity installer screen shows up:

Willkommen! Bienvenue! Welcome! ????? ?2227?7?7?77???! Welkom!

Use UP, DOWN and ENTER keys to select your language.

[English

[Asturianu
[Cataln

[Hrvatski

[Nederlands
[Suomi

[Francais

[Deutsch

[Magyar

[Latvie?u

[Norsk bokm?1
[Polski

[Espanol

V V.V V V V V V V V V VvV V

e From here just proceed with the installation as usual ...
(I'm leaving some pretty standard screenshots here just to give an example for a basic installation ...)

Keyboard configuration

Please select your keyboard layout below, or select "Identify keyboard" to

detect your layout automatically.

Layout: [English (US) v 1]

Variant: [English (US) v]

[Identify keyboard]

—_—

[Done
[Back]

Zdev setup

65

ID ONLINE NAMES

dasd-eckd
.0.1600
.1601
.1602
.1603
.1604
.1605
.1606
.1607
.1608
.1609
.160a
.160b
.160c
.160d

[cl ol ol ool ool o oo Mo oMo lNoj
(el ol ool oo oo o o o o ol

V V.V V V V V V V V V V V V

[Continue]
[Back]

Zdev setup

ID ONLINE NAMES

dasd-eckd
.0.1600 >)
.1601 >|< (close) |
.1602 >| Enable |
.1603 >| Disable |
1604 P T |
.1605
.1606
.1607
.1608
.1609
.160a
.160b
.160c
.160d

\

V V.V V V V Vv V

(ol ol ol ool o oo oo Mo oo No
el ol ol ool oo o oo o o ol

[Continue]
[Back |

Zdev setup

ID ONLINE NAMES

dasd-eckd
.0.1600
.1601 online dasda
.1602
.1603
.1604
.1605
.1606
.1607
.1608
.1609
.160a
.160b

[clcl ol ololol ool o olNo o)
el ool ool oo o oo ol

V V.V V V V V V V V VvV V

66

0.0.160c
0.0.160d > v

[Continue]
[Back]

e One may hit the End key here — that will automatically scroll down to the bottom of the Z devices list and

screen:
Zdev setup

0.0.flde:0.0.fldf > ~
0.0.f1le0:0.0.flel >

0.0.fle2:0.0.fle3 >

0.0.fled:0.0.fleb5 >

0.0.fle6:0.0.fle7 >

0.0.fle8:0.0.fle9 >

0.0.flea:0.0.fleb >

0.0.flec:0.0.fled >

0.0.flee:0.0.flef >

0.0.f1f0:0.0.f1f1 >

0.0.f1f2:0.0.f1f3 >

0.0.f1f4:0.0.f1f5 >

0.0.f1f6:0.0.f1f7 >

0.0.f1f8:0.0.f1f9 >

0.0.flfa:0.0.f1lfb >

0.0.flfc:0.0.f1fd >

0.0.flfe:0.0.f1ff > v

[Continue]
[Back]

Network connections

Configure at least one interface this server can use to talk to other
machines, and which preferably provides sufficient access for updates.

NAME TYPE NOTES
[encco00 eth - >]
72:00:bb:00:2a:11 / Unknown Vendor / Unknown Model

[encc000.1234 vlan - >]
static 10.222.111.11/24
VLAN 1234 on interface encc000

[Create bond >]

[Continue]
[Back]

e Depending on the installer version you are using you may face a little bug here.
In that case the button will be named ‘Continue without network’, but the network is there. If you see that,
just ignore it and continue ...
(If you wait long enough the label will be refreshed and corrected.)

Configure proxy

67

If this system requires a proxy to connect to the internet, enter its

details here.

Proxy address:

If you need to use a HTTP proxy to access the outside world,
enter the proxy information here. Otherwise, leave this
blank.

The proxy information should be given in the standard form
of "http://[[user][:passl@]host[:port]/".

—_—

[Done
[Back]

Configure Ubuntu archive mirror

If you use an alternative mirror for Ubuntu, enter its details here.

Mirror address:

http://ports.ubuntu.com/ubuntu-ports
You may provide an archive mirror that will be used instead
of the default.

[Done]
[Back]

Guided storage configuration

Configure a guided storage layout, or create a custom one:

(X) Use an entire disk

[0X1601

local disk 6.877G v]

[1 Set up this disk as an LVM group

[]

Encrypt the LVM group with LUKS

Passphrase:

Confirm passphrase:

68

() Custom storage layout

[Done |
[Back]
Storage configuration
FILE SYSTEM SUMMARY
MOUNT POINT SIZE TYPE DEVICE TYPE
[/ 6.875G new ext4 new partition of local disk >]

AVAILABLE DEVICES

No available devices

[Create software RAID (md) >]
[Create volume group (LVM) >]

USED DEVICES

[Done 1
[Reset]
[Back]

Storage configuration

FILE SYSTEM SUMMARY

Confirm destructive action

Selecting Continue below will begin the installation process and
result in the loss of data on the disks selected to be formatted.

You will not be able to return to this or a previous screen once the
installation has started.

Are you sure you want to continue?

[No |
[Continue]

[Reset]
[Back]

Profile setup

Enter the username and password you will use to log in to the system. You
can configure SSH access on the next screen but a password is still needed
for sudo.

Your name: Ed Example

Your server's name: sllpll

69

The name it uses when it talks to other computers.

Pick a username: ubuntu

Choose a password: *¥¥kxxxk

Confirm your password: *¥xxkokok

[Done |

SSH Setup

You can choose to install the OpenSSH server package to enable secure remote
access to your server.

[1 Install OpenSSH server
Import SSH identity: [No v]
You can import your SSH keys from Github or Launchpad.

Import Username:

[X] Allow password authentication over SSH

[Done]
[Back]

e It’s a nice and convenient new feature to add the user’s SSH keys during the installation to the system, since
that makes the system login password-less for the initial login!

SSH Setup

You can choose to install the OpenSSH server package to enable secure remote
access to your server.

[X] Install OpenSSH server
Import SSH identity: [from Launchpad v]
You can import your SSH keys from Github or Launchpad.

Launchpad Username: user
Enter your Launchpad username.

[X] Allow password authentication over SSH

—

[Done
[Back]

70

SSH Setup

You can choose to install the OpenSSH server package to enable secure remote
access to your server.

Confirm SSH keys

Keys with the following fingerprints were fetched. Do you want to
use them?

T
|

|

|

|

| 2048 SHA256:joGscmiamcaoincinadonnvaineorviZEdDWdRIHpbc2KIw user@W520

| (RSA) |
| 521 SHA256:T3JzxvB6K1Gzidvoidhoidsaoicak@jhhgvbwO1F7/fZ2c
|

|

|

|

|

L

ed.example@acme.com (ECDSA) |

|
[Yes] |
[No] |
|
]
[Done]
[Back]

Featured Server Snaps

These are popular snaps in server environments. Select or deselect with
SPACE, press ENTER to see more details of the package, publisher and
versions available.

kata-containers Lightweight virtual machines that seamlessly plug into >

[]
[1 docker Docker container runtime >
[1 mosquitto Eclipse Mosquitto MQTT broker >
[1 etcd Resilient key-value store by Core0S >
[1 stress-ng A tool to load, stress test and benchmark a computer s >
[1 sabnzbd SABnzbd >
[1 wormhole get things from one computer to another, safely >
[1 slcli Python based SoftLayer API Tool. >
[1 doctl DigitalOcean command line tool >
[1 keepalived High availability VRRP/BFD and load-balancing for Linu >
[1 juju Simple, secure and stable devops. Juju keeps complexit >

[Done 1

[Back 1

Install complete!

T
| configuring raid (mdadm) service

| installing kernel

| setting up swap

| apply networking config

| writing etc/fstab

| configuring multipath

| updating packages on target system
| configuring pollinate user-agent on target
| updating initramfs configuration

| finalizing installation
| running 'curtin hook'
| curtin command hook
| executing late commands

71

| final system configuration |
| configuring cloud-init ||
| installing openssh-server \ v
|

[View full log]

Installation complete!

Finished install!
apply networking config ~
writing etc/fstab
configuring multipath
updating packages on target system
configuring pollinate user-agent on target
updating initramfs configuration

finalizing installation
running 'curtin hook'
curtin command hook
executing late commands
final system configuration
configuring cloud-init
installing openssh-server
restoring apt configuration
downloading and installing security updates

< —

[View full log]
[Reboot]

Installation complete!

Finished install!
apply networking config ~
writing etc/fstab
configuring multipath
updating packages on target system
configuring pollinate user-agent on target
updating initramfs configuration

finalizing installation
running 'curtin hook'
curtin command hook
executing late commands
final system configuration
configuring cloud-init
installing openssh-server
restoring apt configuration
downloading and installing security updates

< —

[Connection to 10.222.111.11 closed by remote host. [Rebooting...]
Connection to 10.222.111.11 closed.
user@workstation:~$

o Now type reset to clear the screen and reset it to its defaults.

o Before proceeding one needs to remove the old, temporary host key of the target system, since it was only for
use during the installation:

user@vorkstation:~$ ssh-keygen -f "/home/user/.ssh/known hosts" -R "sllpll"
Host sllpll found: line 159

/home/user/.ssh/known_hosts updated.

Original contents retained as /home/user/.ssh/known_hosts.old
user@workstation:~$

72

¢ And assuming the post-installation reboot is done, one can now login:

user@workstation:~$ ssh ubuntu@sllpll

Warning: Permanently added the ECDSA host key for IP address
'10.222.111.11"' to the list of known hosts.

Welcome to Ubuntu 20.04.5 LTS (GNU/Linux 5.4.0-42-generic s390x)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/pro

System information as of Wed 03 Jun 2020 05:50:05 PM UTC

System load: 0.08 Memory usage: 2% Processes: 157
Usage of /: 18.7% of 6.70GB Swap usage: 0% Users logged in: 0

0 updates can be installed immediately.
0 of these updates are security updates.

The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by applicable law.

To run a command as administrator (user "root"), use "sudo <command>".
See "man sudo root" for details.

ubuntu@s1lpll:~$ uptime

17:50:09 up 1 min, 1 user, load average: 0.08, 0.11, 0.05
ubuntu@sllpll:~$ 1lsb release -a

No LSB modules are available.

Distributor ID: Ubuntu

Description: Ubuntu 20.04.5 LTS
Release: 20.04
Codename: focal

ubuntu@sllpll:~$ uname -a

Linux s1lpll 5.4.0-42-generic #30-Ubuntu SMP Wed Aug 05 16:57:22 UTC 2020 s390x s390x s390x GNU/Linux
ubuntu@s1lpll:~$ exit

logout

Connection to sllpll closed.

user@workstation:~$

Done !

Introduction

Since version 20.04, the server installer supports automated installation mode (autoinstallation for short). You might
also know this feature as unattended, hands-off, or preseeded installation.

Autoinstallation lets you answer all those configuration questions ahead of time with an autoinstall config, and lets
the installation process run without any interaction.

Differences from debian-installer preseeding
Preseeds are the way to automate an installer based on debian-installer (a.k.a. d-i).
Autoinstalls for the new server installer differ from preseeds in the following main ways:

o The format is completely different (cloud-init config, usually YAML, vs. debconf-set-selections format).

e When the answer to a question is not present in a preseed, d-i stops and asks the user for input. Autoinstalls are
not like this: by default, if there is any autoinstall config at all, the installer takes the default for any unanswered
question (and fails if there is no default).

— You can designate particular sections in the config as “interactive”, which means the installer will still stop
and ask about those.

73

Provide the autoinstall config via cloud-init

The autoinstall config is provided via cloud-init configuration, which is almost endlessly flexible. In most scenarios,
the easiest way will be to provide user data via the NoCloud datasource.

The autoinstall config should be provided under the autoinstall key in the config. For example:

#cloud-config
autoinstall:
version: 1

Run a truly automatic autoinstall

Even if a fully non-interactive autoinstall config is found, the server installer will ask for confirmation before writing
to the disks unless autoinstall is present on the kernel command line. This is to make it harder to accidentally create
a USB stick that will reformat the machine it is plugged into at boot. Many autoinstalls will be done via netboot,
where the kernel command line is controlled by the netboot config — just remember to put autoinstall in there!

Quick start

So you just want to try it out? Well we have the page for you.

Create an autoinstall config

When any system is installed using the server installer, an autoinstall file for repeating the install is created at
/var/log/installer/autoinstall-user-data.

Translate a preseed file

If you have a preseed file already, the autoinstall-generator snap can help translate that preseed data to an autoinstall
file. See this discussion on the autoinstall generator tool for more details on how to set this up.

The structure of an autoinstall config
The autoinstall config has full documentation.

Technically speaking, the config is not defined as a textual format, but cloud-init config is usually provided as YAML
so that is the syntax the documentation uses. A minimal config consists of:

version: 1

identity:
hostname: hostname
username: username
password: $crypted pass

However, here is a more complete example file that shows off most features:

version: 1
reporting:
hook:
type: webhook
endpoint: http://example.com/endpoint/path
early-commands:
- ping -cl1 198.162.1.1
locale: en_US
keyboard:
layout: gb
variant: dvorak
network:
network:
version: 2
ethernets:
enp0s25:
dhcp4: yes
enp3s0: {}
enp4s0: {}
bonds:

74

https://cloudinit.readthedocs.io/en/latest/reference/datasources/nocloud.html
https://snapcraft.io/autoinstall-generator
https://discourse.ubuntu.com/t/autoinstall-generator-tool-to-help-with-creation-of-autoinstall-files-based-on-preseed/21334

bond0:
dhcp4: yes
interfaces:
- enp3s0
- enp4s0
parameters:
mode: active-backup
primary: enp3s0
proxy: http://squid.internal:3128/
apt:
primary:
- arches: [default]
uri: http://repo.internal/
sources:
my-ppa.list:
source: "deb http://ppa.launchpad.net/curtin-dev/test-archive/ubuntu $RELEASE main"
keyid: B59D 5F15 97A5 04B7 E230 6DCA 0620 BBCF 0368 3F77
storage:
layout:
name: lvm
identity:
hostname: hostname
username: username
password: $crypted pass
ssh:
install-server: yes
authorized-keys:
- $key
allow-pw: no
snaps:
- name: go
channel: 1.14/stable
classic: true
debconf-selections: |
bind9 bind9/run-resolvconf boolean false
packages:
- libreoffice
- dns-server®
user-data:
disable root: false
late-commands:
- sed -ie 's/GRUB TIMEOUT=.*/GRUB TIMEOUT=30/' /target/etc/default/grub
error-commands:
- tar c /var/log/installer | nc 192.168.0.1 1000

Many keys and values correspond straightforwardly to questions the installer asks (e.g. keyboard selection). See the
reference for details of those that do not.

Error handling

Progress through the installer is reported via error-commands are executed and the traceback printed to the console.
The server then just waits.

Interactions between autoinstall and cloud-init
Delivery of autoinstall

Cloud-config can be used to deliver the autoinstall data to the installation environment. The autoinstall quickstart
has an example of writing the autoinstall config.

Note that autoinstall is processed by Subiquity (not cloud-init), so please direct defects in autoinstall behavior and
bug reports to Subiquity.

(0]

https://bugs.launchpad.net/subiquity/+filebug

The installation environment

At install time, the live-server environment is just that: a live but ephemeral copy of Ubuntu Server. This means that
cloud-init is present and running in that environment, and existing methods of interacting with cloud-init can be used
to configure the live-server ephemeral environment. For example, any #cloud-config user data keys are presented to
the live-server containing ssh import id, then SSH keys will be added to the authorized keys list for the ephemeral
environment.

First boot configuration of the target system

Autoinstall data may optionally contain a user data sub-section, which is cloud-config data that is used to configure
the target system on first boot.

Subiquity itself delegates some configuration items to cloud-init, and these items are processed on first boot.

Starting with Ubuntu 22.10, once cloud-init has performed this first boot configuration, it will disable itself as cloud-init
completes configuration in the target system on first boot.

Possible future directions
We might want to extend the ‘match specs’ for disks to cover other ways of selecting disks.
The intent of this page is to provide simple instructions to perform an autoinstall in a VM on your machine.

This page assumes that you are willing to install the latest Ubuntu release available (22.10 at the time of writing). For
other releases, you would need to substitute the name of the ISO image but the instructions should otherwise remain
the same.

This page also assumes you are on the amd64 architecture. There is a version for s390x too.

Providing the autoinstall data over the network

This method is the one that generalises most easily to doing an entirely network-based install, where a machine
netboots and is then automatically installed.

Download the ISO
Go to the 22.10 ISO download page and download the latest Ubuntu 22.10 live-server ISO.

Mount the ISO

sudo mount -r ~/Downloads/ubuntu-22.10-live-server-amd64.iso /mnt

Write your autoinstall config
This means creating cloud-init config as follows:

mkdir -p ~/www
cd ~/www
cat > user-data << 'EOF'
#cloud-config
autoinstall:
version: 1
identity:
hostname: ubuntu-server
password: "6exDY1mhS4KUYCE/2$zmn9ToZwTKLhCw.b4/b.ZRTIZM303Z4Qr0Q02a0XJ8yk96xpcCofOkxKwuX1kqlLG/ygbJ1f8wxED22bTL4F4¢
username: ubuntu
EOF
touch meta-data

The crypted password is just “ubuntu”.

Serve the cloud-init config over HTTP
Leave this running in a new terminal window:

cd ~/www
python3 -m http.server 3003

76

https://cloudinit.readthedocs.io/en/latest/reference/modules.html#ssh-import-id
https://releases.ubuntu.com/22.10/

Create a target disk

truncate -s 10G image.img

Run the install!

kvm -no-reboot -m 2048 \
-drive file=image.img, format=raw, cache=none,if=virtio \
-cdrom ~/Downloads/ubuntu-22.10-1live-server-amd64.iso \
-kernel /mnt/casper/vmlinuz \
-initrd /mnt/casper/initrd \
-append 'autoinstall ds=nocloud-net;s=http:// gateway:3003/'

This will boot, download the config from the server set up in the previous step, and run the install. The installer
reboots at the end but the -no-reboot flag to kvm means that kvm will exit when this happens. It should take about 5
minutes.

Boot the installed system

kvm -no-reboot -m 2048 \
-drive file=image.img, format=raw,cache=none,if=virtio

This will boot into the freshly installed system and you should be able to log in as ubuntu/ubuntu.

Using another volume to provide the autoinstall config

This is the method to use when you want to create media that you can just plug into a system to have it be installed.

Download the live-server ISO

Go to the 22.10 ISO download page and download the latest Ubuntu 22.10 live-server ISO.

Create your user-data and meta-data files

mkdir -p ~/cidata
cd ~/cidata
cat > user-data << 'EOF'
#cloud-config
autoinstall:
version: 1
identity:
hostname: ubuntu-server
password: "6exDY1mhS4KUYCE/2$zmn9ToZwTKLhCw.b4/b.ZRTIZM303Z4Qr0Q2a0XJ8yk96xpcCofOkxKwuX1kqLG/ygbJ1f8wxED22bTL4FA4¢
username: ubuntu
EOF
touch meta-data

The crypted password is just “ubuntu”.

Create an ISO to use as a cloud-init data source
sudo apt install cloud-image-utils

cloud-localds ~/seed.iso user-data meta-data
Create a target disk

truncate -s 10G image.img

Run the install!

kvm -no-reboot -m 2048 \
-drive file=image.img, format=raw, cache=none,if=virtio \
-drive file=~/seed.iso,format=raw,cache=none,if=virtio \
-cdrom ~/Downloads/ubuntu-22.10-live-server-amd64.iso

This will boot and run the install. Unless you interrupt boot to add autoinstall to the kernel command line, the
installer will prompt for confirmation before touching the disk.

7

https://releases.ubuntu.com/22.10/

The installer reboots at the end but the -no-reboot flag to kvm means that kvm will exit when this happens.

The whole process should take about 5 minutes.

Boot the installed system

kvm -no-reboot -m 2048 \
-drive file=image.img, format=raw, cache=none,if=virtio

This will boot into the freshly installed system and you should be able to log in as ubuntu/ubuntu.
The intent of this page is to provide simple instructions to perform an autoinstall in a VM on your machine on s390x.

This page is just a slightly adapted page of the autoinstall quickstart page mapped to s390x.

Download an ISO

At the time of writing (just after the kinetic release), the best place to go is here:
https://cdimage.ubuntu.com/ubuntu/releases/22.10/release/

wget https://cdimage.ubuntu.com/ubuntu/releases/22.10/release/ubuntu-22.10-1live-server-s390x.iso -P ~/Downloads

Mount the ISO

mkdir -p ~/iso
sudo mount -r ~/Downloads/ubuntu-22.10-live-server-s390x.iso ~/iso

Write your autoinstall config
This means creating a cloud-init #cloud-config file as follows:

mkdir -p ~/www
cd ~/www
cat > user-data << 'EOF'
#cloud-config
autoinstall:
version: 1
identity:
hostname: ubuntu-server
password: "6exDY1mhS4KUYCE/2$zmn9ToZwTKLhCw.b4/b.ZRTIZM303Z4Qr0Q2a0XJ8yk96xpcCofOkxKwuX1kqLG/yghJ1f8wxED22bTL4F4¢
username: ubuntu
EOF
touch meta-data

The crypted password is just “ubuntu”.

Serve the cloud-init config over HTTP

Leave this running in a new terminal window:

cd ~/www
python3 -m http.server 3003

Create a target disk
Proceed with a second terminal window:
sudo apt install gemu-utils

gemu-img create -f qcow2 disk-image.qcow2 10G
Formatting 'disk-image.qcow2', fmt=qcow2 size=10737418240 cluster size=65536 lazy refcounts=off refcount bits=16

gemu-img info disk-image.qcow2

image: disk-image.qcow?2

file format: qcow2

virtual size: 10 GiB (10737418240 bytes)
disk size: 196 KiB

cluster size: 65536

Format specific information:

78

https://cdimage.ubuntu.com/ubuntu/releases/22.10/release/

compat: 1.1

lazy refcounts: false
refcount bits: 16
corrupt: false

Run the install!
sudo apt install gemu-kvm
You may need to add the default user to the kvm group:

sudo usermod -a -G kvm ubuntu

Note:
You will need to re-login to make the changes take effect.

kvm -no-reboot -name auto-inst-test -nographic -m 2048 \
-drive file=disk-image.qcow2, format=qcow2,cache=none,if=virtio \
-cdrom ~/Downloads/ubuntu-22.10-1live-server-s390x.iso \
-kernel ~/iso/boot/kernel.ubuntu \
-initrd ~/iso/boot/initrd.ubuntu \
-append 'autoinstall ds=nocloud-net;s=http:// gateway:3003/ console=ttysclp0'

This will boot, download the config from the server set up in the previous step and run the install. The installer
reboots at the end but the -no-reboot flag to kvm means that kvm will exit when this happens. It should take about 5
minutes.

Boot the installed system

kvm -no-reboot -name auto-inst-test -nographic -m 2048 \
-drive file=disk-image.qcow2, format=qcow2,cache=none,if=virtio

This will boot into the freshly installed system and you should be able to log in as ubuntu/ubuntu.

Overall format

The autoinstall file is YAML. At top level it must be a mapping containing the keys described in this document.
Unrecognized keys are ignored.

Schema

Autoinstall configs are validated against a JSON schema before they are used.

Command lists

Several config keys are lists of commands to be executed. FEach command can be a string (in which case it is executed
via “sh -¢”) or a list, in which case it is executed directly. Any command exiting with a non-zero return code is
considered an error and aborts the install (except for error-commands, where it is ignored).

Top-level keys
version

type: integer
default: no default

A future-proofing config file version field. Currently this must be “1”.

interactive-sections

type: list of strings
default: ||

A list of config keys to still show in the Ul. So for example:

version: 1

interactive-sections:
- network

identity:

79

username: ubuntu
password: $crypted pass

Would stop on the network screen and allow the user to change the defaults. If a value is provided for an interactive
section it is used as the default.

You can use the special section name of “*” to indicate that the installer should ask all the usual questions — in this
case, the autoinstall.yaml file is not really an “autoinstall” file at all, instead just a way to change the defaults in the
UL

Not all config keys correspond to screens in the Ul This documentation indicates if a given section can be interactive
or not.

If there are any interactive sections at all, the reporting key is ignored.

early-commands

type: command list
default: no commands
can be interactive: no

A list of shell commands to invoke as soon as the installer starts, in particular before probing for block and network
devices. The autoinstall config is available at /autoinstall.yaml (irrespective of how it was provided) and the file will
be re-read after the early-commands have run to allow them to alter the config if necessary.

locale

type: string
default: en US.UTF-8
can be interactive: yes, always interactive if any section is

The locale to configure for the installed system.

refresh-installer

type: mapping
default: see below
can be interactive: yes

Controls whether the installer updates to a new version available in the given channel before continuing.

The mapping contains keys:

update

type: boolean
default: no

Whether to update or not.

channel

type: string
default: "stable/ubuntu-$REL"

The channel to check for updates.

keyboard

type: mapping, see below
default: US English keyboard
can be interactive: yes

The layout of any attached keyboard. Often systems being automatically installed will not have a keyboard at all in
which case the value used here does not matter.

The mapping’s keys correspond to settings in the /etc/default/keyboard configuration file. See its manual page for
more details.

The mapping contains keys:

80

http://manpages.ubuntu.com/manpages/bionic/en/man5/keyboard.5.html

layout

type: string
default: "us"

Corresponds to the XKBLAYOUT setting.

variant

type: string
default: ""

Corresponds to the XKBVARIANT setting.

toggle

type: string or null
default: null

Corresponds to the value of grp: option from the XKBOPTIONS setting. Acceptable values are (but note that the
installer does not validate these): caps_toggle, toggle, rctrl toggle, rshift toggle, rwin_toggle, menu_toggle,
alt shift toggle, ctrl shift toggle, «ctrl alt toggle, alt caps toggle, 1lctrl lshift toggle, Tlalt toggle,
lctrl toggle, lshift toggle, lwin toggle, sclk toggle

The version of Subiquity released with 20.04 GA does not accept null for this field due to a bug.

source

type: mapping, see below
default: see below
can be interactive: yes

search__drivers

type: boolean
default: true

Whether the installer should search for available third-party drivers. When set to false, it disables the drivers screen
and section.

id
type: string
default: identifier of the first available source.

Identifier of the source to install (e.g., "ubuntu-server-minimized").

network

type: netplan-format mapping, see below
default: DHCP on interfaces named eth* or en*
can be interactive: yes

Netplan-formatted network configuration. This will be applied during installation as well as in the installed system.
The default is to interpret the config for the install media, which runs DHCPv4 on any interface with a name matching
“eth*” or “en*” but then disables any interface that does not receive an address.

For example, to run DHCPv6 on a particular NIC:

network:
version: 2
ethernets:
enp0s31f6:
dhcp6: yes

Note that thanks to a bug, the version of Subiquity released with 20.04 GA forces you to write this with an extra
network: key like so:

network:
network:
version: 2

81

https://netplan.readthedocs.io/en/stable/netplan-yaml/

ethernets:
enp0s31f6:
dhcp6: yes

Later versions support this syntax too for compatibility but if you can assume a newer version you should use the
former.

proxy

type: URL or null
default: no proxy
can be interactive: yes

The proxy to configure both during installation and for apt and for snapd in the target system.

apt

type: mapping
default: see below
can be interactive: yes

Apt configuration, used both during the install and once booted into the target system.

This section historically used the same format as curtin, which is documented here. Nonetheless, some key differences
with the format supported by curtin have been introduced:

¢ Subiquity supports an alternative format for the primary section, allowing to configure a list of candidate primary
mirrors. During installation, subiquity will automatically test the specified mirrors and select the first one that
seems usable. This new behavior is only activated when the primary section is wrapped in the mirror-selection
section.

e The fallback key controls what subiquity should do if no primary mirror is usable.

e The geoip key controls whether a geoip lookup is done to determine the correct country mirror.

The default is:

apt:
preserve sources list: false
mirror-selection:
primary:
- country-mirror
- arches: [1386, amd64]
uri: "http://archive.ubuntu.com/ubuntu"
- arches: [s390x, arm64, armhf, powerpc, ppc6del, riscv64]
uri: "http://ports.ubuntu.com/ubuntu-ports"
fallback: abort
geoip: true

mirror-selection

if the primary section is contained within the mirror-selection section, the automatic mirror selection is enabled. This
is the default in new installations.

primary (when placed inside the mirror-selection section):
type: custom, see below
In the new format, the primary section expects a list of mirrors, which can be expressed in two different ways:

e the special value country-mirror
o a mapping with the following keys:
— uri: the URI of the mirror to use, e.g., “http://fr.archive.ubuntu.com/ubuntu”
— arches: an optional list of architectures supported by the mirror. By default, this list contains the current
CPU architecture.

fallback

type: string (enumeration)
default: abort

82

https://curtin.readthedocs.io/en/latest/topics/apt_source.html
http://fr.archive.ubuntu.com/ubuntu

Controls what subiquity should do if no primary mirror is usable.
Supported values are:

e abort -> abort the installation
e offline-install -> revert to an offline installation
e continue-anyway -> attempt to install the system anyway (not recommended, the installation will certainly fail)

geoip

type: boolean
default:: true

If geoip is true and one of the candidate primary mirrors has the special value country-mirror, a request is made to
https://geoip.ubuntu.com/lookup. Subiquity then sets the mirror URI to http://CC.archive.ubuntu.com/ubuntu (or
similar for ports) where CC is the country code returned by the lookup. If this section is not interactive, the request
is timed out after 10 seconds.

If the legacy behavior (i.e., without mirror-selection) is in use, the geoip request is made if the mirror to be used is
the default, and its URI ends up getting replaced by the proper country mirror URIL.

If you just want to specify a mirror, you can use a configuration like this:

apt:
mirror-selection:
primary:
- uri: YOUR MIRROR GOES HERE
- country-mirror
- uri: http://archive.ubuntu.com/ubuntu

To add a ppa:

apt:
sources:
curtin-ppa:
source: ppa:curtin-dev/test-archive

storage

type: mapping, see below
default: use “lvm” layout in a single disk system, no default in a multiple disk system
can be interactive: yes

Storage configuration is a complex topic and the description of the desired configuration in the autoinstall file can also
be complex. The installer supports “layouts”, simple ways of expressing common configurations.

Supported layouts
The two supported layouts at the time of writing are “lvm” and “direct”.

storage:
layout:
name: lvm
storage:
layout:
name: direct

By default these will install to the largest disk in a system, but you can supply a match spec (see below) to indicate
which disk to use:

storage:
layout:
name: lvm
match:
serial: CT*
storage:
layout:
name: disk
match:
ssd: yes

83

(you can just say “match: {}” to match an arbitrary disk)
When using the “lvm” layout, LUKS encryption can be enabled by supplying a password.

storage:
layout:
name: lvm
password: LUKS PASSPHRASE

The default is to use the lvm layout.

sizing-policy

The lvim layout will, by default, attempt to leave room for snapshots and further expansion. A sizing-policy key may
be supplied to control this behavior.

type: string (enumeration)
default: scaled

Supported values are:

e scaled -> adjust space allocated to the root LV based on space available to the VG
e all -> allocate all remaining VG space to the root LV

The scaling system is currently as follows:

e Less than 10 GiB: use all remaining space for root filesystem

e Between 10-20 GiB: 10 GiB root filesystem

¢ Between 20-200 GiB: use half of remaining space for root filesystem
e Greater than 200 GiB: 100 GiB root filesystem

Action-based config

For full flexibility, the installer allows storage configuration to be done using a syntax which is a superset of that
supported by curtin, described at https://curtin.readthedocs.io/en/latest /topics/storage.html.

If the “layout” feature is used to configure the disks, the “config” section will not be used.

As well as putting the list of actions under the ‘config’ key, the grub and swap curtin config items can be put here. So
a storage section might look like:

storage:
swap:
size: 0
config:
- type: disk
id: diskoO

serial: ADATA SX8200PNP_XXXXXXXXXXX
- type: partition

The extensions to the curtin syntax are around disk selection and partition/logical volume sizing.

Disk selection extensions

Curtin supported identifying disks by serial (e.g. Crucial CT512MX100SSD1_14250C57FECE) or by path (e.g. /dev/sdc)
and the server installer supports this as well. The installer additionally supports a “match spec” on a disk action that
supports more flexible matching.

The actions in the storage config are processed in the order they are in the autoinstall file. Any disk action is assigned
a matching disk — chosen arbitrarily from the set of unassigned disks if there is more than one, and causing the
installation to fail if there is no unassigned matching disk.

A match spec supports the following keys:

e model: foo: matches a disk where ID_ VENDOR=foo in udev, supporting globbing

e path: foo: matches a disk where DEVPATH=foo in udev, supporting globbing (the globbing support distin-
guishes this from specifying path: foo directly in the disk action)

e serial: foo: matches a disk where ID_ SERIAL=foo in udev, supporting globbing (the globbing support distin-
guishes this from specifying serial: foo directly in the disk action)

e ssd: yes|no: matches a disk that is or is not an SSD (vs a rotating drive)

84

https://curtin.readthedocs.io/en/latest/topics/storage.html
https://curtin.readthedocs.io/en/latest/topics/config.html#grub
https://curtin.readthedocs.io/en/latest/topics/config.html#swap

e size: largest|smallest: take the largest or smallest disk rather than an arbitrary one if there are multiple
matches (support for smallest added in version 20.06.1)

A special sort of key is install-media: yes, which will take the disk the installer was loaded from (the ssd and size
selectors will never return this disk). If installing to the install media, care obviously needs to be take to not overwrite
the installer itself!

So for example, to match an arbitrary disk it is simply:

- type: disk
id: disko@

To match the largest SSD:

- type: disk
id: big-fast-disk
match:
ssd: yes
size: largest

To match a Seagate drive:

- type: disk
id: data-disk
match:
model: Seagate

Partition/logical volume extensions

The size of a partition or logical volume in curtin is specified as a number of bytes. The autoinstall config is more
flexible:

e You can specify the size using the “1G”, “512M” syntax supported in the installer UL

e You can specify the size as a percentage of the containing disk (or RAID), e.g. “50%”.

o For the last partition specified for a particular device, you can specify the size as “-1” to indicate that the
partition should fill the remaining space.

- type: partition
id: boot-partition
device: root-disk
size: 10%

- type: partition
id: root-partition
size: 20G

- type: partition
id: data-partition
device: root-disk
size: -1

identity

type: mapping, see below
default: no default
can be interactive: yes

Configure the initial user for the system. This is the only config key that must be present (unless the user-data section
is present, in which case it is optional).

A mapping that can contain keys, all of which take string values:

realname

The real name for the user. This field is optional.

username

The user name to create.

85

hostname

The hostname for the system.

password
The password for the new user, encrypted. This is required for use with sudo, even if SSH access is configured.

The crypted password string must conform to what passwd expects. Depending on the special characters in the
password hash, quoting may be required, so it’s safest to just always include the quotes around the hash.

Several tools can generate the crypted password, such as mkpasswd from the whois package, or openssl passwd.
Example:

identity:

realname: 'Ubuntu User'

username: ubuntu

password: '6wdAcoXrU039hKYPd$508Qvbe70bUnxoj15DRCkzC3q07edjHOVV7BPNRDYK4QR80fJaEEF2heacn0QgD. f8p08SNp83XNdWG6tocBM
hostname: ubuntu

active-directory

type: mapping, see below
default: no default
can be interactive: yes

Accepts data required to join the target system in an Active Directory domain.

A mapping that can contain keys, all of which take string values:

admin-name

A domain account name with privilege to perform the join operation. That account’s password will be requested
during runtime.

domain-name

The Active Directory domain to join.

ubuntu-pro

type: mapping, see below
default: see below
can be interactive: yes

token

type: string
default: no token

A contract token to attach to an existing Ubuntu Pro subscription.

ssh

type: mapping, see below
default: see below
can be interactive: yes

Configure SSH for the installed system. A mapping that can contain keys:

install-server

type: boolean
default: false

Whether to install OpenSSH server in the target system.

86

https://manpages.ubuntu.com/manpages/jammy/en/man1/passwd.1.html

authorized-keys

type: list of strings
default: []

A list of SSH public keys to install in the initial user’s account.

allow-pw

type: boolean

default: true if authorized keys is empty, false otherwise
codecs

type: mapping, see below
default: see below
can be interactive: no

Configure whether common restricted packages (including codecs) from [multiverse] should be installed.

install

type: boolean
default: false

Whether to install the ubuntu-restricted-addons package.

drivers

type: mapping, see below
default: see below
can be interactive: yes

install

type: boolean
default: false

Whether to install the available third-party drivers.

snaps

type: list
default: install no extra snaps
can be interactive: yes

A list of snaps to install. Each snap is represented as a mapping with required name and optional channel (defaulting
to stable) and classic (defaulting to false) keys. For example:

shaps:
- name: etcd

channel: edge

classic: false

debconf-selections

type: string
default: no config
can be interactive: no

The installer will update the target with debconf set-selection values. Users will need to be familiar with the package
debconf options.
packages

type: list
default: no packages
can be interactive: no

A list of packages to install into the target system. More precisely, a list of strings to pass to “apt-get install”, so
this includes things like task selection (dns-server”) and installing particular versions of a package (my-package=1-1).

87

kernel

type: mapping (mutually exclusive), see below
default: default kernel
can be interactive: no

Which kernel gets installed. Either the name of the package or the name of the flavor must be specified.

package
type: string

The name of the package, e.g., linux-image-5.13.0-40-generic

flavor
type: string

The flavor of the kernel, e.g., generic or hwe.

timezone

type: string
default: no timezone
can be interactive: no

The timezone to configure on the system. The special value “geoip” can be used to query the timezone automatically
over the network.

updates

type: string (enumeration)
default: security
can be interactive: no

The type of updates that will be downloaded and installed after the system install.
Supported values are:

e security -> download and install updates from the -security pocket
e all -> also download and install updates from the -updates pocket

shutdown

type: string (enumeration)
default: reboot
can be interactive: no

Request the system to power off or reboot automatically after the installation has finished.
Supported values are:

e reboot
e poweroff

late-commands

type: command list
default: no commands
can be interactive: no

Shell commands to run after the install has completed successfully and any updates and packages installed, just before
the system reboots. They are run in the installer environment with the installed system mounted at /target. You can
run curtin in-target -- $shell_command (with the version of subiquity released with 20.04 GA you need to specify
this as curtin in-target --target=/target -- $shell command) to run in the target system (similar to how plain
in-target can be used in d-i preseed/late_command).

38

error-commands

type: command list
default: no commands
can be interactive: no

Shell commands to run after the install has failed. They are run in the installer environment, and the target sys-
tem (or as much of it as the installer managed to configure) will be mounted at /target. Logs will be available at
/var/log/installer in the live session.

reporting

type: mapping
default: type: print which causes output on ttyl and any configured serial consoles
can be interactive: no

The installer supports reporting progress to a variety of destinations. Note that this section is ignored if there are any
interactive sections; it only applies to fully automated installs.

The config, and indeed the implementation, is 90% the same as that used by curtin.
Each key in the reporting mapping in the config defines a destination, where the type sub-key is one of:
The rsyslog reporter does not yet exist

e print: print progress information on ttyl and any configured serial console. There is no other configuration.
o rsyslog: report progress via rsyslog. The destination key specifies where to send output.

« webhook: report progress via POSTing JSON reports to a URL. Accepts the same configuration as curtin.
e none: do not report progress. Only useful to inhibit the default output.

Examples:
The default configuration is:

reporting:
builtin:
type: print

Report to rsyslog:

reporting:

central:
type: rsyslog
destination: @192.168.0.1

Suppress the default output:

reporting:
builtin:
type: none

Report to a curtin-style webhook:

reporting:
hook:
type: webhook
endpoint: http://example.com/endpoint/path
consumer_key: "ck foo"
consumer _secret: "cs foo"
token key: "tk foo"
token secret: "tk secret"
level: INFO

user-data

type: mapping
default: {}
can be interactive: no

Provide cloud-init user data which will be merged with the user data the installer produces. If you supply this, you
don’t need to supply an identity section (but then it’s your responsibility to make sure that you can log into the
installed system!).

89

https://curtin.readthedocs.io/en/latest/topics/reporting.html
https://curtin.readthedocs.io/en/latest/topics/reporting.html#webhook-reporter

Introduction

The server installer validates the provided autoinstall config against a JSON schema.

How the config is validated

Although the schema is presented below as a single document, and if you want to pre-validate your config you should
validate it against this document, the config is not actually validated against this document at run time. What happens
instead is that some sections are loaded, validated, and applied first, before all other sections are validated. In detail:

1. The reporting section is loaded, validated and applied.

2. The error commands are loaded and validated.

3. The early commands are loaded and validated.

4. The early commands, if any, are run.

5. The config is reloaded, and now all sections are loaded and validated.

This is so that validation errors in most sections can be reported via the reporting and error-commands configuration,
as all other errors are.

Schema
The JSON schema for autoinstall data is as follows:

{
"type": "object",
"properties": {

"version": {

"type": "integer",
"minimum": 1,
"maximum": 1

},

"early-commands": {
"type": "array",
"items": {

"type": [
"string",
"array"

1,

"items": {
"type": "string"

},
"reporting": {

"type": "object",
"additionalProperties": {
"type": "object",
"properties": {

"type": {
"type": "string"

}
"required": [
"type"
] ’
"additionalProperties": true

+
"error-commands": {
"type": "array",

"items": {
"type": [
"string",
"array"

] ’

90

https://json-schema.org/

"items": {
”type": "String"

}!
"user-data": {
"type": uobjectu

I
"packages": {
"type": "array",
"items": {
"type": "string"
}
I

"debconf-selections": {
Iltypell: Ilstringll

}
"locale": {

"type": "string"
}l

"refresh-installer": {
"type": "object",
"properties": {

"update": {

"type": "boolean"
+
"channel": {

"type": "string"

}
+
"additionalProperties": false
+
"kernel": {
"type": "object",
"properties": {
"package": {
"type": "string"
+
"flavor": {
"type": "string"
}
+
"oneOf": [
{
"type": "object",
"required": [
"package"
]
}
{
"type": "object",
"required": [
"flavor"
]
}
1
I
"keyboard": {

"type": "object",
"properties": {
"layout": {
"type": "string"
I

91

"variant": {
"type": "string"

I
"toggle": {
"type": [
"string",
"null”
]
}
+
"required": [
"layout"
1,

"additionalProperties": false
}
"source": {
"type": "object",
"properties": {
"search drivers": {
"type": "boolean"

+
"id": {
"type": "string"
}
}
+
"network": {
"oneOf": [
{

"type": "object",
"properties": {
"version": {
"type": "integer",
"minimum": 2,
"maximum": 2
I
"ethernets": {
"type": "object",
"properties": {
"match": {
"type": "object",
"properties": {
"name": {
"type": "string"
1,
"macaddress": {
"type": "string"

i
"driver": {
"type": "string"
}
H
"additionalProperties": false
}
}
I
"wifis": {

"type": "object",
"properties": {
"match": {
"type": "object",
"properties": {
"name": {

92

"type": "string"
}
"macaddress": {
"type": "string"

I
"driver": {
"type": "string"
}
T
"additionalProperties": false
}
}
},
"bridges": {
"type": "object"
}
"bonds": {
"type": "object"
I

"tunnels": {
"type": "object"

}
"vlans": {
"type": "object"
}
b
"required": [
"version"
]
I
{

"type": "object",
"properties": {
"network": {
"type": "object",
"properties": {
"version": {
"type": "integer",
"minimum": 2,
"maximum": 2
I
"ethernets": {
"type": "object",
"properties": {
"match": {
"type": "object",
"properties": {
"name": {
"type": "string"
}
"macaddress": {
"type": "string"

+
"driver": {
"type": "string"
}
I
"additionalProperties": false
}
}
I
"wifis": {

"type": "object",

93

"properties": {
"match": {
"type": "object",
"properties": {
"name": {
"type": "string"
},
"macaddress": {
"type": "string"

+
"driver": {
"type": "string"
}
I
"additionalProperties": false
}
}
I
"bridges": {
"type": "object"
+
"bonds": {
"type": "object"
+

"tunnels": {
"type": "object"

I
"vlans": {
"type": "object"
)
+
"required": [
"version"
]
}
b
"required": [
"network"

I
"ubuntu-pro": {
"type": "object",
"properties": {
"token": {
"type": "string",
"minLength": 24,
"maxLength": 30,
"pattern": "~C[1-9A-HJ-NP-Za-km-z]+$",
"description": "A valid token starts with a C and is followed by 23 to 29 Base58 characters.\nSee https://pkg
}

}
"ubuntu-advantage": {
"type": "object",
"properties": {
"token": {
"type": "string",
"minLength": 24,
"maxLength": 30,
"pattern": "~C[1-9A-HJ-NP-Za-km-z]+$",
"description": "A valid token starts with a C and is followed by 23 to 29 Base58 characters.\nSee https://pkg

94

b
"deprecated": true,
"description": "Compatibility only - use ubuntu-pro instead"
+
"proxy": {
"type": [
"string",
"null"
1,
"format": "uri"
.
"apt": {

"type": "object",
"properties": {
"preserve sources list": {
"type": "boolean"
}
"primary": {
"type": "array"
+
"mirror-selection": {
"type": "object",
"properties": {
"primary": {
"type": "array",

"items": {
"anyOf": [
{
"type": "string",
"const": "country-mirror"
}
{
"type": "object",
"properties": {
"uri': {
"type": "string"
},
"arches": {
"type": "array",
"items": {
"type": "string"
}
}
1,
"required": [
"uri"
1
}
]
b
}
}
}
"geoip": {
"type": "boolean"
I

"sources": {
"type": "object"

}

"disable components": {
"type": "array",
"items": {

95

"type": "string",
"enum": [
"universe",
"multiverse",
"restricted",
"contrib",
"non-free"
1
}
I
"preferences": {
"type": "array",
"items": {
"type": "object",
"properties": {
"package": {
"type": "string"
}
"pin": {
"type": "string"
+

}I

"pin-priority": {
"type": "integer"

"required": [

}I

"fallback":
"type":
"enum" :

"package",
Ilpinll ,
"pin-priority"

{
"string",

[

"abort",
"continue-anyway",
"offline-install"

}!
"storage": {

"type" . "Object"

},
"identity": {

"type": "object",

"properties": {

"realname":
"type":
+
"username":
"type":
+
"hostname":
"type":
+
"password":
"type":

+
"required": [
"username",

{

"string"

{

"string"

{

"string"

{

"string"

96

"hostname",
"password"
1,
"additionalProperties": false
+
"ssh": {
"type": "object",
"properties": {
"install-server": {
"type": "boolean"
}
"authorized-keys": {
"type": "array",
"items": {
"type": "string"

}
"allow-pw": {
"type": "boolean"

}
"snaps": {
"type": "array",
"items": {
"type": "object",
"properties": {
"name": {
"type": "string"
b
"channel": {
"type": "string"
b
"classic": {
"type": "boolean"

+
"required": [
"name"
1,
"additionalProperties": false

}
"codecs": {
"type": "object",
"properties": {
"install": {
"type": "boolean"

}I
"drivers": {
"type": "object",
"properties": {
"install": {
"type": "boolean"

}

"timezone": {
"type": "string"

}I

"updates": {

97

"type": "string",

"enum": [
"security",
"all"

}
"late-commands": {
"type": "array",
"items": {
"type": [
"string",
"array"
1,
"items": {
"type": "string

+
"shutdown": {
"type": "string",
"enum": [
"reboot",
"poweroff"

I
"required": [
"version"
1,
"additionalProperties": true

Regeneration
The schema above can be regenerated by running “make schema” in a Subiquity source checkout.

This non-interactive installation uses ‘autoinstall’, which can be considered the successor to the Debian installer (d-i)
and preseed on Ubuntu. This is a detailed step-by-step guide, including output and logs (which are partially a bit
shortened, as indicated by ‘..”, to limit the size of this document).

The example z/VM guest here uses a direct-access storage device (DASD) and is connected to a regular (non-VLAN)
network.

For a zFCP and a VLAN network example, please see the non-interactive IBM LPAR (s390x) installation using
autoinstall guide.

e Start with the preparation of the (FTP) install server (if it doesn’t already exist).

user@local:~$ ssh admin@installserver.local

admin@installserver:~$ mkdir -p /srv/ftp/ubuntu-daily-live-server-20.04

admin@installserver:~$ wget http://cdimage.ubuntu.com/ubuntu-server/focal/daily-live/current/focal-
live-server-s390x.iso --directory-prefix=/srv/ftp/ubuntu-daily-live-server-20.04

--2020-06-26 12:18:48-- http://cdimage.ubuntu.com/ubuntu-server/focal/daily-live/current/focal-live-
server-s390x.1iso

Resolving cdimage.ubuntu.com (cdimage.ubuntu.com)... 2001:67c:1560:8001::1d, 2001:67c:1360:8001::28, 2001:67c: 136

Connecting to cdimage.ubuntu.com (cdimage.ubuntu.com)|2001:67c:1560:8001::1d|:80... connected.
HTTP request sent, awaiting response... 200 OK

Length: 700952576 (668M) [application/x-1509660-image]

Saving to: ‘focal-live-server-s390x.iso’

focal-live-server-s 100%[>] 668.48M 2.73MB/s in 4m 54s

2020-06-26 12:23:42 (2.27 MB/s) - ‘focal-live-server-s390x.iso’ saved [700952576/700952576]
admin@installserver:~$

98

e The ISO image needs to be extracted now. Since files in the boot folder need to be modified, loopback mount is
not an option here:

admin@installserver:~$ cd /srv/ftp/ubuntu-daily-live-server-20.04
admin@installserver:/srv/ftp/ubuntu-daily-live-server-20.04$ mkdir iso
admin@installserver:/srv/ftp/ubuntu-daily-live-server-20.04$ sudo mount -o loop ./focal-live-server-
s390x.iso ./iso

[sudo] password for admin:

mount: /home/user/iso-test/iso: WARNING: device write-protected, mounted read-only.
admin@installserver:/srv/ftp/ubuntu-daily-live-server-20.04$ 1s -1

total 684530

-rw-rw-r-- 1 user user 700952576 Jun 26 10:12 focal-live-server-s390x.iso
dr-xr-xr-x 10 root root 2048 Jun 26 10:12 iso
admin@installserver:/srv/ftp/ubuntu-daily-live-server-20.04$%

o Now make sure an FTP server is running in the installserver with /srv/ftp as ftp-server root (as used in this
example).

o Next, prepare an autoinstall (HTTP) server. This hosts the configuration data for the non-interactive installa-
tion.

admin@installserver:/srv/ftp/ubuntu-daily-live-server-20.04$ mkdir -p /srv/www/autoinstall/zvmguest
admin@installserver:/srv/ftp/ubuntu-daily-live-server-20.04$ cd /srv/www/autoinstall/zvmguest
admin@installserver:/srv/www/autoinstall/zvmguest$

admin@installserver:/srv/www/autoinstall/zvmguest$ echo "instance-id: $(uuidgen || openssl rand -
base64 8)" > meta-data

admin@installserver:/srv/www/autoinstall/zvmguest$ cat meta-data

instance-id: 2c¢2215fb-6a38-417f-b72f-376blcc44f01

admin@installserver:/srv/www/autoinstall/zvmguest$

admin@installserver:/srv/www/autoinstall/zvmguest$ vi user-data
admin@installserver:/srv/www/autoinstall/zvmguest$ cat user-data
#cloud-config
autoinstall:

version: 1

refresh-installer:

update: yes
reporting:
builtin:
type: print
apt:
preserve _sources list: false
primary:

- arches: [amd64, 1386]
uri: http://archive.ubuntu.com/ubuntu
- arches: [default]
uri: http://ports.ubuntu.com/ubuntu-ports
keyboard:
layout: en
variant: us
locale: en US
identity:
hostname: zvmguest
password:
"6ebJ1f8wxED22bTL4F46P0O"
username: ubuntu

user-data:
timezone: America/Boston
users:
- name: ubuntu
password:
"6KwuxED22bTLAF46P0"

lock passwd: false
early-commands:
- touch /tmp/lets activate the s390x devices

99

- chzdev dasd -e 1f00
- touch /tmp/s390x devices activation done
network:
version: 2
ethernets:
enc600:
addresses: [10.11.12.23/24]
gateway4: 10.11.12.1
nameservers:
addresses: [10.11.12.1]
ssh:
install-server: true
allow-pw: true
authorized-keys: ['ssh-rsa meQwtZ user@workstation # ssh-import-id lp:user']
admin@installserver:~$

o For s390x installations, the early-commands section is the interesting part:

early-commands:
- touch /tmp/lets activate the s390x devices
- chzdev dasd -e 100
- touch /tmp/s390x devices activation done

The first and last early-commands are optional; they only frame and indicate the real s390x command activation.

In this particular example a single DASD ECKD disk with the address 1f00 is enabled. zFCP disk storage
can be enabled via their host (host-bus-adapters) addresses, for example e000 (chzdev zfcp -e e000) and e100
(chzdev zfcp -e e000). These have certain Logical Unit Numbers (LUNSs) assigned, which are all automatically
discovered and activated by chzdev zfcp-lun -e --online. Activation of a geth device would look like this:
chzdev geth -e 0600.

e For more details about the autoinstall config options, please have a look at the autoinstall reference and autoin-
stall schema page.

o Now make sure a HTTP server is running with /srv/www as web-server root (in this particular example).
o Log in to your z/VM system using your preferred 3270 client — for example x3270 or ¢3270.

o Transfer the installer kernel, initrd, parmfile and exec file to the z/VM system that is used for the installation.
Put these files (for example) on File Mode (Fm) A (a.k.a disk A):

listfiles

UBUNTU EXEC Al
KERNEL UBUNTU Al
INITRD UBUNTU Al
PARMFILE UBUNTU Al

e Now specify the necessary autoinstall parameters in the parmfile:

xedit PARMFILE UBUNTU A

PARMFILE UBUNTU 01 F 80 Trunc=80 Size=3 Line=0 Col=1 Alt=0
00000 * * * Top of File * * *
00001 ip=10.11.12.23::10.11.12.1:255.255.255.0:zvmguest:enc600:none:10.11.12.1
00002 url=ftp://installserver.local:21/ubuntu-daily-live-server-20.04/focal-11i
ve-ser
00003 ver-s390x.iso autoinstall ds=nocloud-net;s=http://installserver.local:80
00004 /autoinstall/zvmguest/ --- quiet
00005 * * * End of File * * *

Note:

In case of any issues hitting the 80-character-per-line limit of the file, you can write parameters across two
lines as long as there are no unwanted white spaces. To view all 80 characters in one line, disable the prefix
area on the left. “prefix off | on” will be your friend — use it in the command area.

e You can now start the z/VM installation by executing the UBUNTU REXX script with UBUNTU.

o Now monitor the initial program load (IPL) — a.k.a. the boot-up process — of the install system. This is quite
crucial, because during this process a temporary installation password is generated and displayed. The line(s)
look similar to this:

100

https://ubuntu.com/server/docs/install/autoinstall-reference
https://ubuntu.com/server/docs/install/autoinstall-schema
https://ubuntu.com/server/docs/install/autoinstall-schema

|37.487141| cloud-init-1873|: Set the following 'random' passwords
|37.487176| cloud-init-1873|: installer: **i7UFdP8fhiVVMme3qqH8**

This password is needed for remotely connecting to the installer via SSH in the next step.
So, start the REXX script:

UBUNTU
00: 0000004 FILES PURGED
00: RDR FILE 1254 SENT FROM zvmguest PUN WAS 1254 RECS 102K CPY
001 A NOHOLD NO
KEEP
00: RDR FILE 1258 SENT FROM zvmguest PUN WAS 1258 RECS 0003 CPY
001 A NOHOLD NO
KEEP
00: RDR FILE 1262 SENT FROM zvmguest PUN WAS 1262 RECS 303K CPY
001 A NOHOLD NO
KEEP
00: 0000003 FILES CHANGED
00: 0000003 FILES CHANGED
01: HCPGSP2627I The virtual machine is placed in CP mode due to a SIGP
initial C
PU reset from CPU 00.
02: HCPGSP2627I The virtual machine is placed in CP mode due to a SIGP
initial C
PU reset from CPU 00.
03: HCPGSP2627I The virtual machine is placed in CP mode due to a SIGP
initial C
PU reset from CPU 00.
- 0.403380| Initramfs unpacking failed: Decoding failed
ln: /tmp/mountroot-fail-hooks.d//scripts/init-premount/lvm2: No such file or dir
ectory
QETH device 0.0.0600:0.0.0601:0.0.0602 configured
IP-Config: enc600 hardware address 02:28:0b:00:00:51 mtu 1500
IP-Config: enc600 guessed broadcast address 10.11.12.255
IP-Config: enc600 complete:
address: 10.11.12.23 broadcast: 10.210.210.255 netmask: 255.255.255.0

gateway: 10.11.12.1 dns0 1 10.11.12.1 dnsl : 0.0.0.0

host : zvmguest

rootserver: 0.0.0.0 rootpath:

filename
Connecting to installserver.local:21 (10.11.12.2:21)
focal-live-server-s3 2% | 1 15.2M 0:00:48 ETA
focal-live-server-s3 16% !***** ! 126M 0:00:09 ETA
focal-live-server-s3 31% !¥*¥kkkdtxxx ! 236M 0:00:06 ETA
focal-live-server-s3 46% !*kkkfttxiiiodork ! 347M 0:00:04 ETA
focal-live-server-s3 60% !¥¥frdokiomiokiokokomokok ! 456M 0:00:03 ETA
focal-live-server-s3 74% |Mokfkrkokiookokfokokfomokokofokok ! 563M 0:00:02 ETA
focal-live-server-s3 88% M k¥kiokdkaododokardokdorokdokakotodkkokok ! 667M 0:00:00 ETA
focal-live-server-s3 100% !¥*kfxiokiriodoftdoktordorforokkkrotkkkxtk | 752M 0:00:00 ETA

mount: mounting /cow on /root/cow failed: No such file or directory

Connecting to plymouth: Connection refused

passwd: password expiry information changed.

- 16.748137| /dev/loop3: Can't open blockdev

- 17.908156| systemd-1|: Failed unmounting /cdrom.

- =0;1;31mFAILED -Om| Failed unmounting -0;1;39m/cdrom —Om.

- -0;32m OK -O0m| Listening on -0;1;39mJournal Socket —Om.
Mounting -0;1;39mHuge Pages File System -Om...
Mounting -0;1;39mPOSIX Message Queue File System -Om...
Mounting =-0;1;39mKernel Debug File System -Om...

101

Starting -0;1;39mJournal Service -Om...

[61.190916] cloud-init[2076]: Cloud-init v. 20.1-10-g71af48df-Oubuntu5 running
'modules:final' at Fri, 26 Jun 2020 11:02:01 +0000. Up 61.09 seconds.

[61.191002] cloud-init[2076]: ci-info: no authorized SSH keys fingerprints fo

und for user installer.

[61.191071] cloud-init[2076]: Cloud-init v. 20.1-10-g71af48df-0ubuntu5 finished at Fri, 26 Jun 2020 11:02:01 +000C
Datasource DataSourceNoCloudNet [seed=cmdline,

/var/lib/cloud/seed/nocloud,

http://installserver.local:80/autoinstall/zvmguest/]

[dsmode=net]. Up 61.18 seconds

[61.191136] cloud-init[2076]: Welcome to Ubuntu Server Installer!

[61.191202] cloud-init[2076]: Above you will find SSH host keys and a random
password set for the “installer’ user. You can use these credentials to ssh-in

and complete the installation. If you provided SSH keys in the cloud-init datasource,
they were also provisioned to the installer user.

[61.191273] cloud-init[2076]: If you have access to the graphical console,

like TTY1 or HMC ASCII terminal you can complete the installation there too.

It is possible to connect to the installer over the network, which
might allow the use of a more capable terminal.

To connect, SSH to installer@l0.11.12.23.
The password you should use is ''i7UFdP8fhiVVMme3qqgH8''.
The host key fingerprints are:

RSA SHA256: rBXLeUke3D4gKdsruKEajHjocxc9hr3PI
ECDSA SHA256:KZZYFswtKxFXWQPuQS9QpOBUoS6RHswis
ED25519 SHA256:s+5tZfagx0zffC6gYRGW3t1KcBH6T+Vt0

Ubuntu 20.04 LTS ubuntu-server sclp line0

At short notice, you can even log in to the system with the user ‘installer’ and the temporary password that was
given at the end of the boot-up process (see above) of the installation system:

user@workstation:~$ ssh installer@zvmguest

The authenticity of host 'zvmguest (10.11.12.23)' can't be established.

ECDSA key fingerprint is SHA256:0/dU/D8jJAEGQcbqKGE9La24IRxUPLpzzs51i9F6Vvk.

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

Warning: Permanently added 'zvmguest,10.11.12.23' (ECDSA) to the list of known hosts.
installer@zvmguest's password:

Welcome to Ubuntu 20.04 LTS (GNU/Linux 5.4.0-37-generic s390x)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/pro

System information as of Fri Jun 26 11:08:18 UTC 2020

System load: 1.25 Memory usage: 4% Processes: 192
Usage of /home: unknown Swap usage: 0% Users logged in: 0

0 updates can be installed immediately.
0 of these updates are security updates.

The list of available updates is more than a week old.
To check for new updates run: sudo apt update

The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described in the

102

individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.

the installer running on /dev/ttyl will perform the autoinstall

press enter to start a shell
Please note that it informs you about a currently-running autoinstall process:
the installer running on /dev/ttyl will perform the autoinstall

Nevertheless, we can quickly check some things — although, only until the autoinstall process is finished and the
post-install reboot has been triggered:

root@ubuntu-server:/# 1s -1 /tmp/lets activate the s390x devices
-rw-r--r-- 1 root root 0 Jun 26 11:08 /tmp/lets activate the s390x devices
-rw-r--r-- 1 root root 0 Jun 26 11:09 /tmp/s390x devices activation done

root@ubuntu-server:/# lszdev | grep yes

dasd-eckd 0.0.1f00 yes yes

geth 0.0.0600:0.0.0601:0.0.0602 yes no enc600
root@ubuntu-server:/#

If you wait long enough, you’ll see that the remote session gets closed:

root@ubuntu-server:/# Connection to zvmguest closed by remote host.
Connection to zvmguest closed.
user@workstation:~$

As well as at the console:

ubuntu-server login:

[[0;1;31mFAILED[Om] Failed unmounting [0;1;39m/cdrom[Om.

[169.161139] sd-umoun[15600]: Failed to unmount /oldroot: Device or resource busy

[169.161550] sd-umoun[15601]: Failed to unmount /oldroot/cdrom: Device or resource busy
[169.168118] shutdown[1l]: Failed to finalize file systems, loop devices, ignoring
Total: 282 Selected: 0

Command:
..and that the post-install reboot got triggered:

Message

Mounting [0;1;39mKernel Configuration File System[Om...

Starting [0;1;39mApply Kernel Variables[Om...

[[0;32m OK [Om] Finished [0;1;39mRemount Root and Kernel File Systems[Om.
[[0;32m OK [Om] Finished [0;1;39mUncomplicated firewall[Om.

[[0;32m OK [Om] Mounted [0;1;39mFUSE Control File System[Om.

[[0;32m OK [Om] Mounted [0;1;39mKernel Configuration File System[Om.

[35.378928] cloud-init[2565]: Cloud-init v. 20.1-10-g71af48df-Qubuntu5 runnin

g 'modules:final' at Fri, 26 Jun 2020 11:10:44 +0000. Up 35.29 seconds.

[35.378978] cloud-init[2565]: Cloud-init v. 20.1-10-g71af48df-@ubuntu5 finish

ed at Fri, 26 Jun 2020 11:10:44 +0000. Datasource DataSourceNone. Up 35.37 seconds
[35.379008] cloud-init[2565]: 2020-06-26 11:10:44,359 - cc final message.py[W
ARNING]: Used fallback datasource

[[0;32m OK [Om] Finished [0;1;39mExecute cloud user/final scripts[Om.

[[0;32m OK [Om] Reached target [0;1;39mCloud-init target[Om.

zvmguest login:

With the completion of the reboot the autoinstall is finished and the z/VM guest is ready to use:

user@workstation:~$ ssh-keygen -f "/home/user/.ssh/known hosts" -R "zvmguest"
Host zvmguest found: line 163
/home/user/.ssh/known hosts updated.

103

Original contents retained as /home/user/.ssh/known hosts.old

user@workstation:~$ ssh ubuntu@zvmguest

The authenticity of host 'zvmguest (10.11.12.23)' can't be established.

ECDSA key fingerprint is SHA256:iGtCArEg+ZnoZlgtOkvmyyOgPY8SUEI+f7z0ISOF+m/0.

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

Warning: Permanently added 'zvmguest,10.11.12.23' (ECDSA) to the list of known hosts.
Welcome to Ubuntu 20.04 LTS (GNU/Linux 5.4.0-39-generic s390x)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/pro

System information as of Fri 26 Jun 2020 11:12:23 AM UTC

System load: 0.21 Memory usage: 3% Processes: 189
Usage of /: 28.2% of 30.88GB Swap usage: 0% Users logged in: 0

10 updates can be installed immediately.
0 of these updates are security updates.
To see these additional updates run: apt list --upgradable

The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY,
to the extent permitted by applicable law.

To run a command as administrator (user "root"), use "sudo <command>".
See "man sudo root" for details.

ubuntu@zvmguest:~$ uptime

11:12:35 up 2 min, 1 user, load average: 0.18, 0.17, 0.08
ubuntu@zvmguest:~$ lsb release -a

No LSB modules are available.

Distributor ID: Ubuntu

Description: Ubuntu 20.04 LTS
Release: 20.04
Codename: focal

ubuntu@zvmguest:~$ uname -a
Linux zvmguest 5.4.0-39-generic #43-Ubuntu SMP Fri Jun 19 10:27:17
UTC 2020 s390x s390x s390x

GNU/Linux

ubuntu@zvmguest:~$ lszdev | grep yes

dasd-eckd 0.0.1f00 yes yes

geth 0.0.0600:0.0.0601:0.0.0602 yes yes enc600
ubuntu@zvmguest:~$ exit

logout

Connection to zvmguest closed.
user@workstation:~$

Some closing notes

o It’s always best to use the latest installer and autoinstall components: either make sure the installer gets updated
to the latest level, or just use a current daily live-server image.

e The ISO image specified with the kernel parameters needs to fit in the boot folder. Its kernel and initrd are
specified in the ‘Load from Removable Media and Server’ task at the hardware management console (HMC).

 In addition to activating disk storage resources in early-commands, other devices like OSA/qeth can be added
and activated there, too. This is not needed for the basic network device, as specified in the kernel parameters
that are used for the installation (that one is automatically handled).

e If everything is properly set up — FTP server for the image, HT'TP server for the autoinstall config files — the
installation can be as quick as 2 to 3 minutes (depending on the complexity of the autoinstall YAML file).

104

e There is a simple way of generating a sample autoinstall YAML file: one can perform an interactive Subiquity
installation, grab the file /var/log/installer/autoinstall-user-data, and use it as an example — but beware
that the early-commands entries to activate the s390x-specific devices need to be added manually!

This non-interactive installation uses ‘autoinstall’, which can be considered the successor to the Debian installer (d-i)
and preseed on Ubuntu. This is a detailed step-by-step guide, including output and logs (which are partially a bit
shortened, as indicated by ‘...", to limit the size of this document).

The example logical partition (LPAR) here uses zFCP storage and is connected to a VLAN network.
For a DASD and a non-VLAN network example, please see the non-interactive IBM z/VM (s390x) autoinstallation
guide.

o Start with the preparation of the (FTP) install server (if it doesn’t already exist).

user@local:~$ ssh admin@installserver.local

admin@installserver:~$ mkdir -p /srv/ftp/ubuntu-daily-live-server-20.04

admin@installserver:~$ wget http://cdimage.ubuntu.com/ubuntu-server/focal/daily-live/current/focal-
live-server-s390x.iso --directory-prefix=/srv/ftp/ubuntu-daily-live-server-20.04

--2020-06-26 12:18:48-- http://cdimage.ubuntu.com/ubuntu-server/focal/daily-live/current/focal-live-
server-s390x.1iso

Resolving cdimage.ubuntu.com (cdimage.ubuntu.com)... 2001:67c:1560:8001::1d, 2001:67c:1360:8001::28, 2001:67c: 136

Connecting to cdimage.ubuntu.com (cdimage.ubuntu.com)|2001:67c:1560:8001::1d|:80... connected.
HTTP request sent, awaiting response... 200 OK

Length: 700952576 (668M) [application/x-is09660-image]

Saving to: ‘focal-live-server-s390x.iso’

focal-live-server-s 100%[>] 668.48M 2.73MB/s in 4m 54s

2020-06-26 12:23:42 (2.27 MB/s) - ‘focal-live-server-s390x.iso’ saved [700952576/700952576]
admin@installserver:~$

e The ISO image needs to be extracted now. Since files in its boot folder need to be modified, loopback mount is
not an option here:

admin@installserver:~$ cd /srv/ftp/ubuntu-daily-live-server-20.04
admin@installserver:/srv/ftp/ubuntu-daily-live-server-20.04$ mkdir iso
admin@installserver:/srv/ftp/ubuntu-daily-live-server-20.04$% sudo mount -o loop ./focal-live-server-
s390x.iso ./iso

[sudo] password for admin:

mount: /home/user/iso-test/iso: WARNING: device write-protected, mounted read-only.
admin@installserver:/srv/ftp/ubuntu-daily-live-server-20.04% 1s -1

total 684530

-rw-rw-r-- 1 user user 700952576 Jun 26 10:12 focal-live-server-s390x.1iso
dr-xr-xr-x 10 root root 2048 Jun 26 10:12 iso
admin@installserver:/srv/ftp/ubuntu-daily-live-server-20.04$ rsync -rtvz ./iso/ . && sync
sending incremental file list

skipping non-regular file "ubuntu"

skipping non-regular file "ubuntu-ports"

./

README.diskdefines

boot.catalog

md5sum. txt

ubuntu.ins

skipping non-regular file "dists/stable"

skipping non-regular file "dists/unstable"

.disk/

.disk/base installable

.disk/casper-uuid-generic

.disk/cd type

.disk/info

boot/

boot/README. boot

boot/initrd.off

boot/initrd.siz

boot/initrd.ubuntu

105

boot/kernel.ubuntu
boot/parmfile.ubunt
boot/ubuntu.exec
boot/ubuntu.ikr
boot/ubuntu.ins
casper/

u

sent 681,509,758 bytes received 1,857 bytes 22,344,643.11 bytes/sec

total size is 700,3

17,941

speedup is 1.03

admin@installserver:/srv/ftp/ubuntu-daily-live-server-20.04$ 1s -1

total 684578

dr-xr-xr-x 2 user
-r--r--r-- 1 user
dr-xr-xr-x 3 user
dr-xr-xr-x 3 user
-rw-rw-r-- 1 user
dr-xr-xr-x 2 user

dr-xr-xr-x 10 root

-r--r--r-- 1 user
dr-xr-xr-x 2 user
dr-xr-xr-x 3 user
dr-xr-xr-x 2 user
-r--r--r-- 1 user
-r--r--r-- 1 user

user 4096
user 2048
user 4096
user 4096
user 700952576
user 4096
root
user 4944
user 4096
user 4096
user 4096
user 236
user 185

Jun
Jun
Jun
Jun
Jun
Jun

26
26
26
26
26
26

10:
10:
10:
10:
10:
10:

2048 Jun

Jun
Jun
Jun
Jun
Jun
Jun

26
26
26
26
26
26

10:
10:
10:
10:
10:
10:

12
12
12
11
12
11
26
12
11
11
11
11
12

boot

boot.catalog
casper

dists
focal-live-server-s390x.1iso
install

10:12 iso

md5sum. txt

pics

pool

preseed
README . diskdefines
ubuntu.ins

Now create ins and parm files dedicated to the LPAR that will be installed (here zlinlpar), based on the default
ins and parm files that are shipped with the ISO image:

admin@installserver
admin@installserver
admin@installserver
admin@installserver

admin@installserver
admin@installserver

* Ubuntu for z Series (default kernel)

kernel.ubuntu 0x000
initrd.off 0x000104
initrd.siz 0x000104

parmfile.zlinlpar 0x00010480

initrd.ubuntu 0x010
admin@installserver

:/srv/ftp/ubuntu-daily-live-server-20.04$ chmod -R +rw ./boot
:/srv/ftp/ubuntu-daily-live-server-20.04$ cp ./boot/ubuntu.ins ./boot/ubuntu_zlinlpar.ins
:/srv/ftp/ubuntu-daily-live-server-20.04$ cp ./boot/parmfile.ubuntu ./boot/parmfile.zlinlpar
:/srv/ftp/ubuntu-daily-live-server-20.04$%

:/srv/ftp/ubuntu-daily-live-server-20.04$ vi ./boot/ubuntu zlinlpar.ins
:/srv/ftp/ubuntu-daily-live-server-20.04$ cat ./boot/ubuntu zlinlpar.ins

00000
0c
14

00000
~$

admin@installserver:/srv/ftp/ubuntu-daily-live-server-20.04$ vi ./boot/parmfile.zlinlpar
admin@installserver:/srv/ftp/ubuntu-daily-live-server-20.04$ cat ./boot/parmfile.zlinlpar

ip=10.11.12.42::10.11.12.1:255.255.255.0:zlinlpar:encc000.4711:none:10.11.12.1 vlan=encc000.4711:enccO00 url=htt
daily-live-server-20.04/focal-live-server-s390x.iso autoinstall ds=nocloud-net;s=http://installserver.local:80/a

-- quiet

Now make sure an FTP server is running in the installserver with /srv/ftp as ftp-server root (as used in this

example).

Now prepare an autoinstall (HTTP) server, which hosts the configuration data for the non-interactive installation.

admin@installserver
admin@installserver
admin@installserver
admin@installserver
base64 8)" > meta-d

:/srv/ftp/ubuntu-daily-live-server-20.04$ mkdir -p /srv/www/autoinstall/zlinlpar
:/srv/ftp/ubuntu-daily-live-server-20.04$ cd /srv/www/autoinstall/zlinlpar
:/srv/www/autoinstall/zlinlpar$

:/srv/www/autoinstall/zlinlpar$ echo "instance-id: $(uuidgen || openssl rand -

ata

admin@installserver:/srv/www/autoinstall/zlinlpar$ cat meta-data
instance-id: 2c2215fb-6a38-417f-b72f-376blcc44f0l
admin@installserver:/srv/www/autoinstall/zlinlpar$

admin@installserver:/srv/www/autoinstall/zlinlpar$ vi user-data
admin@installserver:/srv/www/autoinstall/zlinlpar$ cat user-data

#cloud-config

106

autoinstall:
version: 1
refresh-installer:

update: yes
reporting:
builtin:
type: print
apt:
preserve sources list: false
primary:

- arches: [amd64, 1i386]
uri: http://archive.ubuntu.com/ubuntu
- arches: [default]
uri: http://ports.ubuntu.com/ubuntu-ports
keyboard:
layout: en
variant: us
locale: en_US
identity:
hostname: zlinlpar
password:
"6ebJ1f8wxED22bTL4F46P0"
username: ubuntu

user-data:
timezone: America/Boston
users:
- name: ubuntu
password:
"6KwuxED22bTL4F46P0"

lock passwd: false
early-commands:
- touch /tmp/lets activate the s390x devices
- chzdev zfcp -e e000
- chzdev zfcp -e €100
- chzdev zfcp-lun -e --online
- touch /tmp/s390x devices activation done
network:
ethernets:
encc000: {}
version: 2
vlans:
encc000.4711:
addresses: [10.11.12.42/24]
gateway4: 10.11.12.1
id: 4711
link: encc000
nameservers:
addresses: [10.11.12.1]
ssh:
install-server: true
allow-pw: true
authorized-keys: ['ssh-rsa meQwtZ user@workstation # ssh-import-id lp:user']
admin@installserver:~$

For s390x installations the early-commands section is the interesting part:

early-commands:
- touch /tmp/lets activate the s390x devices
- chzdev zfcp -e €000
- chzdev zfcp -e el00
- chzdev zfcp-lun -e --online
- touch /tmp/s390x devices activation done

The first and last early-commands are optional; they only frame and indicate the real s390x command activation.

107

In this particular example, two zFCP hosts (host-bus-adapters) are enabled via their addresses e000 (chzdev
zfcp -e e000) and el00 (chzdev zfcp -e e000). These have certain logical unit numbers (LUNs) assigned that
are all automatically discovered and activated by chzdev zfcp-lun -e --online.

Activation of a direct-access storage device (DASD) would look like this: chzdev dasd -e 100, and a geth device
activation looks like: chzdev geth -e c000.

See also:
For more details about the autoinstall config options, please have a look at the autoinstall reference and
autoinstall schema pages.

Now make sure a HTTP server is running with /srv/www as web-server root (in this particular example).

Next steps need to be done at the hardware management console (HMC). First, connect to the HMC and proceed
with the ‘Load From Removable Media and Server’ task.

Then, start the ‘Load from Removable Media or Server’ task under ‘Recovery’ --> ‘Load from Removable Media
or Server’ on your specific LPAR that you are going to install, and fill out the following fields (the contents will
be of course different on your system):

FTP Source
Host computer: installserver.local
User ID: ftpuser

Password: *xxxiokokk
Account (optional):
File location (optional): ubuntu-daily-live-server-20.04/boot

Now confirm the entered data and click ‘OK’.

At the ‘Load from Removable Media or Server - Select Software to Install’ screen, choose the LPAR that is going
to be installed, here:

ubuntu-daily-live-server-20.04/boot/ubuntu_zlinlpar.ins Ubuntu for z Series (default kernel)
Confirm again with ‘OK".

And another confirmation about the ‘Load will cause jobs to be cancelled’.

Then, another “Yes’ — understanding that it’s a disruptive task:

Disruptive Task Confirmation : Load from Removable Media or Server

Now monitor the ‘Load from Removable media or Server Progress’ screen and confirm it once again when the
status changes from ‘Please wait while the image is being loaded. to ‘Success’.

Then navigate to ‘Daily’ --> ‘Operating System Messages’ to monitor the initial program load (IPL) of the
install system ...

Message

chzdev: Unknown device type or device ID format: c000.4711

Use 'chzdev --help' for more information

QETH device 0.0.c000:0.0.c001:0.0.c002 configured

IP-Config: encc000.4711 hardware address la:3c:99:55:2a:ef mtu 1500
IP-Config: encc000.4711 guessed broadcast address 10.11.12.255
IP-Config: encc000.4711 complete:

address: 10.11.12.42 broadcast: 10.11.12.255 netmask: 255.255.255.0

gateway: 10.11.12.1 dnsoO 1 10.11.12.1 dnsl : 0.0.0.0

host : zlinlpar

rootserver: 0.0.0.0 rootpath:

filename

Connecting to installserver.local:80 (installserver.local:80)
focal-live-server-s3 5% |* | 39.9M 0:00:15 ETA
focal-live-server-s3 22% |**¥¥k** | 147M 0:00:07 ETA
focal-live-server-s3 38% |¥X¥xioktxiokxx | 254M 0:00:04 ETA
focal-live-server-s3 53% |¥ktxioktxioktritokrx | 355M 0:00:03 ETA
focal-live-server-s3 67% |*¥¥rkfkokikiookfokofook | 453M 0:00:02 ETA
focal-live-server-s3 81% |¥¥¥xkiickrdokaoktokfododookkoktok | 545M 0:00:01 ETA

focal-live-server-s3 94% |Frrxkiioosiiiiiiiiatironnss | 6331 0:00:00 ETA
focal-live-server-s3 100% |*xrxxtssmnsiiittitiattooons| 668M 0:00:00 ETA

108

https://ubuntu.com/server/docs/install/autoinstall-reference
https://ubuntu.com/server/docs/install/autoinstall-schema

mount: mounting /cow on /root/cow failed: No such file or directory

Connecting to plymouth: Connection refused

passwd: password expiry information changed.

Using CD-ROM mount point /cdrom/

Identifying... [5d25356068b713167814807dd678c261-2]

Scanning disc for index files...

Found 2 package indexes, 0 source indexes, 0 translation indexes and 1 signature
Found label 'Ubuntu-Server 20.04 LTS Focal Fossa - Release s390x (20200616)'
This disc is called:

'Ubuntu-Server 20.04 LTS Focal Fossa - Release s390x (20200616)'

[61.190916] cloud-init[2076]: Cloud-init v. 20.1-10-g71af48df-Qubuntu5 running
'modules:final' at Fri, 26 Jun 2020 11:02:01 +0000. Up 61.09 seconds.

[61.191002] cloud-init[2076]: ci-info: no authorized SSH keys fingerprints fo

und for user installer.

[61.191071] cloud-init[2076]: Cloud-init v. 20.1-10-g71af48df-0ubuntu5 finished at Fri, 26 Jun 2020 11:02:01 +000C
Datasource DataSourceNoCloudNet [seed=cmdline,

/var/lib/cloud/seed/nocloud,

http://installserver.local:80/autoinstall/zlinlpar/]

[dsmode=net]. Up 61.18 seconds

[61.191136] cloud-init[2076]: Welcome to Ubuntu Server Installer!

[61.191202] cloud-init[2076]: Above you will find SSH host keys and a random
password set for the “installer’ user. You can use these credentials to ssh-in

and complete the installation. If you provided SSH keys in the cloud-init datasource,
they were also provisioned to the installer user.

[61.191273] cloud-init[2076]: If you have access to the graphical console,

like TTY1 or HMC ASCII terminal you can complete the installation there too.

It is possible to connect to the installer over the network, which
might allow the use of a more capable terminal.

To connect, SSH to installer@l0.11.12.42.
The password you should use is ''i7UFdP8fhiVVMme3qqgH8"'".
The host key fingerprints are:

RSA SHA256: rBXLeUke3D4gKdsruKEajHjocxc9hr3PI
ECDSA SHA256:KZZYFswtKxFXWQPuQS9QpOBU0oS6RHswis
ED25519 SHA256:s+5tZfagx0zffC6gYRGW3t1KcBH6T+Vt0

Ubuntu 20.04 LTS ubuntu-server sclp_line0

At short notice, you can even log in to the system with the user ‘installer’ and the temporary password that was
given at the end of the boot-up process (see above) of the installation system:

user@workstation:~$ ssh installer@zlinlpar

The authenticity of host 'zlinlpar (10.11.12.42)' can't be established.

ECDSA key fingerprint is SHA256:0/dU/D8jJAEGQcbgKGE9La24IRxUPLpzzs51i9F6Vvk.

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

Warning: Permanently added 'zlinlpar,10.11.12.42' (ECDSA) to the list of known hosts.
installer@zlinlpar's password:

Welcome to Ubuntu 20.04 LTS (GNU/Linux 5.4.0-37-generic s390x)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/pro

System information as of Fri Jun 26 11:08:18 UTC 2020

System load: 1.25 Memory usage: 4% Processes: 192
Usage of /home: unknown Swap usage: 0% Users logged in: 0

0 updates can be installed immediately.

109

0 of these updates are security updates.

The 1ist of available updates is more than a week old.
To check for new updates run: sudo apt update

The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.

the installer running on /dev/ttyl will perform the autoinstall

press enter to start a shell
Notice that it informs you about a currently-running autoinstall process:
the installer running on /dev/ttyl will perform the autoinstall

Nevertheless, we can quickly check some things — though only until the autoinstall process has finished and the
post-install reboot has been triggered:

root@ubuntu-server:/# 1s -1 /tmp/lets activate the s390x devices
-rw-r--r-- 1 root root 0 Jun 26 11:08 /tmp/lets_activate the s390x_devices
-rw-r--r-- 1 root root 0 Jun 26 11:09 /tmp/s390x devices activation done

root@ubuntu-server:/# lszdev | grep yes

zfcp-host 0.0.e000 yes yes
zfcp-host 0.0.el100 yes yes
zfcp-lun 0.0.e000:0x50050763060b16b6:0x4026400200000000 yes yes sdb sgl
zfcp-lun 0.0.e000:0x50050763061b16b6:0x4026400200000000 yes yes sda sg0
zfcp-lun 0.0.e100:0x50050763060b16b6:0x4026400200000000 yes yes sdd sg3
zfcp-lun 0.0.e100:0x50050763061b16b6:0x4026400200000000 yes yes sdc sg2

geth 0.0.c000:0.0.c001:0.0.c002 yes no encc000
root@ubuntu-server:/#

If you wait long enough you’ll see the remote session get closed:

root@ubuntu-server:/# Connection to zlinlpar closed by remote host.
Connection to zlinlpar closed.
user@workstation:~$

As well as at the console:

ubuntu-server login:

[[0;1;31mFAILED[Om] Failed unmounting [0;1;39m/cdrom[Om.

[169.161139] sd-umoun[15600]: Failed to unmount /oldroot: Device or resource busy

[169.161550] sd-umoun[15601]: Failed to unmount /oldroot/cdrom: Device or resource busy
[169.168118] shutdown[l]: Failed to finalize file systems, loop devices, ignoring
Total: 282 Selected: 0

Command:
..and that the post-install reboot gets triggered:

Message

Mounting [0;1;39mKernel Configuration File System[Om...

Starting [0;1;39mApply Kernel Variables[Om...

[[0;32m OK [Om] Finished [0;1;39mRemount Root and Kernel File Systems[Om.
[[0;32m OK [Om] Finished [0;1;39mUncomplicated firewall[Om.

[[0;32m OK [Om] Mounted [0;1;39mFUSE Control File System[Om.

[[0;32m OK [Om] Mounted [0;1;39mKernel Configuration File System[Om.

[35.378928] cloud-init[2565]: Cloud-init v. 20.1-10-g71af48df-@ubuntu5 runnin

110

g 'modules:final' at Fri, 26 Jun 2020 11:10:44 +0000. Up 35.29 seconds.

[35.378978] cloud-init[2565]: Cloud-init v. 20.1-10-g71af48df-Qubuntu5 finish

ed at Fri, 26 Jun 2020 11:10:44 +0000. Datasource DataSourceNone. Up 35.37 seconds
[35.379008] cloud-init[2565]: 2020-06-26 11:10:44,359 - cc_final message.py[W
ARNING]: Used fallback datasource

[[0;32m OK [Om] Finished [0;1;39mExecute cloud user/final scripts[Om.

[[0;32m OK [Om] Reached target [0;1;39mCloud-init target[Om.

zlinlpar login:
With the completion of the reboot, the autoinstall is finished and the LPAR is ready to use:

user@workstation:~$ ssh-keygen -f "/home/user/.ssh/known hosts" -R "zlinlpar"

Host zlinlpar found: line 163

/home/user/.ssh/known_hosts updated.

Original contents retained as /home/user/.ssh/known_hosts.old

user@workstation:~$ ssh ubuntu@zlinlpar

The authenticity of host 'zlinlpar (10.11.12.42)' can't be established.

ECDSA key fingerprint is SHA256:iGtCArEg+ZnoZlgtOkvmyyOgPY8SUEI+f7z0ISOF+m/0.

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

Warning: Permanently added 'zlinlpar,10.11.12.42' (ECDSA) to the list of known hosts.
Welcome to Ubuntu 20.04 LTS (GNU/Linux 5.4.0-39-generic s390x)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/pro

System information as of Fri 26 Jun 2020 11:12:23 AM UTC

System load: 0.21 Memory usage: 3% Processes: 189
Usage of /: 28.2% of 30.88GB Swap usage: 0% Users logged in: 0

10 updates can be installed immediately.
0 of these updates are security updates.
To see these additional updates run: apt list --upgradable

The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY,
to the extent permitted by applicable law.

To run a command as administrator (user "root"), use "sudo <command>".
See "man sudo root" for details.

ubuntu@zlinlpar:~$ uptime
11:12:35 up 2 min, 1 user, load average: 0.18, 0.17, 0.08
ubuntu@zlinlpar:~$ lsb release -a
No LSB modules are available.
Distributor ID: Ubuntu

Description: Ubuntu 20.04 LTS
Release: 20.04
Codename: focal

ubuntu@zlinlpar:~$ uname -a
Linux zlinlpar 5.4.0-39-generic #43-Ubuntu SMP Fri Jun 19 10:27:17
UTC 2020 s390x s390x s390x

GNU/Linux

ubuntu@zlinlpar:~$ lszdev | grep yes

zfcp-host 0.0.e000 yes yes
zfcp-host 0.0.e100 yes yes
zfcp-lun 0.0.e000:0x50050763060b16b6:0x4026400200000000 yes yes
sdb sgl

zfcp-lun 0.0.e000:0x50050763061b16b6:0x4026400200000000 yes yes

111

sda sg0

zfcp-lun 0.0.e100:0x50050763060b16b6: 0x4026400200000000 yes yes

sdc sg2

zfcp-lun 0.0.e100:0x50050763061b16b6:0x4026400200000000 yes yes

sdd sg3

geth 0.0.c000:0.0.c001:0.0.c002 yes yes encc000
ubuntu@zlinlpar:~$ exit

logout

Connection to zlinlpar closed.
user@workstation:~$

Some closing notes

o It’s always best to use the latest installer and autoinstall components. Be sure to update the installer to the
most recent version, or just use a current daily live-server image.

e The ISO image specified with the kernel parameters needs to fit in the boot folder. Its kernel and initrd are
specified in the ‘Load from Removable Media and Server’ task at the hardware management console (HMC).

o In addition to activating disk storage resources in early-commands, other devices like OSA/qgeth can be added
and activated there, too. This is not needed for the basic network device, as specified in the kernel parameters
used for the installation (that one is automatically handled).

o If everything is properly set up — FTP server for the image, HT'TP server for the autoinstall config files — the
installation can be as quick as 2 to 3 minutes. Of course this depends on the complexity of the autoinstall YAML
file.

e There is a simple way of generating a sample autoinstall YAML file; one can perform an interactive Subiquity
installation, grab the file /var/log/installer/autoinstall-user-data, and use it as an example — but beware
that the early-commands entries to activate the s390x-specific devices need to be added manually!

What are ROCKs?

Ordinary software packages can often be installed in a variety of different types of environments that satisfy the given
packaging system. However, these environments can be quite varied, such as including versions of language runtimes,
system libraries, and other library dependencies that the software was not well tested with.

Software containers address this by encapsulating both the software and the surrounding environment. Instead of
installing and maintaining a collection of software packages, the user runs and maintains a single container, instantiated
from a container image with the desired software already installed. The user relies on the provider of the container
image to perform the necessary software testing and maintenance updates. There is a rich ecosystem of container
providers thanks to mainstream tools like Docker, and popular container registries like Docker Hub, Amazon ECR,
etc., which make it easy for anyone to build and publish a container image. Unfortunately, with that freedom and
flexibility invariably comes unreliability of maintenance and inconsistency of implementation.

The Open Container Initiative (OCI) establishes standards for constructing container images that can be reliably
installed across a variety of compliant host environments.

Ubuntu’s LTS Docker Image Portfolio provides OCI-compliant images that receive stable security updates and pre-
dictable software updates, thus ensuring consistency in both maintenance schedule and operational interfaces for the
underlying software your software builds on.

Container Creation and Deletion

Over the course of this tutorial we’ll explore deriving a customized Apache container, and then networking in a Postgres
container backend for it. By the end you’ll have a working knowledge of how to set up a container-based environment
using Canonical’s ROCKs.

First the absolute basics. Let’s spin up a single container providing the Apache2 web server software:

$ sudo apt-get update

$ sudo apt-get -y install docker.io

$ sudo docker run -d --name my-apache2-container -p 8080:80 ubuntu/apache2:2.4-22.04 beta
Unable to find image 'ubuntu/apache2:2.4-22.04 beta' locally

2.4-22.04 beta: Pulling from ubuntu/apache2

13c61b50dd15: Pull complete

34dadde438e6: Pull complete

d8ellcec95e6: Pull complete

112

https://ubuntu.com/security/docker-images

Digest: sha256:11647ce68a130540150dfebbb755ee79¢c908103fafbf805074eb6513e6b9df83
Status: Downloaded newer image for ubuntu/apache2:2.4-22.04 beta
4031e6ed24a6e08185efd1c60e7df50f8f60c21ed9961c858cadcb6bb300a72a

This container, named my-apache2-container runs in an Ubuntu 22.04 LTS environment and can be accessed via local
port 8080. Load the website up in your local web browser:

$ firefox http://localhost:8080

Apache2 Ubuntu Default Page: It works — Nightly

Apache? Ubuntu Default Par x4+

<« & Q, localhost

Apache2 Default Page

Ubuntu

This is the default welcome page used to test the correct operation of the Apache2 server after installation on
Ubuntu systems. It is based on the equivalent page on Debian, from which the Ubuntu Apache packaging is derived. I
you can read this page, it means that the Apache HTTP server installed at this site is working properly. You should
replace this file (located at /var/www/html/index.html) before continuing to operate your HTTP server.

If you are a normal user of this web site and don't know what this page is about, this probably means that the site is
currently unavailable due to maintenance. If the problem persists, please contact the site's administrator.

Configuration Overview

Ubuntu's Apache2 default configuration is different From the upstream default configuration, and split into several
£l -) . - - : .

If you don’t have firefox handy, curl can be used instead:

$ curl -s http://localhost:8080 | grep "<title>"
<title>Apache2 Ubuntu Default Page: It works</title>

The run command had a number of parameters to it. The Usage section of Ubuntu’s Docker hub page for Apache2 has
a table with an overview of parameters specific to the image, and Docker itself has a formal reference of all available
parameters, but lets go over what we’re doing in this particular case:

$ sudo docker run -d --name my-apache2-container -e TZ=UTC -p 8080:80 ubuntu/apache2:2.4-22.04 beta

The -d parameter causes the container to be detached so it runs in the background. If you omit this, then you’ll want
to use a different terminal window for interacting with the container. The - -name parameter allows you to use a defined
name; if it’s omitted you can still reference the container by its Docker id. The -e option lets you set environment
variables used when creating the container; in this case we’re just setting the timezone (TZ) to universal time (UTC).
The -p parameter allows us to map port 80 of the container to 8080 on localhost, so we can reference the service as
http://localhost:8080. The last parameter indicates what software image we want.

A variety of other container images are provided on Ubuntu’s Docker Hub and on Amazon ECR, including documen-
tation of supported customization parameters and debugging tips. This lists the different major/minor versions of
each piece of software, packaged on top of different Ubuntu LTS releases. So for example, in specifying our requested
image as ubuntu/apache2:2.4-22.04 beta we used Apache2 version 2.4 running on a Ubuntu 22.04 environment.

Notice that the image version we requested has beta appended to it. This is called a Channel Tag. Like most software,
Apache2 provides incremental releases numbered like 2.4.51, 2.4.52, and 2.4.53. Some of these releases are strictly
bugfix-only, or even just CVE security fixes; others may include new features or other improvements. If we think of
the series of these incremental releases for Apache2 2.4 on Ubuntu 22.04 as running in a Channel, the Channel Tags
point to the newest incremental release that’s been confirmed to the given level of stability. So, if a new incremental
release 2.4.54 becomes available, ubuntu/apache2:2.4-22.04 edge images would be updated to that version rapidly,
then ubuntu/apache2:2.4-22.04 beta once it’s received some basic testing; eventually, if no problems are found, it
will also be available in ubuntu/apache2:2.4-22.04 candidate and then in ubuntu/apache2:2.4-22.04 stable once it’s
validated as completely safe.

113

https://hub.docker.com/r/ubuntu/apache2
https://docs.docker.com/engine/reference/commandline/run/
https://hub.docker.com/r/ubuntu/
https://gallery.ecr.aws/lts?page=1

For convenience there’s also a latest tag and an edge tag which are handy for experimentation or where you don’t
care what version is used and just want the newest available. For example, to launch the latest version of Nginx, we
can do so as before, but specifying latest instead of the version:

$ sudo docker run -d --name my-nginx-container -e TZ=UTC -p 9080:80 ubuntu/nginx:latest
4dac8d77645d7ed695bdcbeb3409a8eda942393067dad49e4ef3b8blbdc5d584

$ curl -s http://localhost:9080 | grep "<title>"
<title>Welcome to nginx!</title>

We’ve also changed the port to 9080 instead of 8080 using the -p parameter, since port 8080 is still being used by
our apache2 container. If we were to try to also launch Nginx (or another Apache2 container) on port 8080, we’'d get
an error message, Bind for 0.0.0.0:8080 failed: port is already allocated and then would need to remove the
container and try again.

Speaking of removing containers, now that we know how to create generic default containers, let’s clean up:

$ sudo docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
d86e93c98e20 ubuntu/apache2:2.4-22.04 beta "apache2-foreground" 29 minutes ago Up 29 minutes 0.0.0.0:8080-
>80/tcp, :::8080->80/tcp my-apache2-container

eed23be5f65d ubuntu/nginx:latest "/docker-entrypoint...'
>80/tcp, :::9080->80/tcp my-nginx-container

18 minutes ago Up 18 minutes ©0.0.0.0:9080-

$ sudo docker stop my-apache2-container
$ sudo docker rm my-apache2-container

$ sudo docker stop my-nginx-container
$ sudo docker rm my-nginx-container

To be able to actually use the containers, we’ll have to configure and customize them, which we’ll look at next.

In the last section we looked at the basics of how to start and stop containers. Here we’ll apply our own modifications
to the images.

You'll recall we used the -p parameter to give the two containers we created different ports so they didn’t conflict
with each other. We can think of this type of customization as a container configuration, as opposed to an image
configuration change defined in the Dockerfile settings for the image itself. From a single image definition we can
create an arbitrary number of different containers with different ports (or other pre-defined aspects), which are all
otherwise reliably identical. A third approach is to modify the running container after it has been launched, applying
whatever arbitrary changes we wish as runtime modifications.

e image configuration: Done in Dockerfile, changes common to all container instances of that image. Requires
rebuilding the image.

e container configuration: Done at container launch, allowing variation between instances of a given image.
Requires re-launching the container to change.

o runtime modifications: Done dynamically after container launch. Does not require re-launching the container.

The second approach follows Docker’s immutable infrastructure principle, and is what the ROCKs system intends for
production environments. For the sake of this tutorial we’ll use the third approach for introductory purposes, building
on that later to show how to achieve the same with only configuration at container creation time.

Setting up a Development Environment
Speaking of doing things properly, let’s prepare a virtual machine (VM) to do our tutorial work in.

While you can of course install the docker.io package directly on your desktop, as you may have done in the previous
section of this tutorial, using it inside a VM has a few advantages. First, it encapsulates the system changes you want
to experiment with, so that they don’t affect your desktop; if anything gets seriously messed up you just can delete
the VM and start over. Second, it facilitates experimenting with different versions of Ubuntu, Docker, or other tools
than would be available from your desktop. Third, since “The Cloud” is built with VM’s, developing in a VM from
the start lets you more closely emulate likely types of environments you’ll be deploying to.

There are a number of different VM technologies available, any of which will suit our purposes, but for this tutorial
we’ll set one up using Canonical’s Multipass software, which you can install on Windows using a downloadable installer,
or on macOS via brew, or any flavor of Linux via snapd.

Here’s how to launch a Ubuntu 22.04 VM with a bit of extra resources, and log in:

114

https://multipass.run/docs/installing-on-windows
https://multipass.run/docs/installing-on-macos
https://multipass.run/docs/installing-on-linux

host> multipass launch --cpus 2 --mem 4G --disk 10G --name my-vm daily:20.04
host> multipass shell my-vm

If later you wish to suspend or restart the VM, use the stop/start commands:

host> multipass stop my-vm
host> multipass start my-vm

Go ahead and set up your new VM devel environment with Docker, your preferred editor, and any other tools you
like having on hand:

$ sudo apt-get update
$ sudo apt-get -y install docker.io

Data Customization

The most basic customization for a webserver would be the index page. Let’s replace the default one with the typical
hello world example:

$ echo '<html><title>Hello Docker...</title><body>Hello Docker!</body></html>' > index.html

The technique we’ll use to load this into the webserver container is called bind mounting a volume, and this is done
with the -v (or --volume) flag to docker run (not to be confused with docker -v which of course just prints the docker
version). A wolume is a file or directory tree or other data on the host we wish to provide via the container. A bind
mount means rather than copying the data into the container, we establish a linkage between the local file and the file
in the container. Have a look at how this works:

$ sudo docker run -d --name my-apache2-container -e TZ=UTC -p 8080:80 -v "${HOME}/index.html:/var/www/html/index.html" ub

$ curl http://localhost:8080
<html><title>Hello Docker...</title></html>

$ sudo docker inspect -f "{{ .Mounts }}" my-apache2-container

[{bind /home/ubuntu/index.html /var/www/html/index.html true rprivate}]
Watch what happens when we change the index.html contents:

$ echo '<html><title>...good day!</title></html>' > index.html

$ curl http://localhost:8080

<html><title>...good day</title></html>

This linkage is two-way, which means that the container itself can change the data. (We mentioned runtime modifica-
tions earlier — this would be an example of doing that.)

$ sudo docker exec -ti my-apache2-container /bin/bash
root@abcd12345678:/# echo '<html><title>Hello, again</title></html>' > /var/www/html/index.html

root@abcd12345678:/# exit
exit

$ curl http://localhost:8080
<html><title>Hello, again</title></html>

What if we don’t want that behavior, and don’t want to grant the container the ability to do so? We can set the bind
mount to be read-only by appending :ro:

$ sudo docker stop my-apache2-container
$ sudo docker rm my-apache2-container
$ sudo docker run -d --name my-apache2-container -e TZ=UTC -p 8080:80 -v ${HOME}/index.html:/var/www/html/index.html:ro ul

$ sudo docker exec -ti my-apache2-container /bin/bash

root@abcd12345678:/# echo '<html><title>good day, sirl</title></html>' > /var/www/html/index.html
bash: /var/www/html/index.html: Read-only file system

root@abcdl12345678:/# exit

$ curl http://localhost:8080

115

<html><title>Hello, again</title></html>
However, the read-only mount still sees changes on the host side:

$ echo '<html><title>I said good day!</title></html>' > ./index.html

$ curl http://localhost:8080
<html><title>I said good day!</title></html>

This same approach can be used to seed database containers:

$ echo 'CREATE DATABASE my db;' > my-database.sql

$ sudo docker run -d --name my-database -e TZ=UTC \
-e POSTGRES PASSWORD=mysecret \
-v $(pwd)/my-database.sql:/docker-entrypoint-initdb.d/my-database.sql:ro \
ubuntu/postgres:latest

The docker-entrypoint-initdb.d/ directory we’re using here is special in that files ending in the .sql extension (or
.sql.gz or .sql.xz) will be executed to the database on container initialization. Bash scripts (.sh) can also be placed
in this directory to perform other initialization steps.

Let’s verify the database’s creation:

$ sudo docker exec -ti my-database su postgres --command "psql my db --command 'SELECT * FROM pg database WHERE datistemplc
oid | datname | datdba | encoding | datcollate | datctype | datistemplate | datallowconn | datconnlimit | datlastsysoid |

------ B e e e S e e e R
B T e R R e

13761 | postgres | 10 | 6 | en US.utf8 | en US.utf8 | f | t | -
1| 13760 | 727 | 1| 1663 |

16384 | my db | 10 | 6 | en US.utf8 | en US.utf8 | f | t | -
1| 13760 | 727 | 1| 1663 |

(2 rows)

Debugging Techniques

Most containers are configured to make pertinent status information (such as their error log) visible through Docker’s
logs command:

$ sudo docker logs my-apache2-container
AHO0558: apache2: Could not reliably determine the server's fully qualified domain name, using 172.17.0.2. Set the 'Server!

Sometimes this isn’t sufficient to diagnose a problem. In the previous example we shelled into our container to
experiment with, via:

$ sudo docker exec -it my-apache2-container /bin/bash
root@abcd12345678:/# cat /proc/cmdline
BOOT IMAGE=/boot/vmlinuz-5.15.0-25-generic root=LABEL=cloudimg-rootfs ro console=ttyl console=ttySo0

This places you inside a bash shell inside the container; commands you issue will be executed within the scope of the
container. While tinkering around inside the container isn’t suitable for normal production operations, it can be a
handy way to debug problems such as if you need to examine logs or system settings. For example, if you’re trying to
examine the network:

root@abcd12345678:/# apt-get update && apt-get install -y iputils-ping iproute2
root@abcd12345678:/# ip addr | grep inet

inet 127.0.0.1/8 scope host lo

inet 172.17.0.3/16 brd 172.17.255.255 scope global eth0

root@abcd12345678:/# ping my-apache2-container

ping: my-apache2-container: Name or service not known
root@abcd12345678:/# ping -cl 172.17.0.1 | tail -n2

1 packets transmitted, 1 received, 0% packet loss, time Oms

rtt min/avg/max/mdev = 0.194/0.194/0.194/0.000 ms

root@abcd12345678:/# ping -cl 172.17.0.2 | tail -n2

1 packets transmitted, 1 received, 0% packet loss, time Oms

rtt min/avg/max/mdev = 0.044/0.044/0.044/0.000 ms

root@abcd12345678:/# ping -cl 172.17.0.3 | tail -n2

1 packets transmitted, 0 received, +1 errors, 100% packet loss, time Oms

116

We won’t use this container any further, so can remove it:

$ sudo docker stop my-apache2-container
$ sudo docker rm my-apache2-container

Network

IP addresses may be suitable for debugging purposes, but as we move beyond individual containers we’ll want to refer
to them by network hostnames. First we create the network itself:

$ sudo docker network create my-network
c1507bc90cfb6100fe0e696986eb99afe64985c7c4ead4ad319f8080e640616b

$ sudo docker network list

NETWORK ID NAME DRIVER SCOPE
7e9ceBe7c0Ofd bridge bridge local
6566772ff02f host host local
c1507bc90cfb my-network bridge local
8b992742eb38 none null local

Now when creating containers we can attach them to this network:

$ sudo docker run -d --name my-container-0 --network my-network ubuntu/apache2:latest
$ sudo docker run -d --name my-container-1 --network my-network ubuntu/apache2:latest

$ sudo docker exec -it my-container-0 /bin/bash

root@abcd12345678:/# apt-get update && apt-get install -y iputils-ping bind9-dnsutils
root@abcd12345678:/# ping my-container-1 -c 1| grep statistics -Al

--- my-container-1 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time Oms

root@abcd12345678:/# dig +short my-container-0 my-container-1
172.18.0.2
172.18.0.3

root@abcd12345678:/# exit

$ sudo docker stop my-container-0 my-container-1
$ sudo docker rm my-container-0 my-container-1

A common use case for networked containers is load balancing. Docker’s --network-alias option provides one means
of setting up round-robin load balancing at the network level during container creation:

sudo docker run -d --name my-container-0 --network my-network --network-alias my-website -e TZ=UTC -
8080:80 -v ${HOME}/index.html:/var/www/html/index.html:ro ubuntu/apache2:latest
sudo docker run -d --name my-container-1 --network my-network --network-alias my-website -e TZ=UTC -
8081:80 -v ${HOME}/index.html:/var/www/html/index.html:ro ubuntu/apache2:latest
sudo docker run -d --name my-container-2 --network my-network --network-alias my-website -e TZ=UTC -
8082:80 -v ${HOME}/index.html:/var/www/html/index.html:ro ubuntu/apache2:latest

T A T A T &

$ sudo docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
665cf336badc ubuntu/apache2:latest "apache2-foreground" 4 days ago Up 4 days 0.0.0.0:8082-
>80/tcp, :::8082->80/tcp my-container-2
£d952342b6f8 ubuntu/apache2:latest "apache2-foreground" 4 days ago Up 4 days 0.0.0.0:8081-
>80/tcp, :::8081->80/tcp my-container-1
0592e413e81d ubuntu/apache2:latest "apache2-foreground" 4 days ago Up 4 days 0.0.0.0:8080-
>80/tcp, :::8080->80/tcp my-container-0

The my-website alias selects a different container for each request it handles, allowing load to be distributed across all
of them.

$ sudo docker exec -it my-container-0 /bin/bash
root@abcd12345678:/# apt update; apt install -y bind9-dnsutils
root@abcd12345678:/# dig +short my-website

172.18.0.3

172.18.0.2

117

172.18.0.4
Run that command several times, and the output should display in a different order each time.

root@abcd12345678:/# dig +short my-website
172.18.0.3

172.18.0.4

172.18.0.2

root@abcd12345678:/# dig +short my-website
172.18.0.2

172.18.0.3

172.18.0.4

root@abcd12345678: /# exit

$ sudo docker stop my-container-0 my-container-1 my-container-2
$ sudo docker rm my-container-0 my-container-1 my-container-2

Installing Software

By default Apache2 can serve static pages, but for more than that it’s necessary to enable one or more of its modules.
As we mentioned above, there are three approaches you could take: Set things up at runtime by logging into the
container and running commands directly; configuring the container at creation time; or, customizing the image
definition itself.

Ideally, we’d use the second approach to pass a parameter or setup.sh script to install software and run a2enmod <mod>,
however the Apache2 image lacks the equivalent of Postgres’ /docker-entrypoint-initdb.d/ directory and automatic
processing of shell scripts. So for a production system you’d need to derive your own customized Apache2 image and
build containers from that.

For the purposes of this tutorial, though, we can use the runtime configuration approach just for experimental purposes.
First, create our own config file that enables CGI support:

$ cat > ~/my-apache2.conf << 'EOF'
User ${APACHE RUN USER}

Group ${APACHE_RUN_GROUP}

ErrorLog ${APACHE_LOG DIR}/error.log
ServerName localhost

HostnameLookups Off

LogLevel warn

Listen 80

Include module configuration:
IncludeOptional mods-enabled/*.1load
IncludeOptional mods-enabled/*.conf

<Directory />
AllowOverride None
Require all denied
</Directory>

<Directory /var/www/html/>
AllowOverride None
Require all granted
</Directory>

<Directory /var/www/cgi-bin/>
AddHandler cgi-script .cgi
AllowOverride None
Options +ExecCGI -MultiViews
Require all granted
</Directory>

<VirtualHost *:80>

DocumentRoot /var/www/html/
ScriptAlias /cgi-bin/ /var/www/cgi-bin/

118

</VirtualHost>
EOF

Next, copy the following into a file named fortune.cgi.

$ cat > ~/fortune.cgi << 'EOF'

#!/usr/bin/env bash

echo -n -e "Content-Type: text/plain\n\n"

echo "Hello ${REMOTE ADDR}, I am $(hostname -f) at ${SERVER ADDR}"
echo "Today is $(date)"

if [-x /usr/games/fortune]; then
/usr/games/fortune

fi

EOF

$ chmod a+x ~/fortune.cgi
Now create our container:

$ sudo docker run -d --name my-fortune-cgi -e TZ=UTC -p 9080:80 \
-v $(pwd)/my-apache2.conf:/etc/apache2/apache2.conf:ro \
-v $(pwd)/fortune.cgi:/var/www/cgi-bin/fortune.cgi:ro \
ubuntu/apache2:latest
c3709dc03f24fbf862a8d9499a03015ef7ccb5e76fdeaddc4ac62a4c853597bf

Next, perform the runtime configuration steps:

$ sudo docker exec -it my-fortune-cgi /bin/bash

root@abcd12345678:/# apt-get update && apt-get install -y fortune
root@abcd12345678:/# a2enmod cgid
root@abcd12345678:/# service apache2 force-reload

Finally, restart the container so our changes take effect:

$ sudo docker restart my-fortune-cgi
my-fortune-cgi

Let’s test it out:

$ curl http://localhost:9080/cgi-bin/fortune.cgi

Hello 172.17.0.1, I am 8ace48b71de7 at 172.17.0.2

Today is Wed Jun 1 16:59:40 UTC 2022

Q: Why is Christmas just like a day at the office?

A: You do all of the work and the fat guy in the suit
gets all the credit.

Finally is cleanup, if desired:

$ sudo docker stop my-fortune-cgi
$ sudo docker rm my-fortune-cgi

Next

While it’s interesting to be able to customize a basic container, how can we do this without resorting to runtime
configuration? As well, a single container by itself is not terrible useful, so in the next section we’ll practice setting
up a database node to serve data to our webserver.

The prior section explained the use of a single container for running a single software instance, but the principle benefit
of using ROCKSs is the ability to easily create and architecturally organize, or “orchestrate”, them to operate together
in a modular fashion.

If you set up a VM while following that section, you can continue to use that here, or if not feel free to create a new
VM for this section, using those same directions.
Colors Web App

This section will demonstrate use of docker-compose to set up two nodes that inter-operate to implement a trivial CGI
web app that lets the user select a background color from the standard rgb.txt color codes. Here’s the table definition
itself:

119

$ cat > ~/my-color-database.sql <<'EOF'
CREATE DATABASE my color _db;

CREATE TABLE "color"
(
id INTEGER GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,
red INTEGER,
green INTEGER,
blue INTEGER,
colorname VARCHAR NOT NULL
)

REVOKE ALL ON "color" FROM public;
GRANT SELECT ON "color" TO "postgres";

EOF

For the data, we’ll scarf up X11’s rgb.txt file, which should be readily at hand with most Ubuntu desktop installations:

$ sudo apt-get install x11-common
$ grep -v ~! /usr/share/X11/rgb.txt | \
awk 'BEGIN{print "INSERT INTO color(red, green, blue, colorname) VALUES"}
$1 1= $2 || $2 != $3 {

printf(" (%d, %d, %d, '\''", $1, $2, $3);
for (i = 4; 1 <= NF; i++) {
printf("%s", $1i);
}
printf(un\l |),\nu);
}
END {print " (0, 0, 0, '"\''black'\'');"}' >> ~/my-color-database.sql

Here’s the corresponding CGI script:

$ cat > ~/my-colors.cgi <<'EOF'
#!/usr/bin/env python3

import cgi
import psycopg2

Get web form data (if any)
query form = cgi.FieldStorage()
if 'bgcolor' in query form.keys():
bgcolor = query form["bgcolor"].value
else:
bgcolor = 'FFFFFF'

print("Content-Type: text/html\n\n");

Head
body style = "body { background-color: #%s; }" %(bgcolor)
text style = ".color-invert { filter: invert(1l); mix-blend-mode: difference; }"

print(f"<html>\n<head><style>\n{body style}\n{text style}\n</style></head>\n")
print("<body>\n<hl class=\"color-invert\">Pick a background color:</h1>\n")

print("<table width=\"500\" cellspacing=\"0\" cellpadding=\"0\">\n")

print(" <tr><th width=\"50\">Color</th><th>Name</th><th width=\"100\">Code</th></tr>\n")

Connect database
db = psycopg2.connect(host="'examples postgres 1', user='postgres',6 password='myS&cret')

Display the colors

colors = db.cursor()

colors.execute("SELECT * FROM color;")

for row in colors.fetchall():
code = ''.join('{:02X}'.format(a) for a in row[1:4])
color = row[4]

120

print(f" <tr style=\"background-color:#{code}\">\n")

print(f" <td>{color}</td>\n")
print(f" <td>{code}</td></tr>\n")
Foot

print("</table>\n")
print("</body>\n</html>\n")
EOF

By default, Apache2 is configured to allow CGI scripts in the /usr/lib/cgi-bin system directory, but rather than
installing the script there, let’s use our own directory to serve from:

$ cat > ~/my-apache.conf <<'EOF'
User ${APACHE RUN_USER}

Group ${APACHE_RUN_GROUP}

ErrorLog ${APACHE LOG DIR}/error.log
ServerName localhost

HostnameLookups Off

LogLevel warn

Listen 80

Include module configuration:
IncludeOptional mods-enabled/*.load
IncludeOptional mods-enabled/*.conf

<Directory />
AllowOverride None
Require all denied
</Directory>

<Directory /var/www/html/>
AllowOverride None
Require all granted
</Directory>

<Directory /var/www/cgi-bin/>
AddHandler cgi-script .cgi
AllowOverride None
Options +ExecCGI -MultiViews
Require all granted
</Directory>

<VirtualHost *:80>
DocumentRoot /var/www/html/
ScriptAlias /cgi-bin/ /var/www/cgi-bin/
</VirtualHost>
EOF

Install Docker Compose

With our web app developed, we're ready to containerize it. We’ll install Docker Compose, pull in the two base images
for the database and web server, and create our own containers with our web app files and configuration layered on
top.

First, install what we’ll need:

$ sudo apt-get update

$ sudo apt-get install -y docker.io docker-compose
Create Database Container

Next, prepare the Postgres container. Each of Ubuntu’s Docker Images has a git repository, referenced from the
respective Docker Hub page. These repositories include some example content that we can build from:

$ git clone https://git.launchpad.net/~canonical-server/ubuntu-docker-images/+git/postgresql my-postgresql-
oci

121

$ cd my-postgresql-oci/

$ git checkout origin/14-22.04 -b my-postgresql-oci-branch
$ find ./examples/ -type f

./examples/README . md

./examples/postgres-deployment.yml
./examples/docker-compose.yml
./examples/config/postgresql.conf

Notice the two YAML files. The docker-compose.yml file lets us create a derivative container where we can insert our
own customizations such as config changes and our own SQL data to instantiate our database. (The other YAML file
is for Kubernetes-based deployments.)

$ mv -iv ~/my-color-database.sql ./examples/
renamed '/home/ubuntu/my-color-database.sql' -> './examples/my-color-database.sql'
$ git add ./examples/my-color-database.sql

Modify the services section of the file examples/docker-compose.yml to look like this:

services:
postgres:
image: ubuntu/postgres:14-22.04 beta
ports:
- 5432:5432
environment:
- POSTGRES PASSWORD=myS&cret
volumes:

- ./config/postgresql.conf:/etc/postgresql/postgresql.conf:ro
- ./my-color-database.sql:/docker-entrypoint-initdb.d/my-color-database.sql:ro

The volumes section of the file lets us bind files from our local git repository into our new container. Things like the
postgresql.conf configuration file get installed to the normal system as you’d expect.

But the /docker-entrypoint-initdb.d/ directory will look unusual — this is a special directory provided by Ubuntu’s
Postgres Docker container that will automatically run .sql (or .sql.gz or .sql.xz) and .sh files through the psql
interpreter during initialization, in POSIX alphanumerical order. In our case we have a single .sql file that we want
invoked during initialization.

Ubuntu’s ROCKs are also built with environment variables to customize behavior; above we can see where we can
specify our own password.

Commit everything so far to our branch:

$ git commit -a -m "Add a color database definition"
[my-postgresql-oci-branch Oedeb20] Add a color database definition
2 files changed, 549 insertions(+)

create mode 100644 examples/my-color-database.sql

Now we’re ready to create and start our application’s database container:

$ cd ./examples/
$ sudo docker-compose up -d
Pulling postgres (ubuntu/postgres:edge)...

Creating examples postgres 1 ... done
$ sudo docker-compose logs
postgres 1 | /usr/local/bin/docker-entrypoint.sh: running /docker-entrypoint-initdb.d/my-color-database.sql

postgres 1 | 2022-06-02 03:14:28.040 UTC [1] LOG: database system is ready to accept connections

The -d flag causes the container to run in the background (you might omit it if you want to run it in its own window
so you can watch the service log info live.)

Note that if there is an error, such as a typo in your .sql file, you can’t just re-run docker-compose up (or restart)
because it’ll attempt to re-attach and may appear successful at first glance:

postgres 1 | psql:/docker-entrypoint-initdb.d/my-color-database.sql:10: ERROR: type "sometypo" does not exist
postgres 1 | LINE 3: "id" SOMETYPO,

122

postgres 1 | ~
examples postgres 1 exited with code 3

$ sudo docker-compose up

Starting examples postgres 1 ... done

Attaching to examples postgres 1

postgres 1 |

postgres 1 | PostgreSQL Database directory appears to contain a database; Skipping initialization

postgres 1 | 2022-06-02 04:00:51.400 UTC [25] LOG: database system was not properly shut down; automatic recovery in prog

postgres 1 | 2022-06-02 04:00:51.437 UTC [1] LOG: database system is ready to accept connections
However, while there is a live database, our data didn’t load into it so it is invalid.
Instead, always issue a down command before attempting a restart when fixing issues:

$ sudo docker-compose down; sudo docker-compose up

Note that in our environment docker-compose needs to be run with root permissions; if it isn’t, you may see an error
similar to this:

ERROR: Couldn't connect to Docker daemon at http+docker://localhost - is it running?
If it's at a non-standard location, specify the URL with the DOCKER HOST environment variable.

At this point we could move on to the webserver container, but we can double-check our work so far by installing the
Postgres client locally in the VM and running a sample query:

$ sudo apt-get install postgresql-client
$ psql -h localhost -U postgres
Password for user postgres: mySé&cret
postgres=# \d

List of relations

Schema | Name | Type | Owner
-------- B e S S
public | color | table | postgres
public | color_id seq | sequence | postgres
(2 rows)

postgres=# SELECT * FROM color WHERE id<4;
id | red | green | blue | colorname

B B L e
1| 255 | 250 | 250 | snow
2 | 248 | 248 | 255 | ghostwhite
3 | 248 | 248 | 255 | GhostWhite
(3 rows)

Create Webserver Docker Container
Now we do the same thing for the Apache2 webserver.
Get the example files from Canonical’s Apache2 image repository via git:

$ cd ~

$ git clone https://git.launchpad.net/~canonical-server/ubuntu-docker-images/+git/apache2 my-apache2-oci
$ cd my-apache2-oci/

$ git checkout origin/2.4-22.04 -b my-apache2-oci-branch

$ find ./examples/ -type f

./examples/apache2-deployment.yml

./examples/README . md

./examples/docker-compose.yml

./examples/config/apache2.conf

./examples/config/html/index.html

$ mv -ivf ~/my-apache2.conf ./examples/config/apache2.conf

renamed '/home/ubuntu/my-apache2.conf' -> './examples/config/apache2.conf"'
$ mv -iv ~/my-colors.cgi ./examples/

123

renamed '/home/ubuntu/my-colors.cgi' -> 'examples/my-colors.cgi'
$ chmod a+x ./examples/my-colors.cgi
$ git add ./examples/config/apache2.conf ./examples/my-colors.cgi

Modify the examples/docker-compose.yml file to look like this:

version: '2'

services:
apache2:
image: ubuntu/apache2:2.4-22.04 beta
ports:
- 8080:80
volumes:
- ./config/apache2.conf:/etc/apache2/apache2.conf:ro
- ./config/html:/srv/www/html/index.html:ro
- ./my-colors.cgi:/var/www/cgi-bin/my-colors.cgi:ro
command: bash -c "apt-get update && apt-get -y install python3 python3-psycopg2; a2enmod cgid; apache2-
foreground"
restart: always

Commit everything to the branch:
$ git commit -a -m "Add a color CGI web application"
Now launch the web server container:

$ cd ./examples/
$ sudo docker-compose up -d

You will now be able to connect to the service:

$ firefox http://localhost:8080/cgi-bin/my-colors.cgi?bgcolor=FFDEAD

124

+9

10.170.67.210:8080/cg

& C @

+

Mozilla Firefox

& 10.170.67.210

Pick a background color:

Color
SNOW
ghostwhite
GhostWhite
floralwhite
FloralWhite
oldlace
Oldlace
linen
antiquewhite
AntiqueWhite
papayawhip
PapayaWhip
blanchedalmond
BlanchedAlmond
bisque
peachpuff
PeachPuff
navajowhite
NavajoWhite
moccasin
cornsilk
ivory
lemonchiffon
LemonChiffon
seashell
honeydew
mintcream
MintCream
azure
aliceblue
AliceBlue
lavender
lavenderblush

Click on one of the colors to see the background color change:

#FFFAFA
#FB8FBFF
#FB8FBFF
#FFFAFO
#FFFAFO
#FDF5EGB
#FDF5EGB
#FAFOEG
#FAEBD7
#FAEBD7
#FFEFDb5
#FFEFDb5
#FFEBCD
#FFEBCD
#FFE4AC4
#FFDABY
#FFDAEBY
#FFDEAD
#FFDEAD
#FFE4BbS
#FFFEDC
#FFFFFO
#FFFACD
#FFFACD
#FFF5EE
#FOFFFO
#F5FFFA
#F5FFFA
#FOFFFF
#FOFBFF
#FOFBFF
#EGEGFA
#FFFOES

Name

125

Code

+Y Mozilla Firefox

10.170.67.210:8080/cgl-l = +

& 10.170.67.210:8080/cgi-t

Pick a background color: |
Color Name Code
SNOW FFFAFA
ghostwhite F8FBFF
GhostWhite F8FBFF
floralwhite FFFAFOQ
FloralWhite FFFAFOQ
oldlace FDF5E6
OldLace FDF5E6
linen FAFOEG
antiquewhite FAEBD7
AntiqueWhite FAEBD7
papayawhip FFEFD5
PapayaWhip FFEFD5

blanchedalmond FFEBCD
BlanchedAlmond FFEBCD

bisque FFE4AC4
peachpuff FFDAB9
PeachPuff FFDAB9
navajowhite FFDEAD
NavajoWhite FFDEAD
moccasin FFE4B5
cornsilk FFF8DC
ivory FFFFFO0
lemonchiffon FFFACD
LemonChiffon FFFACD
seashell FFF5EE
honeydew FOFFFO
mintcream F5FFFA
MintCream F5FFFA
azure FOFFFF
aliceblue FOFBFF
AliceBlue FOFBFF
lavender EGEGFA
_l_avenderblush FFFOF5

Once you’re done, if you wish you can cleanup the containers as before, or if you used Multipass you can shutdown
and delete the VM:

$ exit
host> multipass stop my-vm
host> multipass delete my-vm

Next Steps

As you can see, docker-compose makes it convenient to set up multi-container applications without needing to perform
runtime changes to the containers. As you can imagine, this can permit building a more sophisticated management
system to handle fail-over, load-balancing, scaling, upgrading old nodes, and monitoring status. But rather than
needing to implement all of this directly on top of docker-container, you can next investigate Kubernetes-style cluster
management software such as microk8s.

Ubuntu features a comprehensive package management system for installing, upgrading, configuring, and removing
software. In addition to providing access to an organized base of over 60,000 software packages for your Ubuntu
computer, the package management facilities also feature dependency resolution capabilities and software update
checking.

Several tools are available for interacting with Ubuntu’s package management system, from simple command-line
utilities that can be easily automated by system administrators, to an easy-to-use graphical interface for those new to
Ubuntu.

Introduction

Ubuntu’s package management system is derived from the same system used by the Debian GNU/Linux distribution.
The package files contain all of the necessary files, metadata, and instructions to implement a particular functionality
or software application on your Ubuntu computer.

Debian package files typically have the extension .deb, and usually exist in repositories which are collections of packages
found online or on physical media, such as CD-ROM discs. Packages are normally in a pre-compiled binary format;
thus installation is quick and requires no compiling of software.

126

https://microk8s.io/docs

Many packages use dependencies. Dependencies are additional packages required by the principal package in order to
function properly. For example, the speech synthesis package festival depends upon the package alsa-utils, which
is a package supplying the Advanced Linux Sound Architecture (ALSA) sound library tools needed for audio playback.
In order for festival to function, it — and all of its dependencies — must be installed. The software management tools
in Ubuntu will do this automatically.

Advanced Packaging Tool — APT

The apt command is a powerful command-line tool, which works with Ubuntu’s Advanced Packaging Tool (APT). The
commands contained within apt provide the means for installing new software packages, upgrading existing software
packages, updating the package list index, and even upgrading the entire Ubuntu system.

Some examples of popular uses for the apt utility include:

e Install a Package
Installation of packages using apt is quite simple. For example, to install the nmap network scanner, type the
following:

sudo apt install nmap
Tip
You can specify multiple packages to be installed or removed, by separating them with spaces.

¢ Remove a Package
Removal of a package (or packages) is also straightforward. To remove the package installed in the previous
example, simply type:

sudo apt remove nmap

Adding the --purge option to apt remove will remove the package configuration files as well. This may or may
not be the desired effect, so use with caution.

Note:

While apt is a command-line tool, it is intended to be used interactively, and not to be called from
non-interactive scripts. The apt-get command should be used in scripts (perhaps with the --quiet
flag). For basic commands the syntax of the two tools is identical.

o Update the package index
The APT package index is essentially a database of available packages from the repositories defined in the
/etc/apt/sources.list file and in the /etc/apt/sources.list.d directory. To update the local package index
with the latest changes made in the repositories, type the following:

sudo apt update

o Upgrade packages
Installed packages on your computer may periodically have upgrades available from the package repositories
(e.g., security updates). To upgrade your system, first, update your package index with sudo apt update, and
then type:

sudo apt upgrade
For details on how to upgrade to a new Ubuntu release, see our guide on upgrading.

Actions of the apt command, such as installation and removal of packages, are logged in the /var/log/dpkg.log log
file.

For further information about the use of APT, read the comprehensive APT User’s Guide, or type apt help.

Aptitude

Launching Aptitude with no command-line options will give you a menu-driven, text-based frontend to the APT
system. Many of the common package management functions, such as installation, removal, and upgrade, can be
performed in Aptitude with single-key commands, which are typically lowercase letters.

Aptitude is best suited for use in a non-graphical terminal environment to ensure proper functioning of the command
keys. You can start the menu-driven interface of Aptitude as a normal user by typing the following command at a
terminal prompt:

sudo aptitude

127

https://www.alsa-project.org/wiki/Main_Page
https://ubuntu.com/server/docs/upgrade-introduction
https://www.debian.org/doc/user-manuals#apt-guide

When Aptitude starts, you will see a menu bar at the top of the screen and two panes below the menu bar. The
top pane contains package categories, such as New Packages and Not Installed Packages. The bottom pane contains
information related to the packages and package categories.

Using Aptitude for package management is relatively straightforward, and the user interface makes common tasks
simple to perform. The following are examples of common package management functions as performed in Aptitude:

Install Packages

To install a package, locate it via the Not Installed Packages package category by using the keyboard arrow keys
and the Enter key. Highlight the desired package, then press the + key. The package entry should turn green,
indicating it has been marked for installation. Now press g to be presented with a summary of package actions.

Press g again, and the package will be downloaded and installed. When finished, press Enter to return to the
menu.

Remove Packages

To remove a package, locate it in the Installed Packages package category by using the keyboard arrow keys
and the Enter key. Highlight the package you want to remove, then press the - key. The package entry should
turn pink, indicating it has been marked for removal. Now press g to be presented with a summary of package
actions. Press g again, and the package will be removed. When finished, press Enter to return to the menu.

Update Package Index
To update the package index, simply press the u key.

Upgrade Packages

To upgrade packages, first update the package index as detailed above, and then press the U key to mark all
packages with updates. Now press g, which will present you with a summary of package actions. Press g again
to begin the download and installation. When finished, press Enter to return to the menu.

The first column of information displayed in the package list (in the top pane) lists the current state of the package
(when viewing packages). It uses the following key to describe the package state:

i: Installed package

e

Package not installed, but package configuration remains on the system
: Purged from system

: Virtual package

W <

: Broken package
u: Unpacked files, but package not yet configured
C: Half-configured - configuration failed and requires fix

H: Half-installed - removal failed and requires a fix

To exit Aptitude, simply press the q key and confirm you wish to exit. Many other functions are available from the
Aptitude menu by pressing the F10 key.

Command Line Aptitude

You can also use Aptitude as a command-line tool, similar to apt. To install the nmap package with all necessary
dependencies (as in the apt example), you would use the following command:

sudo aptitude install nmap

To remove the same package, you would use the command:

sudo aptitude remove nmap

Consult the Aptitude manpages for full details of Aptitude’s command-line options.

dpkg

dpkg is a package manager for Debian-based systems. It can install, remove, and build packages, but unlike other
package management systems, it cannot automatically download and install packages — or their dependencies. APT
and Aptitude are newer, and layer additional features on top of dpkg. This section covers using dpkg to
manage locally installed packages:

To list all packages in the system’s package database, installed and uninstalled, from a terminal prompt type:

dpkg -1

128

e Depending on the number of packages on your system, this can generate a large amount of output. Pipe the
output through grep to see if a specific package is installed:

dpkg -1 | grep apache2
Replace apache2 with any package name, part of a package name, or a regular expression.
o To list the files installed by a package, in this case the ufw package, enter:
dpkg -L ufw
e If you are unsure which package installed a file, dpkg -S may be able to tell you. For example:

dpkg -S /etc/host.conf
base-files: /etc/host.conf

The output shows that the /etc/host.conf belongs to the base-files package.

Note:
Many files are automatically generated during the package install process, and even though they are
on the filesystem, dpkg -S may not know which package they belong to.

¢ You can install a local .deb file by entering:

sudo dpkg -i zip 3.0-4 amd64.deb

Change zip 3.0-4 amd64.deb to the actual file name of the local .deb file you wish to install.
¢ You can uninstall a package by:

sudo dpkg -r zip

Caution:

Uninstalling packages using dpkg, is NOT recommended in most cases. It is better to use a package
manager that handles dependencies to ensure that the system is in a consistent state. For example,
using dpkg -r zip will remove the zip package, but any packages that depend on it will still be installed
and may no longer function correctly.

For more dpkg options see the manpage: man dpkg.

APT configuration

Configuration of the APT system repositories is stored in the /etc/apt/sources.list file and the /etc/apt/sources.list.d
directory. An example of this file is referenced here, along with information on adding or removing repository references
from the file.

You can edit the file to enable and disable repositories. For example, to disable the requirement of inserting the
Ubuntu CD-ROM whenever package operations occur, simply comment out the appropriate line for the CD-ROM,
which appears at the top of the file:

no more prompting for CD-ROM please
deb cdrom: [DISTRO-APT-CD-NAME - Release 1386 (20111013.1)]/ DISTRO-SHORT-CODENAME main restricted

Extra repositories

In addition to the officially-supported package repositories available for Ubuntu, there are also community-maintained
repositories which add thousands more packages for potential installation. Two of the most popular are the universe
and multiverse repositories. These repositories are not officially supported by Ubuntu, but because they are maintained
by the community they generally provide packages which are safe for use with your Ubuntu computer.

Note:
Packages in the multiverse repository often have licensing issues that prevent them from being distributed
with a free operating system, and they may be illegal in your locality.

Warning:
Be advised that neither universe nor multiverse contain officially-supported packages. In particular, there
may not be security updates for these packages.

Many other package sources are available — sometimes even offering only one package, as in the case of packages
provided by the developer of a single application. You should always be very careful and cautious when using non-
standard package sources/repos, however. Research the packages and their origins carefully before performing any
installation, as some packages could render your system unstable or non-functional in some respects.

129

By default, the wuniverse and multiverse repositories are enabled. If you would like to disable them, edit
/etc/apt/sources.list and comment out the following lines:

deb http://archive.ubuntu.com/ubuntu DISTRO-SHORT-CODENAME universe multiverse
deb-src http://archive.ubuntu.com/ubuntu DISTRO-SHORT-CODENAME universe multiverse

deb http://us.archive.ubuntu.com/ubuntu/ DISTRO-SHORT-CODENAME universe

deb-src http://us.archive.ubuntu.com/ubuntu/ DISTRO-SHORT-CODENAME universe

deb http://us.archive.ubuntu.com/ubuntu/ DISTRO-SHORT-CODENAME-updates universe
deb-src http://us.archive.ubuntu.com/ubuntu/ DISTRO-SHORT-CODENAME-updates universe

deb http://us.archive.ubuntu.com/ubuntu/ DISTRO-SHORT-CODENAME multiverse

deb-src http://us.archive.ubuntu.com/ubuntu/ DISTRO-SHORT-CODENAME multiverse

deb http://us.archive.ubuntu.com/ubuntu/ DISTRO-SHORT-CODENAME-updates multiverse
deb-src http://us.archive.ubuntu.com/ubuntu/ DISTRO-SHORT-CODENAME-updates multiverse

deb http://security.ubuntu.com/ubuntu DISTRO-SHORT-CODENAME-security universe
deb-src http://security.ubuntu.com/ubuntu DISTRO-SHORT-CODENAME-security universe
deb http://security.ubuntu.com/ubuntu DISTRO-SHORT-CODENAME-security multiverse
deb-src http://security.ubuntu.com/ubuntu DISTRO-SHORT-CODENAME-security multiverse

Automatic updates

The unattended-upgrades package can be used to automatically install updated packages and can be configured to
update all packages or just install security updates. First, install the package by entering the following in a terminal:

sudo apt install unattended-upgrades

To configure unattended-upgrades, edit /etc/apt/apt.conf.d/50unattended-upgrades and adjust the following to fit
your needs:

Unattended-Upgrade: :Allowed-0rigins {
"${distro id}:${distro codename}";
"${distro id}:${distro _codename}-security";

// "${distro _id}:${distro_codename}-updates";
// "${distro id}:${distro codename}-proposed";
// "${distro id}:${distro codename}-backports";
};

Certain packages can also be excluded and therefore will not be automatically updated. To block a package, add it
to the list:

Unattended-Upgrade: :Package-Blacklist {

// "vim";
// "libc6";
// "libc6-dev";
// "libc6-i686";
}

Note:

The double “//” serve as comments, so whatever follows “//” will not be evaluated.

To enable automatic updates, edit /etc/apt/apt.conf.d/20auto-upgrades and set the appropriate APT configuration
options:

APT::Periodic::Update-Package-Lists "1";
APT::Periodic: :Download-Upgradeable-Packages "1";
APT::Periodic::AutocleanInterval "7";
APT::Periodic::Unattended-Upgrade "1";

The above configuration updates the package list, downloads, and installs available upgrades every day. These actions
are triggered by timer units at a set time but with a random delay: apt-daily.timer and apt-daily-upgrade.timer.
These timers activate the correspondent services that run the /usr/lib/apt/apt.systemd.daily script.

However, it may happen that if the server is off at the time the timer unit elapses, the timer will be triggered
immediately at the next startup. As a result, they will often run on system startup
and thereby cause immediate activity and hold the apt-lock.

130

In many cases this is beneficial, but in some cases it might be counter-productive; examples are administrators with
many shut-down machines or VM images that are only started for some quick action, which is delayed or even blocked
by the unattended upgrades. To adapt this behaviour, we can change/override the configuration of both APT’s timer
units [apt-daily-upgrade.timer, apt-daily.timer]. To do so, use systemctl edit <timer_unit> and override the
Persistent attribute, for example with Persistent=delay:

[Timer]
Persistent=delay

The local download archive is cleaned every week. On servers upgraded to newer versions of Ubuntu, depending on
your responses, the file listed above may not be there. In this case, creating a new file of the same name should also
work.

Note:
You can read more about apt Periodic configuration options in the apt.conf(5) manpage and in the
/usr/lib/apt/apt.systemd.daily script header.

The results of unattended-upgrades will be logged to /var/log/unattended-upgrades.

Notifications

Configuring Unattended-Upgrade::Mail in /etc/apt/apt.conf.d/50unattended-upgrades will enable unattended-
upgrades to email an administrator detailing any packages that need upgrading or have problems.

Another useful package is apticron. apticron will configure a cron job to email an administrator information about
any packages on the system that have updates available, as well as a summary of changes in each package.

To install the apticron package, enter the following command in a terminal:
sudo apt install apticron
Once the package is installed, edit /etc/apticron/apticron.conf, to set the email address and other options:

EMAIL="root@example.com"

References

Most of the material covered in this chapter is available in man pages, many of which are available online.
e The Installing Software Ubuntu wiki page has more information.
o For more dpkg details see the dpkg man page.
e The APT User’s Guide and apt man page contain useful information regarding APT usage.

o For more info about systemd timer units (and systemd in general), visit the systemd man page and systemd.timer
man page.

e See the Aptitude user’s manual for more Aptitude options.
e The Adding Repositories HOWTO (Ubuntu Wiki) page contains more details on adding repositories.

This article details how to upgrade an Ubuntu Server or Ubuntu cloud image to the next release.

Upgrade paths

Ubuntu supports the ability to upgrade from one LTS to the next LTS in sequential order. For example, a user on
Ubuntu 16.04 LTS can upgrade to Ubuntu 18.04 LTS, but cannot jump directly to Ubuntu 20.04 LTS. To do this, the
user would need to upgrade twice: once to Ubuntu 18.04 LTS, and then upgrade again to Ubuntu 20.04 LTS.

It is recommended that users run an LTS release as it provides 5 years of standard support and security updates. After
the initial standard support, an extended support period is available via an Ubuntu Pro subscription.

For a complete list of releases and current support status see the Ubuntu Wiki Releases page.

Upgrade checklist
To ensure a successful upgrade, please review the following items:

e Check the release notes for the new release for any known issues or important changes. Release notes for each
release are found on the Ubuntu Wiki Releases page.

131

https://help.ubuntu.com/community/InstallingSoftware
http://manpages.ubuntu.com/cgi-bin/search.py?q=dpkg
https://www.debian.org/doc/user-manuals#apt-guide
http://manpages.ubuntu.com/cgi-bin/search.py?q=apt
https://manpages.ubuntu.com/cgi-bin/search.py?q=systemd
https://manpages.ubuntu.com/cgi-bin/search.py?q=systemd.timer
https://manpages.ubuntu.com/cgi-bin/search.py?q=systemd.timer
https://www.debian.org/doc/user-manuals#aptitude-guide
https://help.ubuntu.com/community/Repositories/Ubuntu
http://ubuntu.com/pro
https://wiki.ubuntu.com/Releases
https://wiki.ubuntu.com/Releases

e Fully update the system. The upgrade process works best when the current system has all the latest updates
installed. Users should confirm that these commands complete successfully and that no further updates are
available. It is also suggested that users reboot the system after all the updates are applied to verify they are
running the latest kernel. To upgrade run the following commands:

sudo apt update
sudo apt upgrade

e Users should check that there is sufficient free disk space for the upgrade. Upgrading a system will make your
system download new packages, which is likely to be on the order of hundreds of new packages. Systems with
additional software installed may therefore require a few gigabytes of free disk space.

e The upgrade process takes time to complete. Users should have dedicated time to participate in the upgrade
process.

o Third-party software repositories and personal package archives (PPAs) are disabled during the upgrade. How-
ever, any software installed from these repositories is not removed or downgraded. Software installed from these
repositories is the single most common cause of upgrade issues.

e Backup any and all data. Although upgrades are normally safe, there is always a chance that something may go
wrong. It is extremely important that the data is safely copied to a backup location to allow restoration if there
are any problems or complications during the upgrade process.

Upgrade

It is recommended to upgrade the system using the do-release-upgrade command on Server edition and cloud images.
This command can handle system configuration changes that are sometimes needed between releases.
do-release-upgrade

To begin the process run the following command:

sudo do-release-upgrade

Upgrading to a development release of Ubuntu is available using the -d flag. However, using the development release
(or this flag) is not recommended for production environments.

Upgrades from one LTS to the next LTS release are only available after the first point release. For example, Ubuntu
18.04 LTS will only upgrade to Ubuntu 20.04 LTS after the 20.04.1 point release. If users wish to update before the
point release (e.g., on a subset of machines to evaluate the LTS upgrade) users can force the upgrade via the -d flag.

Pre-upgrade summary

Before making any changes the command will first do some checks to verify the system is ready to update. The user
will be prompted with a summary of the upgrade before proceeding. If the user accepts the changes, the process will
begin to update the system’s packages:

Do you want to start the upgrade?
5 installed packages are no longer supported by Canonical. You can
still get support from the community.

4 packages are going to be removed. 117 new packages are going to be
installed. 424 packages are going to be upgraded.

You have to download a total of 262 M. This download will take about
33 minutes with a 1Mbit DSL connection and about 10 hours with a 56k

modem.

Fetching and installing the upgrade can take several hours. Once the
download has finished, the process cannot be canceled.

Continue [yN] Details [d]

132

Configuration changes

It is possible during the upgrade process the user gets presented with a message to make decisions about package
updates. These prompts occur when there are existing configuration files edited by the user and the new package
configuration file are different. Below is an example prompt:

Configuration file '/etc/ssh/ssh config'

==> Modified (by you or by a script) since installation.

==> Package distributor has shipped an updated version.
What would you like to do about it ? Your options are:

Y or I : install the package maintainer's version
N or O : keep your currently-installed version
D : show the differences between the versions
z : start a shell to examine the situation

The default action is to keep your current version.
*** ssh config (Y/I/N/0/D/Z) [default=N] ?

Users should look at the differences between the files and decide what to do. The default response is to keep the
current version of the file. There are situations where accepting the new version, like with /boot/grub/menu.lst, is
required for the system to boot correctly with the new kernel.

Package removal
After all packages are updated the user will again remove any obsolete, no longer needed, packages:

Remove obsolete packages?

30 packages are going to be removed.
Continue [yN] Details [d]

Reboot

Finally, when the upgrade is complete the user is prompted to reboot the system. The system is not considered
upgraded until a reboot occurs:

System upgrade is complete.
Restart required

To finish the upgrade, a restart is required.
If you select 'y' the system will be restarted.

Continue [yN]

Ubuntu is an operating system with thousands of packages and snaps available to its users, but it is humanly (and
sometimes technically!) impossible to make all software out there available in the official repositories. There are
situations where you may want to install a package that is not maintained by Ubuntu, but is maintained by a third
party entity. We don’t recommend using third party APT repositories, but we know that users sometimes have no
other option — so let’s take a look at some of the pitfalls, alternatives, and mitigations.

Why not use third party APT repositories?

While having access to the software you want to use is great, it is crucial to understand the risks involved in using
third party APT repositories.

Security risk

When using any software that you have not audited yourself, you must implicitly trust the publisher of that software
with your data. However, with third party APT repositories, there are additional implications of this that are less
obvious.

Unlike more modern packaging systems, APT repositories run code that is not sandboxed. When using software from
more than one publisher, such as from your distribution as well as a third party, APT and dpkg provide no security
boundary between them.

133

This is important because in addition to trusting the publisher’s intentions, you are also implicitly trusting the quality
and competence of the publisher’s own information security, since an adversary can compromise your system indirectly
by compromising the software publisher’s infrastructure.

For example, consider users who use applications such as games where system security isn’t much of a concern, but also
use their computers for something more security-sensitive such as online banking. A properly sandboxed packaging
system would mitigate an adversary compromising the game publisher in order to take over their users’ online banking
sessions, since the games wouldn’t have access to those sessions. But with APT repositories, the game can access your
online banking session as well. Your system’s security — as a whole — has been downgraded to the level of the app
publisher that has the worst security; they may not consider their information security important because they aren’t
a bank.

System integrity

Even if you are certain that the third party APT repository can be trusted, you also need to take into account possible
conflicts that having an external package may bring to your system. Some third party packagers — but not all —
are careful to integrate their packages into Ubuntu in a way that they don’t conflict with official packages from the
distribution, but it is technically impossible to predict future changes that might happen in future Ubuntu releases.
This means that fundamentally there always is the possibility of conflict. The most common cause of system upgrade
failure is the use of third party repositories that worked at the time but later conflicted with a subsequent upgrade.

One of the most common conflicts occurs when a third party package ships with a file that is also shipped by an
official Ubuntu package. In this case, having both packages installed simultaneously is impossible because dpkg will
prevent managed files from being overwritten. Another possible (and more subtle) issue can happen when the third
party software interacts in a problematic way with an official package from Ubuntu. This can be harder to diagnose
and might cause more serious problems in the system, such as data loss and service unavailability.

As a general rule, if the third party package you are installing is interacting with or is a modified version of an existing
Ubuntu package, you need to be more careful and do some preliminary research before using it in your system.

Lack of official Ubuntu support

If you decide to install a third party package on your Ubuntu system, the Ubuntu community will struggle to offer
support for whatever failures you may encounter as a consequence, since it is out of their control and they are unlikely
to be familiar with it. In fact, if you experience a bug in an official Ubuntu package but it is later determined that
the bug was caused by a third party package, the Ubuntu community may not be able to help you.

In other words, if you use a third party software you will have to contact its packagers for help if you experience any
problem with it.

A better solution to third party APT repositories: snaps

As we have seen, third party APT repositories are not simple and should be handled carefully. But there is an
alternative that is natively supported by Ubuntu and solves some of the issues affecting third party APT repositories:
snaps.

Due to the way they are architected, snaps already carry all of their dependencies inside them. When they are installed,
they are placed in an isolated directory in the system, which means that they cannot conflict with existing Ubuntu
packages (or even with other snaps).

When executed, a snap application is sandboxed and has limited access to the system resources. While still vulnerable
to some security threats, snaps offer a better isolation than third party APT repositories when it comes to the damage
that can be done by an application.

Finally, if a snap is published in the snapstore, you will not need to go through the hassle of modifying sources.list
or adding a new GPG key to the keyring. Everything will work “out of the box” when you run snap install.

Mitigating the risks

If the software you want is not available as a snap, you may still need to use a third party APT repository. In that
case, there are some mitigating steps you can take to help protect your system.

Security risk mitigation

o If the package you want to install is Free Software/Open Source, then the risk can be reduced by carefully
examining the source code of the entire software, including the packaging parts. The amount of work required
to do this assessment will depend on the size and complexity of the software, and is something that needs to

134

https://ubuntu.com/core/services/guide/snaps-intro
https://snapcraft.io/store

be performed by an expert whenever an update is available. Realistically, this kind of evaluation almost never
happens due to the efforts and time required.

e The availability and cadence of fixes to security vulnerabilities should also be taken into account when assessing
the quality and reliability of the third party APT repository. It is important to determine whether these fixes
are covered by the third party entity, and how soon they are released once they have been disclosed.

e In addition, you must ensure that the packages are cryptographically signed with the repository’s GPG key. This
requirement helps to confirm the integrity of the package you are about to install on your system.

System integrity mitigation

e Avoid release upgrades whenever possible, favouring redeployment onto a newer release instead. Third party
APT repositories will often break at release time, and the only way to avoid this is to wait until the maintainers
of the repository have upgraded the software to be compatible with the release.

o Configure pinning (we show how to do this below). Pinning is a way to assign a preference level to some (or
all) packages from a certain source; in this particular case, the intention is to reduce the preference of packages
provided by an external repository so that official Ubuntu packages are not overwritten by mistake.

Dealing with third party APT repositories in Ubuntu

Now that we have discussed the risks and mitigations of using third party APT repositories, let’s take a look at how
we can work with them in Ubuntu. Unless otherwise noted, all commands below are to be executed as the root user
(or using sudo with your regular user).

Add the repository

Several third party entities provide their own instructions on how to add their repositories to a system, but more often
than not they don’t follow best practices when doing so.

Fetch the GPG key

The first step before adding a third party APT repository to your system is to fetch the GPG key for it. This key
must be obtained from the third party entity; it should be available at the root of the repository’s URL, but you might
need to contact them and ask for the key file.

Although several third party guides instruct the user to use apt-key in order to add the GPG key to apt’s keyring, this
is no longer recommended. Instead, you should explicitly list the key in the sources.list entry by using the signed-by
option (see below).

Third party APT repositories should also provide a special package called REPONAME -archive-keyring whose purpose is
to provide updates to the GPG key used to sign the archive. Because this package is signed using the GPG key that
is not present in the system when we are initially configuring the repository, we need to manually download and put
it in the right place the first time. Assuming that REPONAME is externalrepo, something like the following should work:

wget -0 /usr/share/keyrings/externalrepo-archive-keyring.pgp https://thirdpartyrepo.com/ubuntu/externalrepo-
archive-keyring.pgp

Sources.list entry

To add a third party APT repository to your system, you will need to create a file under /etc/apt/sources.list.d/ with
information about the external archive. This file is usually named after the repository (in our example, externalrepo).
There are two standards the file can follow:

e A one-line entry, which is the most common. In this case, the extension of the file should be .list.
e The deb822 format, which is more descriptive but less common. In this case, the extension of the file should be
.sources.

An example of a one-line entry would be the following;:
deb [signed-by=/usr/share/keyrings/externalrepo-archive-keyring.pgp] https://thirdpartyrepo.com/ubuntu/ jammy main
An example of a deb822 file for the same case would be the following;:

Types: deb

URIs: https://thirdpartyrepo.com/ubuntu

Suites: jammy

Components: main

Signed-By: /usr/share/keyrings/externalrepo-archive-keyring.pgp

135

https://wiki.debian.org/DebianRepository/UseThirdParty

There are cases when the third party APT repository may be served using HTTPS, in which case you will also need
to install the apt-transport-https package.

After adding the repository information, you need to run apt update in order to install the third party packages. Also,
now that you have everything configured you should be able to install the externalrepo-archive-keyring package to
automate the update of the GPG key.

Configure pinning for the repository

2

In order to increase the security of your system and to prevent the conflict issues discussed in the “System integrity
section, we recommend that you configure pinning for the third party APT repository.

You can configure this preference level by creating a file under /etc/apt/preferences.d/ that is usually named after
the repository name (externalrepo in this case).

In our example, a file named /etc/apt/preferences.d/externalrepo should be created with the following contents:

Package: *
Pin: origin thirdpartyrepo.com
Pin-Priority: 100

There are several levels of pinning you can choose here; the Debian Reference guide has good documentation about
the topic. The level 100 used above means that users will be able to install packages from the repository and that
automatic package upgrades are also enabled. If you want to be able to install packages but don’t want them to be
considered for automatic upgrades, you should use the level 1.

How to remove a repository

If you have enabled a third party APT repository but found yourself in a situation where you would like to remove it
from the system, there are a few steps you need to take to make sure that the third party packages are also uninstalled.

The first step is to remove the files created in the steps above. These are:

e The sources.list file, under /etc/apt/sources.list.d/.

o The package pinning preference, under /etc/apt/preferences.d/.

o If the third party APT repository does not provide the GPG key in a package, then you can also remove it
manually from /usr/share/keyrings/.

Before you run apt update, you might want to also remove the third party packages that were installed from the
repository. The following one-liner will list all those packages:

apt remove --purge \
$(grep "~Package: " /var/lib/apt/lists/#<SELECT THE FILE FOR YOUR REPOSITORY># * Packages \
| cut -d " " -f2 | sort -u | \
xargs dpkg-query -W -f='${binary:Package}\t${db:Status-Abbrev}\n' 2> /dev/null | \
awk '/\tii $/{print $1}')

Make sure to replace #<SELECT THE FILE FOR YOUR REPOSITORY># with the right file for the third party APT repository.

After that, you can safely run apt update.

A special case: Ubuntu PPAs

Ubuntu PPAs can be considered as a special case of third party APT repositories. In fact, there are upstream projects
that choose to ship their software through PPAs because of the existing tooling that allows users to easily add them
to their Ubuntu systems.

It is important to mention that the same points raised above regarding security, system integrity and lack of official
Ubuntu support also apply to PPAs.

If you would like to install packages from a PPA, first you will need to add it to your system. For that, you can use
the add-apt-repository command. Suppose you want to add a PPA from user thirdparty named externalrepo. You
can run:

add-apt-repository ppa:thirdparty/externalrepo

This command will automatically set up the GPG key, as discussed above. After that, you can run apt update and
install the third party packages provided by the PPA. Note that add-apt-repository will not adjust the repository
pinning, so it is recommended that you go through that process manually.

136

https://www.debian.org/doc/manuals/debian-reference/ch02.en.html#_tweaking_candidate_version

If you decide you do not want to use the PPA anymore and would like to remove it (and its packages) from your
system, the easiest way to do it is by installing the ppa-purge package. You can then execute it and provide the PPA
reference as its argument. In our example, that would be:

ppa-purge ppa:thirdparty/externalrepo

The Ubuntu Project, and thus Ubuntu Server, uses Launchpad as its bug tracker. In order to file a bug, you will need
a Launchpad account. Create one here if necessary.

Reporting bugs with apport-cli

The preferred way to report a bug is with the apport-cli command. It must be invoked on the machine affected by
the bug because it collects information from the system on which it is being run and publishes it to the bug report
on Launchpad. Getting that information to Launchpad can, therefore, be a challenge if the system is not running a
desktop environment in order to use a browser (common with servers) or if it does not have Internet access. The steps
to take in these situations are described below.

Note:

The commands apport-cli and ubuntu-bug should give the same results on a command-line interface (CLI)
server. The latter is actually a symlink to apport-bug which is intelligent enough to know whether a
desktop environment is in use, and will choose apport-cli if not. Since server systems tend to be CLI-only
apport-cli was chosen from the outset in this guide.

Bug reports in Ubuntu need to be filed against a specific software package, so the name of the package (source package
or program name/path) affected by the bug needs to be supplied to apport-cli:

apport-cli PACKAGENAME

Once apport-cli has finished gathering information you will be asked what to do with it. For instance, to report a
bug in vim using apport-cli vim produces output like this:

**x Collecting problem information

The collected information can be sent to the developers to improve the
application. This might take a few minutes.

**x Send problem report to the developers?

After the problem report has been sent, please fill out the form in the
automatically opened web browser.

What would you like to do? Your options are:
S: Send report (2.8 KB)
V: View report
K: Keep report file for sending later or copying to somewhere else
I: Cancel and ignore future crashes of this program version
C: Cancel
Please choose (S/V/K/I/C):

The first three options are described below:

e S: Send report
Submits the collected information to Launchpad as part of the process of filing a new bug report. You will be
given the opportunity to describe the bug in your own words.

*** Uploading problem information

The collected information is being sent to the bug tracking system.
This might take a few minutes.

94%

*** To continue, you must visit the following URL:

https://bugs.launchpad.net/ubuntu/+source/vim/+filebug/09b2495a-e2ab-11e3-879b-68b5996a96c8?

You can launch a browser now, or copy this URL into a browser on another computer.

137

https://launchpad.net/
https://help.launchpad.net/YourAccount/NewAccount

Choices:
1: Launch a browser now
C: Cancel

Please choose (1/C): 1

The browser that will be used when choosing ‘1’ will be the one known on the system as www-browser via the
Debian alternatives system. Examples of text-based browsers to install include links, elinks, lynx, and w3m.
You can also manually point an existing browser at the given URL.

e V: View
Displays the collected information on the screen for review. This can be a lot of information. Press Enter to
scroll through the screens. Press q to quit and return to the choice menu.

e K: Keep
Writes the collected information to disk. The resulting file can be later used to file the bug report, typically after
transferring it to another Ubuntu system.

What would you like to do? Your options are:
S: Send report (2.8 KB)
V: View report
K: Keep report file for sending later or copying to somewhere else
I: Cancel and ignore future crashes of this program version
C: Cancel
Please choose (S/V/K/I/C): k
Problem report file: /tmp/apport.vim.1pg92p02.apport

To report the bug, get the file onto an Internet-enabled Ubuntu system and apply apport-cli to it. This will
cause the menu to appear immediately (the information is already collected). You should then press s to send:

apport-cli apport.vim.1pg92p02.apport

To directly save a report to disk (without menus) you can run:
apport-cli vim --save apport.vim.test.apport

Report names should end in .apport.

Note:

If this Internet-enabled system is non-Ubuntu/Debian, apport-cli is not available so the bug will need
to be created manually. An apport report is also not to be included as an attachment to a bug either
so it is completely useless in this scenario.

Reporting application crashes

The software package that provides the apport-cli utility, apport, can be configured to automatically capture the
state of a crashed application. This is enabled by default (in /etc/default/apport).

After an application crashes, if enabled, apport will store a crash report under /var/crash:

-rw-r----- 1 peter whoopsie 150K Jul 24 16:17 _usr_lib x86_64-1linux-gnu_libmenu-cache2_libexec_menu-
cached.1000.crash

Use the apport-cli command without arguments to process any pending crash reports. It will offer to report them
one by one, as in the following example:

apport-cli

**x Send problem report to the developers?

After the problem report has been sent, please fill out the form in the
automatically opened web browser.

What would you like to do? Your options are:
S: Send report (153.0 KB)
V: View report
K: Keep report file for sending later or copying to somewhere else
I: Cancel and ignore future crashes of this program version
C: Cancel
Please choose (S/V/K/I/C): s

138

https://manpages.ubuntu.com/manpages/jammy/en/man1/update-alternatives.1.html

If you send the report, as was done above, the prompt will be returned immediately and the /var/crash directory will
then contain 2 extra files:

-rw-r----- 1 peter whoopsie 150K Jul 24 16:17 _usr_lib x86_64-linux-gnu_libmenu-cache2 libexec_menu-
cached.1000.crash
-rw-rw-r-- 1 peter whoopsie 0 Jul 24 16:37 usr lib x86 64-linux-gnu_libmenu-cache2 libexec menu-
cached.1000.upload
SrW----- - 1 whoopsie whoopsie 0 Jul 24 16:37 _usr _lib x86 64-linux-gnu_libmenu-cache2 libexec_menu-

cached.1000.uploaded

Sending in a crash report like this will not immediately result in the creation of a new public bug. The report will be
made private on Launchpad, meaning that it will be visible to only a limited set of bug triagers. These triagers will
then scan the report for possible private data before creating a public bug.

Resources
¢ See the Reporting Bugs Ubuntu wiki page.
e Also, the Apport page has some useful information. Though some of it pertains to using a GUL.

A ‘kernel crash dump’ refers to a portion of the contents of volatile memory (RAM) that is copied to disk whenever
the execution of the kernel is disrupted. The following events can cause a kernel disruption:

e Kernel panic
o Non-maskable interrupts (NMI)
Machine check exceptions (MCE)

o Hardware failure
¢ Manual intervention

For some of these events (kernel panic, NMI) the kernel will react automatically and trigger the crash dump mechanism
through kezec. In other situations a manual intervention is required in order to capture the memory. Whenever one
of the above events occurs, it is important to find out the root cause in order to prevent it from happening again. The
cause can be determined by inspecting the copied memory contents.

Kernel crash dump mechanism

When a kernel panic occurs, the kernel relies on the kerec mechanism to quickly reboot a new instance of the kernel
in a pre-reserved section of memory that had been allocated when the system booted (see below). This permits the
existing memory area to remain untouched in order to safely copy its contents to storage.

Installation
The kernel crash dump utility is installed with the following command:

sudo apt install linux-crashdump

Note:
Starting with 16.04, the kernel crash dump mechanism is enabled by default.

During the installation, you will be prompted with the following dialogs.

| If you choose this option, a system reboot will trigger a restart into a
| kernel loaded by kexec instead of going through the full system boot
| loader process.

| Should kexec-tools handle reboots (sysvinit only)?

<Yes> <No>

Select “Yes’ to select kexec-tools for all reboots.

139

https://help.ubuntu.com/community/ReportingBugs
https://wiki.ubuntu.com/Apport

If you choose this option, the kdump-tools mechanism will be enabled. A
reboot is still required in order to enable the crashkernel kernel
parameter.

Should kdump-tools be enabled be default?

<Yes> <No>

“Yes’ should be selected here as well, to enable kdump-tools.

If you ever need to manually enable the functionality, you can use the dpkg-reconfigure kexec-tools and dpkg-
reconfigure kdump-tools commands and answer ‘Yes’ to the questions. You can also edit /etc/default/kexec and set
parameters directly:

Load a kexec kernel (true/false)
LOAD KEXEC=true

As well, edit /etc/default/kdump-tools to enable kdump by including the following line:
USE_KDUMP=1

If a reboot has not been done since installation of the linux-crashdump package, a reboot will be required in order to
activate the crashkernel= boot parameter. Upon reboot, kdump-tools will be enabled and active.

If you enable kdump-tools after a reboot, you will only need to issue the kdump-config load command to activate the
kdump mechanism.

You can view the current status of kdump via the command kdump-config show. This will display something like this:

DUMP_MODE: kdump

USE_KDUMP: 1

KDUMP_SYSCTL: kernel.panic on oops=1
KDUMP_COREDIR: /var/crash

crashkernel addr:
/var/lib/kdump/vmlinuz
kdump initrd:
/var/lib/kdump/initrd.img
current state: ready to kdump
kexec command:
/sbin/kexec -p --command-line="...

--initrd=...

This tells us that we will find core dumps in /var/crash.

Configuration

In addition to local dump, it is now possible to use the remote dump functionality to send the kernel crash dump to
a remote server, using either the SSH or NFS protocols.

Local kernel crash dumps

Local dumps are configured automatically and will remain in use unless a remote protocol is chosen. Many configuration
options exist and are thoroughly documented in the /etc/default/kdump-tools file.

Remote kernel crash dumps using the SSH protocol

To enable remote dumps using the SSH protocol, the /etc/default/kdump-tools must be modified in the following
manner:

Remote dump facilities:
SSH - username and hostname of the remote server that will receive the dump

and dmesg files.
SSH KEY - Full path of the ssh private key to be used to login to the remote
server. use kdump-config propagate to send the public key to the

140

remote server

HOSTTAG - Select if hostname of IP address will be used as a prefix to the
timestamped directory when sending files to the remote server.
'ip' is the default.

SSH="ubuntu@kdump-netcrash"

The only mandatory variable to define is SSH. It must contain the username and hostname of the remote server using
the format {username}@{remote server}.

SSH_KEY may be used to provide an existing private key to be used. Otherwise, the kdump-config propagate command
will create a new keypair. The HOSTTAG variable may be used to use the hostname of the system as a prefix to the
remote directory to be created instead of the IP address.

The following example shows how kdump-config propagate is used to create and propagate a new keypair to the remote
server:

sudo kdump-config propagate
Which produces an output like this:

Need to generate a new ssh key...

The authenticity of host 'kdump-netcrash (192.168.1.74)' can't be established.
ECDSA key fingerprint is SHA256:1iMp+5Y28ghbd+tevFCWrEXykDd4dI3yN40V1u3CBBQ4.
Are you sure you want to continue connecting (yes/no)? yes
ubuntu@kdump-netcrash's password:

propagated ssh key /root/.ssh/kdump id rsa to server ubuntu@kdump-netcrash

The password of the account used on the remote server will be required in order to successfully send the public key to
the server.

The kdump-config show command can be used to confirm that kdump is correctly configured to use the SSH protocol:
kdump-config show

Whose output appears like this:

DUMP_MODE: kdump

USE_KDUMP: 1

KDUMP_SYSCTL: kernel.panic_on_oops=1
KDUMP_COREDIR: /var/crash

crashkernel addr: 0x2c000000

/var/lib/kdump/vmlinuz: symbolic link to /boot/vmlinuz-4.4.0-10-generic
kdump initrd:

/var/lib/kdump/initrd.img: symbolic link to /var/lib/kdump/initrd.img-4.4.0-10-generic
SSH: ubuntu@kdump-netcrash

SSH KEY': /root/.ssh/kdump_id rsa
HOSTTAG: ip
current state: ready to kdump

Remote kernel crash dumps using the NFS protocol

To enable remote dumps using the NFS protocol, the /etc/default/kdump-tools must be modified in the following
manner:

NFS - Hostname and mount point of the NFS server configured to receive
the crash dump. The syntax must be {HOSTNAME}:{MOUNTPOINT}

(e.g. remote:/var/crash)

#

NFS="kdump-netcrash:/var/crash"

As with the SSH protocol, the HOSTTAG variable can be used to replace the IP address by the hostname as the prefix
of the remote directory.

The kdump-config show command can be used to confirm that kdump is correctly configured to use the NFS protocol :
kdump-config show

Which produces an output like this:

DUMP_MODE: kdump
USE_KDUMP: 1
KDUMP_SYSCTL: kernel.panic_on oops=1

141

KDUMP_COREDIR: /var/crash
crashkernel addr: 0x2c000000
/var/lib/kdump/vmlinuz: symbolic link to /boot/vmlinuz-4.4.0-10-generic
kdump initrd:
/var/lib/kdump/initrd.img: symbolic link to /var/lib/kdump/initrd.img-4.4.0-10-generic

NFS: kdump-netcrash:/var/crash
HOSTTAG: hostname

current state: ready to kdump
Verification

To confirm that the kernel dump mechanism is enabled, there are a few things to verify. First, confirm that the
crashkernel boot parameter is present (note that the following line has been split into two to fit the format of this
document):

cat /proc/cmdline

BOOT IMAGE=/vmlinuz-3.2.0-17-server root=/dev/mapper/PreciseS-root ro
crashkernel=384M-2G:64M,2G-:128M

The crashkernel parameter has the following syntax:

crashkernel=<rangel>:<sizel>[,<range2>:<size2>,...][@offset]
range=start-[end] 'start' is inclusive and 'end' is exclusive.

So for the crashkernel parameter found in /proc/cmdline we would have :
crashkernel=384M-2G:64M, 2G- : 128M
The above value means:
e if the RAM is smaller than 384M, then don’t reserve anything (this is the “rescue” case)
o if the RAM size is between 386M and 2G (exclusive), then reserve 64M
« if the RAM size is larger than 2G, then reserve 128M
Second, verify that the kernel has reserved the requested memory area for the kdump kernel by running:
dmesg | grep -i crash

Which produces the following output in this case:

[0.000000] Reserving 64MB of memory at 800MB for crashkernel (System RAM: 1023MB)

Finally, as seen previously, the kdump-config show command displays the current status of the kdump-tools configuration

kdump-config show

Which produces:

DUMP_MODE : kdump

USE_KDUMP: 1

KDUMP_SYSCTL: kernel.panic_on oops=1
KDUMP_COREDIR: /var/crash

crashkernel addr: 0x2c000000
/var/lib/kdump/vmlinuz: symbolic link to /boot/vmlinuz-4.4.0-10-generic
kdump initrd:
/var/lib/kdump/initrd.img: symbolic link to /var/lib/kdump/initrd.img-4.4.0-10-generic
current state: ready to kdump

kexec command:

/sbin/kexec -p --command-line="BOOT IMAGE=/vmlinuz-4.4.0-10-generic root=/dev/mapper/VividS--vg-
root ro debug break=init console=ttyS0,115200 irgpoll maxcpus=1 nousb systemd.unit=kdump-tools.service" --
initrd=/var/lib/kdump/initrd.img /var/lib/kdump/vmlinuz

Testing the crash dump mechanism

Warning:
Testing the crash dump mechanism will cause a system reboot. In certain situations, this can cause

142

data loss if the system is under heavy load. If you want to test the mechanism, make sure that the system
is idle or under very light load.

Verify that the SysR@ mechanism is enabled by looking at the value of the /proc/sys/kernel/sysrq kernel parameter:
cat /proc/sys/kernel/sysrq

If a value of 0 is returned, the dump and then reboot feature is disabled. A value greater than 1 indicates that a
sub-set of sysrq features is enabled. See /etc/sysctl.d/10-magic-sysrq.conf for a detailed description of the options
and their default values. Enable dump then reboot testing with the following command:

sudo sysctl -w kernel.sysrg=1

Once this is done, you must become root, as just using sudo will not be sufficient. As the root user, you will have to
issue the command echo ¢ > /proc/sysrq-trigger. If you are using a network connection, you will lose contact with
the system. This is why it is better to do the test while being connected to the system console. This has the advantage
of making the kernel dump process visible.

A typical test output should look like the following :

sudo -s

[sudo] password for ubuntu:

echo ¢ > /proc/sysrq-trigger

[31.659002] SysRq : Trigger a crash

[31.659749] BUG: unable to handle kernel NULL pointer dereference at (null)
[31.662668] IP: [<ffffffff8139f166>] sysrq handle crash+0x16/0x20

[31.662668] PGD 3bfb9067 PUD 368a7067 PMD 0

[31.662668] Oops: 0002 [#1] SMP

[31.662668] CPU 1

The rest of the output is truncated, but you should see the system rebooting and somewhere in the log, you will see
the following line :

Begin: Saving vmcore from kernel crash ...

Once completed, the system will reboot to its normal operational mode. You will then find the kernel crash dump file,
and related subdirectories, in the /var/crash directory by running, e.g. 1s /var/crash , which produces the following:

201809240744 kexec_cmd linux-image-4.15.0-34-generic-201809240744.crash

If the dump does not work due to an ‘out of memory’ (OOM) error, then try increasing the amount of reserved memory
by editing /etc/default/grub.d/kdump-tools.cfg. For example, to reserve 512 megabytes:

GRUB_CMDLINE_LINUX_DEFAULT="$GRUB_CMDLINE_LINUX_DEFAULT crashkernel=384M-:512M"

You can then run sudo update-grub, reboot afterwards, and then test again.

Resources

Kernel crash dump is a vast topic that requires good knowledge of the Linux kernel. You can find more information
on the topic here:

e Kdump kernel documentation.
o Analyzing Linux Kernel Crash (Based on Fedora, it still gives a good walkthrough of kernel dump analysis)

The Lightweight Directory Access Protocol, or LDAP, is a protocol for querying and modifying a X.500-based directory
service running over TCP /IP. The current LDAP version is LDAPv3, as defined in RFC 4510, and the implementation
used in Ubuntu is OpenLDAP.

The LDAP protocol accesses directories. It’s common to refer to a directory an LDAP directory or LDAP database as
a shorthand — although technically incorrect, this shorthand is so widely used
that it’s understood as such.

Key concepts and terms

« A directory is a tree of data entries that is hierarchical in nature and is called the Directory Information Tree
(DIT).

e An entry consists of a set of attributes.

o An attribute has a key (a name/description) and one or more values.

143

http://www.kernel.org/doc/Documentation/kdump/kdump.txt
http://www.dedoimedo.com/computers/crash-analyze.html
http://tools.ietf.org/html/rfc4510

¢ Every attribute must be defined in at least one objectClass.
o Attributes and objectClasses are defined in schemas (an objectClass is considered as a special kind of attribute).

o Each entry has a unique identifier: its Distinguished Name (DN or dn). This, in turn, consists of a Relative
Distinguished Name (RDN) followed by the parent entry’s DN.

e The entry’s DN is not an attribute. It is not considered part of the entry itself.

Note:
The terms object, container, and node have certain connotations but they all essentially mean the same
thing as entry (the technically correct term).

For example, below we have a single entry consisting of 11 attributes where the following is true:
¢ DN is “cn=John Doe,dc=example,dc=com”
e RDN is “cn=John Doe”
e parent DN is “dc=example,dc=com”

dn: cn=John Doe,dc=example,dc=com
cn: John Doe

givenName: John

sn: Doe

telephoneNumber: +1 888 555 6789
telephoneNumber: +1 888 555 1232
mail: john@example.com

manager: cn=Larry Smith,dc=example,dc=com
objectClass: inetOrgPerson
objectClass: organizationalPerson
objectClass: person

objectClass: top

The above entry is in LDIF format (LDAP Data Interchange Format). Any information that you feed into your DIT
must also be in such a format. It is defined in RFC 2849.

Such a directory accessed via LDAP is good for anything that involves a large number of access requests to a mostly-
read, attribute-based (name:value) backend, and that can benefit from a hierarchical structure. Examples include an
address book, company directory, a list of email addresses, and a mail server’s configuration.

References

e The OpenLDAP administrators guide

e« RFC 4515: LDAP string representation of search filters

e Zytrax’s LDAP for Rocket Scientists; a less pedantic but comprehensive treatment of LDAP
Older references that might still be useful:

o O’'Reilly’s LDAP System Administration (textbook; 2003)

o Packt’s Mastering OpenLDAP (textbook; 2007)

Installing slapd (the Stand-alone LDAP Daemon) creates a minimal working configuration with a top level entry, and
an administrator’s Distinguished Name (DN).

In particular, it creates a database instance that you can use to store your data. However, the suffix (or base DN) of
this instance will be determined from the domain name of the host. If you want something different, you can change
it right after the installation (before it contains any useful data).

Note:
This guide will use a database suffix of dc=example,dc=com. You can change this to match your particular
setup.

Install slapd

You can install the server and the main command line utilities with the following command:

sudo apt install slapd ldap-utils

144

https://datatracker.ietf.org/doc/html/rfc2849
https://openldap.org/doc/admin25/
http://www.rfc-editor.org/rfc/rfc4515.txt
http://www.zytrax.com/books/ldap/
http://www.oreilly.com/catalog/ldapsa/
http://www.packtpub.com/OpenLDAP-Developers-Server-Open-Source-Linux/book
https://www.openldap.org/software/man.cgi?query=slapd

Change the instance suffix (optional)

If you want to change your Directory Information Tree (DIT) suffix, now would be a good time since changing it
discards your existing one. To change the suffix, run the following command:

sudo dpkg-reconfigure slapd

To switch your DIT suffix to dc=example,dc=com, for example, so you can follow this guide more closely, answer
example.com when asked about the DNS domain name.

Throughout this guide we will issue many commands with the LDAP utilities. To save some typing, we can configure
the OpenLDAP libraries with certain defaults in /etc/ldap/ldap.conf (adjust these entries for your server name and
directory suffix):

BASE dc=example,dc=com
URI ldap://1ldap0l.example.com

Configuration options

slapd is designed to be configured within the service itself by dedicating a separate DIT for that purpose. This allows for
dynamic configuration of slapd without needing to restart the service or edit config files. This configuration database
consists of a collection of text-based LDIF files located under /etc/ldap/slapd.d, but these should never be edited
directly. This way of working is known by several names: the “slapd-config” method, the “Real Time Configuration
(RTC)” method, or the “cn=config” method. You can still use the traditional flat-file method (slapd.conf) but that
will not be covered in this guide.

Right after installation, you will get two databases, or suffixes: one for your data, which is based on your host’s domain
(dc=example,dc=com), and one for your configuration, with its root at cn=config. To change the data on each we need
different credentials and access methods:

e dc=example,dc=com
The administrative user for this suffix is cn=admin, dc=example,dc=com and its password is the one selected during
the installation of the slapd package.

e cn=config
The configuration of slapd itself is stored under this suffix. Changes to it can be made by the special DN gid-
Number=0+uidNumber=0, cn=peercred, cn=external, cn=auth. This is how the local system’s root user (uid=0/gid=0)
is seen by the directory when using SASLL EXTERNAL authentication through the ldapi:/// transport via
the /run/slapd/ldapi Unix socket. Essentially what this means is that only the local root user can update the
cn=config database. More details later.

Example “slapd-config” DIT
This is what the slapd-config DIT looks like via the LDAP protocol (listing only the DNs):

$ sudo ldapsearch -Q -LLL -Y EXTERNAL -H ldapi:/// -b cn=config dn

dn: cn=config

dn: cn=module{0}, cn=config

dn: cn=schema,cn=config

dn: cn={0}core, cn=schema, cn=config

dn: cn={1}cosine,cn=schema,cn=config

dn: cn={2}nis, cn=schema, cn=config

dn: cn={3}inetorgperson,cn=schema, cn=config
dn: olcDatabase={-1}frontend,cn=config

dn: olcDatabase={0}config, cn=config

dn: olcDatabase={1}mdb,cn=config

Where the entries mean the following;:

e cn=config: Global settings

e cn=module{0},cn=config: A dynamically loaded module

e cn=schema, cn=config: Contains hard-coded system-level schema

e cn={0}core,cn=schema, cn=config: The hard-coded core schema

e cn={1}cosine,cn=schema, cn=config: The Cosine schema

e cn={2}nis, cn=schema, cn=config: The Network Information Services (NIS) schema

e cn={3}inetorgperson,cn=schema, cn=config: The InetOrgPerson schema

e olcDatabase={-1}frontend,cn=config: Frontend database, default settings for other databases
o olcDatabase={0}config, cn=config: slapd configuration database (cn=config)

145

e olcDatabase={1}mdb,cn=config: Your database instance (dc=example,dc=com)

Example “dc=example,dc=com” DIT

This is what the dc=example,dc=com DIT looks like:

$ ldapsearch -x -LLL -H ldap:/// -b dc=example,dc=com dn
dn: dc=example,dc=com

dn: cn=admin,dc=example,dc=com

Where the entries mean the following:

e dc=example,dc=com: Base of the DIT
e cn=admin,dc=example,dc=com: Administrator (rootDN) for this DIT (set up during package install)

Notice how we used two different authentication mechanisms:

e -X
This is called a “simple bind”, and is essentially a plain text authentication. Since no Bind DN was provided
(via -D), this became an anonymous bind. Without -x, the default is to use a Simple Authentication Security
Layer (SASL) bind.

e -Y EXTERNAL
This is using a SASL bind (no -x was provided), and further specifying the EXTERNAL type. Together with -H
ldapi:///, this uses a local Unix socket connection.

In both cases we only got the results that the server access-control lists (ACLs) allowed us to see, based on who we
are. A very handy tool to verify the authentication is ldapwhoami, which can be used as follows:

$ ldapwhoami -x

anonymous

$ ldapwhoami -x -D cn=admin,dc=example,dc=com -W
Enter LDAP Password:

dn:cn=admin,dc=example,dc=com

When you use simple bind (-x) and specify a Bind DN with -D as your authentication DN, the server will look for
a userPassword attribute in the entry, and use that to verify the credentials. In this particular case above, we used
the database Root DN entry, i.e., the actual administrator, and that is a special case whose password is set in the
configuration when the package is installed.

Note:
A simple bind without some sort of transport security mechanism is clear text, meaning the credentials
are transmitted in the clear. You should add Transport Layer Security (TLS) support to your OpenLDAP
server as soon as possible.

Example SASL EXTERNAL

Here are the SASL EXTERNAL examples:

$ ldapwhoami -Y EXTERNAL -H ldapi:/// -Q
dn:gidNumber=1000+uidNumber=1000, cn=peercred, cn=external, cn=auth
$ sudo ldapwhoami -Y EXTERNAL -H ldapi:/// -Q

dn:gidNumber=0+uidNumber=0, cn=peercred, cn=external, cn=auth

When using SASL EXTERNAL via the ldapi:/// transport, the Bind DN becomes a combination of the uid and gid
of the connecting user, followed by the suffix cn=peercred,cn=external,cn=auth. The server ACLs know about this,
and grant the local root user complete write access to cn=config via the SASL mechanism.

Populate the directory
Let’s introduce some content to our directory. We will add the following;:

e A node called People, to store users

146

— A user called john
e A node called Groups, to store groups
— A group called miners

Create the following LDIF file and call it add content.ldif:

dn: ou=People,dc=example,dc=com
objectClass: organizationalUnit
ou: People

dn: ou=Groups,dc=example,dc=com
objectClass: organizationalUnit
ou: Groups

dn: cn=miners,ou=Groups,dc=example,dc=com
objectClass: posixGroup

cn: miners

gidNumber: 5000

dn: uid=john,ou=People,dc=example,dc=com
objectClass: inetOrgPerson
objectClass: posixAccount
objectClass: shadowAccount
uid: john

sn: Doe

givenName: John

cn: John Doe

displayName: John Doe
uidNumber: 10000
gidNumber: 5000
userPassword: {CRYPT}x
gecos: John Doe
loginShell: /bin/bash
homeDirectory: /home/john

Note:
It’s important that uid and gid values in your directory do not collide with local values. You can use high
number ranges, such as starting at 5000 or even higher.

Add the content:
$ ldapadd -x -D cn=admin,dc=example,dc=com -W -f add content.ldif

Enter LDAP Password: **¥oktxik
adding new entry "ou=People,dc=example,dc=com"

adding new entry "ou=Groups,dc=example,dc=com"
adding new entry "cn=miners,ou=Groups,dc=example,dc=com"
adding new entry "uid=john,ou=People,dc=example,dc=com"

We can check that the information has been correctly added with the ldapsearch utility. For example, let’s search for
the “john” entry, and request the cn and gidnumber attributes:

$ ldapsearch -x -LLL -b dc=example,dc=com '(uid=john)' cn gidNumber
dn: uid=john,ou=People,dc=example,dc=com

cn: John Doe
gidNumber: 5000

Here we used an LDAP “filter”: (uid=john). LDAP filters are very flexible and can become complex. For example, to
list the group names of which john is a member, we could use the filter:

(&(objectClass=posixGroup) (memberUid=john))

That is a logical “AND” between two attributes. Filters are very important in LDAP and mastering their syntax is
extremely helpful. They are used for simple queries like this, but can also select what content is to be replicated to a
secondary server, or even in complex ACLs. The full specification is defined in RFC 4515.

147

http://www.rfc-editor.org/rfc/rfc4515.txt

Notice we set the userPassword field for the “john” entry to the cryptic value {CRYPT}x. This essentially is an invalid
password, because no hashing will produce just x. It’s a common pattern when adding a user entry without a default
password. To change the password to something valid, you can now use ldappasswd:

$ ldappasswd -x -D cn=admin,dc=example,dc=com -W -S uid=john,ou=people,dc=example,dc=com
New password:

Re-enter new password:
Enter LDAP Password:

Note:
Remember that simple binds are insecure and you should add TLS support to your server as soon as
possible!

Change the configuration

The slapd-config DIT can also be queried and modified. Here are some common operations.

Add an index

Use ldapmodify to add an “Index” to your {1}mdb,cn=config database definition (for dc=example,dc=com). Create a file
called uid index.ldif, and add the following contents:

dn: olcDatabase={1}mdb,cn=config
add: olcDbIndex
olcDbIndex: mail eq,sub

Then issue the command:

$ sudo ldapmodify -Q -Y EXTERNAL -H ldapi:/// -f uid index.ldif

modifying entry "olcDatabase={1}mdb,cn=config"

You can confirm the change in this way:

$ sudo ldapsearch -Q -LLL -Y EXTERNAL -H ldapi:/// -b \
cn=config '(olcDatabase={1}mdb)' olcDbIndex

dn: olcDatabase={1}mdb,cn=config
olcDbIndex: objectClass eq
olcDbIndex: cn,uid eq

olcDbIndex: uidNumber,gidNumber eq
olcDbIndex: member,memberUid eq
olcDbIndex: mail eq,sub

Change the RootDN password:

First, run slappasswd to get the hash for the new password you want:
$ slappasswd

New password:

Re-enter new password:
{SSHA}VKrYMx1SKhONGRpC6 rnASKNmXG2xHXFo

Now prepare a changerootpw.ldif file with this content:

dn: olcDatabase={1}mdb,cn=config

changetype: modify

replace: olcRootPW

olcRootPW: {SSHA}VKrYMx1SKhONGRpC6 rnASKNmXG2xHXFo

Finally, run the ldapmodify command:

$ sudo ldapmodify -Q -Y EXTERNAL -H ldapi:/// -f changerootpw.ldif

modifying entry "olcDatabase={1}mdb,cn=config"

We still have the actual cn=admin,dc=example,dc=com DN in the dc=example,dc=com database, so let’s change that too.
Since this is a regular entry in this database suffix, we can use ldappasswd:

148

$ ldappasswd -x -D cn=admin,dc=example,dc=com -W -S

New password:
Re-enter new password:
Enter LDAP Password: <-- current password, about to be changed

Add a schema

Schemas can only be added to cn=config if they are in LDIF format. If not, they will first have to be converted. You
can find unconverted schemas in addition to converted ones in the /etc/ldap/schema directory.

Note:
It is not trivial to remove a schema from the slapd-config database. Practice adding schemas on a test
system.

In the following example we’ll add one of the pre-installed policy schemas in /etc/ldap/schema/. The pre-installed
schemas exists in both converted (.1dif) and native (.schema) formats, so we don’t have to convert them and can use
ldapadd directly:

$ sudo ldapadd -Q -Y EXTERNAL -H ldapi:/// -f /etc/ldap/schema/corba.ldif

adding new entry "cn=corba,cn=schema,cn=config"

If the schema you want to add does not exist in LDIF format, a nice conversion tool that can be used is provided in
the schema2ldif package.

Logging

Activity logging for slapd is very useful when implementing an OpenLDAP-based solution — and it must be manually
enabled after software installation. Otherwise, only rudimentary messages will appear in the logs. Logging, like any
other such configuration, is enabled via the slapd-config database.

OpenLDAP comes with multiple logging levels, with each level containing the lower one (additive). A good level to
try is stats. The slapd-config man page has more to say on the different subsystems.

Example logging with the stats level
Create the file logging.1dif with the following contents:

dn: cn=config
changetype: modify
replace: olcLoglLevel
olcLogLevel: stats

Implement the change:
sudo ldapmodify -Q -Y EXTERNAL -H ldapi:/// -f logging.ldif

This will produce a significant amount of logging and you will want to revert back to a less verbose level once your
system is in production. While in this verbose mode your host’s syslog engine (rsyslog) may have a hard time keeping
up and may drop messages like this:

rsyslogd-2177: imuxsock lost 228 messages from pid 2547 due to rate-limiting
You may consider a change to rsyslog’s configuration. In /etc/rsyslog.conf, put:

Disable rate limiting
(default is 200 messages in 5 seconds; below we make the 5 become 0)
$SystemLogRateLimitInterval 0

And then restart the rsyslog daemon:

sudo systemctl restart syslog.service

Next steps
Now that you have successfully installed LDAP, you may want to about access control.

The management of what type of access (read, write, etc) users should be granted for resources is known as access
control. The configuration directives involved are called access control lists or ACLs.

149

https://manpages.ubuntu.com/manpages/slapd-config.html

When we installed the slapd package, various ACLs were set up automatically. We will look at a few important
consequences of those defaults and, in so doing, we’ll get an idea of how ACLs work and how they’re configured.

To get the effective ACL for an LDAP query we need to look at the ACL entries of both the database being queried,
and those of the special frontend database instance. Note that the ACLs belonging to the frontend database are always
appended to the database-specific ACLs, and the first match ‘wins’.

Getting the ACLs

The following commands will give, respectively, the ACLs of the mdb database (dc=example,dc=com) and those of the
frontend database:

$ sudo ldapsearch -Q -LLL -Y EXTERNAL -H ldapi:/// -b \
cn=config '(olcDatabase={1}mdb)' olcAccess

dn: olcDatabase={1}mdb,cn=config

olcAccess: {0}to attrs=userPassword by self write by anonymous auth by * none
olcAccess: {1}to attrs=shadowLastChange by self write by * read

olcAccess: {2}to * by * read

$ sudo ldapsearch -Q -LLL -Y EXTERNAL -H ldapi:/// -b \
cn=config '(olcDatabase={-1}frontend)' olcAccess

dn: olcDatabase={-1}frontend,cn=config

olcAccess: {0}to * by dn.exact=gidNumber=0+uidNumber=0, cn=peercred, cn=external
,cn=auth manage by * break

olcAccess: {1}to dn.exact="" by * read

olcAccess: {2}to dn.base="cn=Subschema" by * read

Note:
The RootDN always has full rights to its database and does not need to be included in any ACL.

Interpreting the results
The first two ACLs are crucial:

olcAccess: {0}to attrs=userPassword by self write by anonymous auth by * none
olcAccess: {1}to attrs=shadowLastChange by self write by * read

This can be represented differently for easier reading;:

to attrs=userPassword
by self write
by anonymous auth
by * none

to attrs=shadowlLastChange
by self write
by * read

These ACLs enforce the following:

e Anonymous ‘auth’ access is provided to the userPassword attribute so that users can authenticate, or bind.
Perhaps counter-intuitively, ‘by anonymous auth’ is needed even when anonymous access to the DIT is unwanted,
otherwise this would be a chicken-and-egg problem: before authentication, all users are anonymous.

e The ‘by self write’ ACL grants write access to the userPassword attribute to users who authenticated as the
DN where the attribute lives. In other words, users can update the userPassword attribute of their own entries.

e The userPassword attribute is otherwise inaccessible by all other users, with the exception of the RootDN,
who always has access and doesn’t need to be mentioned explicitly.

e In order for users to change their own password, using passwd or other utilities, the user’s own shad-
owLastChange attribute needs to be writable. All other directory users get to read this attribute’s
contents.

This DIT can be searched anonymously because of ‘to * by * read’ in this ACL, which grants read access to everything
else, by anyone (including anonymous):

150

to *
by * read

If this is unwanted then you need to change the ACL. To force authentication during a bind request you can alternatively
(or in combination with the modified ACL) use the olcRequire: authc directive.

SASL identity

There is no administrative account (“RootDN”) created for the slapd-config database. There is, however, a SASL
identity that is granted full access to it. It represents the localhost’s superuser (root/sudo). Here it is:

dn.exact=gidNumber=0+uidNumber=0, cn=peercred, cn=external, cn=auth
The following command will display the ACLs of the slapd-config database:
$ sudo ldapsearch -Q -LLL -Y EXTERNAL -H ldapi:/// -b \

cn=config '(olcDatabase={0}config)' olcAccess

dn: olcDatabase={0}config,cn=config
olcAccess: {0}to * by dn.exact=gidNumber=0+uidNumber=0, cn=peercred,
cn=external,cn=auth manage by * break

Since this is a SASL identity we need to use a SASL mechanism when invoking the LDAP utility in question — the
EXTERNAL mechanism (see the previous command for an example). Note that:

e You must use sudo to become the root identity in order for the ACL to match.

o The EXTERNAL mechanism works via Interprocess Communication (IPC, UNIX domain sockets). This
means you must use the ldapi URI format.

A succinct way to get all the ACLs is like this:

$ sudo ldapsearch -Q -LLL -Y EXTERNAL -H ldapi:/// -b \
cn=config '(olcAccess=*)' olcAccess olcSuffix

Further reading

e See the man page for slapd.access.
e The access control topic in the OpenLDAP administrator’s guide.

The LDAP service becomes increasingly important as more networked systems begin to depend on it. In such an
environment, it is standard practice to build redundancy (high availability) into LDAP to prevent havoc should the
LDAP server become unresponsive. This is done through LDAP replication.

Replication is achieved via the Sync replication engine, syncrepl. This allows changes to be synchronised using a
Consumer - Provider model. A detailed description of this replication mechanism can be found in the OpenLDAP
administrator’s guide and in its defining RFC 4533.

There are two ways to use this replication:

o Standard replication: Changed entries are sent to the consumer in their entirety. For example, if the userPassword
attribute of the wid=john,ou=people,dc=example,dc=com entry changed, then the whole entry is sent to the
consumer.

e Delta replication: Only the actual change is sent, instead of the whole entry.
The delta replication sends less data over the network, but is more complex to set up. We will show both in this guide.

Important:
You must have Transport Layer Security (TLS) enabled already. Please consult the LDAP with TLS guide
for details of how to set this up.

Provider configuration - replication user

Both replication strategies will need a replication user, as well as updates to the ACLs and limits regarding this user.
To create the replication user, save the following contents to a file called replicator.ldif:

dn: cn=replicator,dc=example,dc=com
objectClass: simpleSecurityObject
objectClass: organizationalRole

cn: replicator

description: Replication user

151

http://manpages.ubuntu.com/manpages/slapd.access.html
https://openldap.org/doc/admin25/guide.html#Access%20Control
https://openldap.org/doc/admin24/guide.html#LDAP%20Sync%20Replication
https://openldap.org/doc/admin24/guide.html#LDAP%20Sync%20Replication
http://www.rfc-editor.org/rfc/rfc4533.txt

userPassword: {CRYPT}x
Then add it with ldapadd:

$ ldapadd -x -ZZ -D cn=admin,dc=example,dc=com -W -f replicator.ldif
Enter LDAP Password:
adding new entry "cn=replicator,dc=example,dc=com"

Now set a password for it with ldappasswd:

$ ldappasswd -x -ZZ -D cn=admin,dc=example,dc=com -W -S cn=replicator,dc=example,dc=com
New password:

Re-enter new password:

Enter LDAP Password:

The next step is to give this replication user the correct privileges, i.e.:

e Read access to the content that we want replicated
¢ No search limits on this content

For that we need to update the ACLs on the provider. Since ordering matters, first check what the existing ACLs
look like on the dc=example,dc=com tree:

$ sudo ldapsearch -Q -Y EXTERNAL -H ldapi:/// -LLL -b cn=config '(olcSuffix=dc=example,dc=com)' olcAccess
dn: olcDatabase={1}mdb,cn=config

olcAccess: {0}to attrs=userPassword by self write by anonymous auth by * none

olcAccess: {1}to attrs=shadowLastChange by self write by * read

olcAccess: {2}to * by * read

What we need is to insert a new rule before the first one, and also adjust the limits for the replicator user. Prepare
the replicator-acl-limits.ldif file with this content:

dn: olcDatabase={1}mdb,cn=config

changetype: modify

add: olcAccess

olcAccess: {0}to *
by dn.exact="cn=replicator,dc=example,dc=com" read
by * break

add: olcLimits

olcLimits: dn.exact="cn=replicator,dc=example,dc=com"
time.soft=unlimited time.hard=unlimited
size.soft=unlimited size.hard=unlimited

And add it to the server:

$ sudo ldapmodify -Q -Y EXTERNAL -H ldapi:/// -f replicator-acl-limits.ldif
modifying entry "olcDatabase={1}mdb,cn=config"

Provider configuration - standard replication

The remaining configuration for the provider using standard replication is to add the syncprov overlay on top of the
dc=example,dc=com database.

Create a file called provider simple sync.ldif with this content:

Add indexes to the frontend db.
dn: olcDatabase={1}mdb,cn=config
changetype: modify

add: olcDbIndex

olcDbIndex: entryCSN eq

add: olcDbIndex

olcDbIndex: entryUUID eq

#Load the syncprov module.
dn: cn=module{0},cn=config
changetype: modify

add: olcModuleload
olcModuleLoad: syncprov

152

syncrepl Provider for primary db

dn:

olcOverlay=syncprov,olcDatabase={1}mdb, cn=config

changetype: add

objectClass: olcOverlayConfig
objectClass: olcSyncProvConfig
olcOverlay: syncprov
olcSpCheckpoint: 100 10
olcSpSessionLog: 100

Customisation warning:

The LDIF above has some parameters that you should review before deploying in production on your
directory. In particular — olcSpCheckpoint and olcSpSessionLog.

Please see the slapo-syncprov(5) man page. In general, olcSpSessionLog should be equal to (or preferably
larger than) the number of entries in your directory. Also see ITS #8125 for details on an existing bug.

Add the new content:

sudo ldapadd -Q -Y EXTERNAL -H ldapi:/// -f provider simple sync.ldif

The Provider is now configured.

Consumer configuration - standard replication

Install the software by going through enable TLS.

Create an LDIF file with the following contents and name it consumer simple sync.ldif:

dn:

cn=module{0}, cn=config

changetype: modify

add:

olcModulelLoad

olcModuleLoad: syncprov

dn:

olcDatabase={1}mdb, cn=config

changetype: modify

add:

olcDbIndex

olcDbIndex: entryUUID eq

add: olcSyncrepl
olcSyncrepl: rid=0
provider=ldap://1dap0l.example.com
bindmethod=simple
binddn="cn=replicator,dc=example,dc=com" credentials=<secret>
searchbase="dc=example,dc=com"
schemachecking=on
type=refreshAndPersist retry="60 +"
starttls=critical tls_ reqcert=demand

add: olcUpdateRef
olcUpdateRef: ldap://ldap0l.example.com

Ensure the following attributes have the correct values:

provider: Provider server’s hostname — 1dap01.example.com in this example — or IP address. It must match
what is presented in the provider’s SSL certificate.

binddn: The bind DN for the replicator user.

credentials: The password you selected for the replicator user.

searchbase: The database suffix you’re using, i.e., content that is to be replicated.

olcUpdateRef: Provider server’s hostname or IP address, given to clients if they try to write to this consumer.
rid: Replica ID, a unique 3-digit ID that identifies the replica. Each consumer should have at least one rid.

Note:

Note that a successful encrypted connection via START TLS is being enforced in this configuration, to
avoid sending the credentials in the clear across the network. See LDAP with TLS for details on how to
set up OpenLDAP with trusted SSL certificates.

153

http://manpages.ubuntu.com/manpages/focal/man5/slapo-syncprov.5.html
https://www.openldap.org/its/index.cgi/?findid=8125

Add the new configuration:
sudo ldapadd -Q -Y EXTERNAL -H ldapi:/// -f consumer simple sync.ldif

Now you’re done! The dc=example,dc=com tree should now be synchronising.

Provider configuration - delta replication
The remaining provider configuration for delta replication is:

o Create a new database called accesslog
e Add the syncprov overlay on top of the accesslog and dc=example,dc=com databases
e Add the accesslog overlay on top of the dc=example,dc=com database

Add syncprov and accesslog overlays and DBs
Create an LDIF file with the following contents and name it provider sync.ldif:

Add indexes to the frontend db.
dn: olcDatabase={1}mdb,cn=config
changetype: modify

add: olcDbIndex

olcDbIndex: entryCSN eq

add: olcDbIndex

olcDbIndex: entryUUID eq

#Load the syncprov and accesslog modules.
dn: cn=module{0},cn=config

changetype: modify

add: olcModulelLoad

olcModuleLoad: syncprov

add: olcModuleload

olcModuleLoad: accesslog

Accesslog database definitions

dn: olcDatabase={2}mdb,cn=config

objectClass: olcDatabaseConfig

objectClass: olcMdbConfig

olcDatabase: {2}mdb

olcDbDirectory: /var/lib/ldap/accesslog

olcSuffix: cn=accesslog

olcRootDN: cn=admin,dc=example,dc=com

olcDbIndex: default eq

olcDbIndex: entryCSN,objectClass, reqgEnd, reqResult, reqStart

olcAccess: {0}to * by dn.exact="cn=replicator,dc=example,dc=com" read by * break

olcLimits: dn.exact="cn=replicator,dc=example,dc=com"
time.soft=unlimited time.hard=unlimited
size.soft=unlimited size.hard=unlimited

Accesslog db syncprov.

dn: olcOverlay=syncprov,olcDatabase={2}mdb,cn=config
changetype: add

objectClass: olcOverlayConfig

objectClass: olcSyncProvConfig

olcOverlay: syncprov

olcSpNoPresent: TRUE

olcSpReloadHint: TRUE

syncrepl Provider for primary db

dn: olcOverlay=syncprov,olcDatabase={1}mdb,cn=config
changetype: add

objectClass: olcOverlayConfig

objectClass: olcSyncProvConfig

154

olcOverlay: syncprov
olcSpCheckpoint: 100 10
olcSpSessionLog: 100

accesslog overlay definitions for primary db

dn: olcOverlay=accesslog,olcDatabase={1}mdb,cn=config

objectClass: olcOverlayConfig

objectClass: olcAccessLogConfig

olcOverlay: accesslog

olcAccessLogDB: cn=accesslog

olcAccessLogOps: writes

olcAccessLogSuccess: TRUE

scan the accesslog DB every day, and purge entries older than 7 days
olcAccessLogPurge: 07+00:00 01+00:00

Customisation warning:

The LDIF above has some parameters that you should review before deploying in production on your
directory. In particular — olcSpCheckpoint, olcSpSessionLog.

Please see the slapo-syncprov(5) manpage. In general, olcSpSessionLog should be equal to (or preferably
larger than) the number of entries in your directory. Also see ITS #8125 for details on an existing bug.
For olcAccessLogPurge, please check the slapo-accesslog(5) manpage.

Create a directory:

sudo -u openldap mkdir /var/lib/ldap/accesslog

Add the new content:

sudo ldapadd -Q -Y EXTERNAL -H ldapi:/// -f provider sync.ldif

The Provider is now configured.

Consumer configuration
Install the software by going through enable TLS.
Create an LDIF file with the following contents and name it consumer sync.ldif:

dn: cn=module{0},cn=config
changetype: modify

add: olcModulelLoad
olcModuleLoad: syncprov

dn: olcDatabase={1}mdb,cn=config
changetype: modify
add: olcDbIndex
olcDbIndex: entryUUID eq
add: olcSyncrepl
olcSyncrepl: rid=0
provider=ldap://1dap0l.example.com
bindmethod=simple
binddn="cn=replicator,dc=example,dc=com" credentials=<secret>
searchbase="dc=example,dc=com"
logbase="cn=accesslog"
logfilter="(&(objectClass=auditWriteObject) (reqResult=0))"
schemachecking=on
type=refreshAndPersist retry="60 +"
syncdata=accesslog
starttls=critical tls reqcert=demand
add: olcUpdateRef
olcUpdateRef: ldap://ldap0l.example.com

Ensure the following attributes have the correct values:

e provider: Provider server’s hostname — ldap01.example.com in this example — or IP address. It must match
what is presented in the provider’s SSL certificate.

155

http://manpages.ubuntu.com/manpages/focal/man5/slapo-syncprov.5.html
https://www.openldap.org/its/index.cgi/?findid=8125
http://manpages.ubuntu.com/manpages/focal/man5/slapo-accesslog.5.html

e binddn: The bind DN for the replicator user.

o credentials: The password you selected for the replicator user.

o searchbase: The database suffix you're using, i.e., content that is to be replicated.

e olcUpdateRef: Provider server’s hostname or IP address, given to clients if they try to write to this consumer.
e rid: Replica ID, a unique 3-digit ID that identifies the replica. Each consumer should have at least one rid.

Note:

Note that a successful encrypted connection via START TLS is being enforced in this configuration, to
avoid sending the credentials in the clear across the network. See LDAP with TLS for details on how to
set up OpenLDAP with trusted SSL certificates.

Add the new configuration:
sudo ldapadd -Q -Y EXTERNAL -H ldapi:/// -f consumer sync.ldif

You're done! The dc=example,dc=com tree should now be synchronising.

Testing
Once replication starts, you can monitor it by running:

$ ldapsearch -z1 -LLL -x -s base -b dc=example,dc=com contextCSN
dn: dc=example,dc=com
contextCSN: 20200423222317.722667Z#000000#000#000000

On both the provider and the consumer. Once the contextCSN value for both match, both trees are in sync. Every
time a change is done in the provider, this value will change and so should the one in the consumer(s).

If your connection is slow and/or your LDAP database large, it might take a while for the consumer’s contextCSN
match the provider’s. But, you will know it is progressing since the consumer’s contextCSN will be steadily increasing.

If the consumer’s contextCSN is missing or does not match the provider, you should stop and figure out the issue before
continuing. Try checking the slapd entries in /var/log/syslog in the provider to see if the consumer’s authentication
requests were successful, or that its requests to retrieve data return no errors. In particular, verify that you can
connect to the provider from the consumer as the replicator BindDN using START _TLS:

ldapwhoami -x -ZZ -D cn=replicator,dc=example,dc=com -W -h ldapOl.example.com
For our example, you should now see the john user in the replicated tree:

$ ldapsearch -x -LLL -b dc=example,dc=com -h ldap02.example.com '(uid=john)' uid
dn: uid=john,ou=People,dc=example,dc=com

uid: john

References

e Replication types, OpenLDAP Administrator’s Guide
e LDAP Sync Replication - OpenLDAP Administrator’s Guide
« RFC 4533.

Once you have a working LDAP server, you will need to install libraries on the client that know how and when to
contact it. On Ubuntu, this was traditionally done by installing the libnss-ldap package, but nowadays you should
use the System Security Services Daemon (SSSD). To find out how to use LDAP with SSSD, refer to our SSSD and
LDAP guide.

User and group management - ldapscripts

A common use case for an LDAP server is to store Unix user and group information in the directory. There are many
tools out there, and big deployments will usually develop their own. However, as a quick and easy way to get started
storing user and group information in OpenLDAP, you can use the ldapscripts package.

Install l1dapscripts

You can install ldapscripts by running the following command:

sudo apt install ldapscripts

Then edit the file /etc/ldapscripts/ldapscripts.conf to arrive at something similar to the following:

156

https://openldap.org/doc/admin24/guide.html#Configuring%20the%20different%20replication%20types
https://openldap.org/doc/admin24/guide.html#LDAP%20Sync%20Replication
http://www.rfc-editor.org/rfc/rfc4533.txt

SERVER=1dap://1ldap0l.example.com
LDAPBINOPTS="-ZZ"

BINDDN='cn=admin, dc=example,dc=com'
BINDPWDFILE="/etc/ldapscripts/ldapscripts.passwd"
SUFFIX="'dc=example,dc=com'

GSUFFIX="'ou=Groups'

USUFFIX="'ou=People'

MSUFFIX='ou=Computers'

Notes:

e Adjust SERVER and related SUFFIX options to suit your directory structure.
o Here, we are forcing use of START TLS (-zZ parameter). Refer to LDAP with TLS to learn how to
set up the server with TLS support.

Store the cn=admin password in the /etc/ldapscripts/ldapscripts.passwd file and make sure it’s only readable by the
root local user:

sudo chmod 400 /etc/ldapscripts/ldapscripts.passwd

The scripts are now ready to help manage your directory.

Manage users and groups with ldapscripts

Here are some brief examples you can use to manage users and groups using ldapscripts.

Create a new user

sudo ldapaddgroup george
sudo ldapadduser george george

This will create a group and user with name “george” and set the user’s primary group (gid) to “george” as well.

Change a user’s password

$ sudo ldapsetpasswd george

Changing password for user uid=george,ou=People,dc=example,dc=com

New Password:

Retype New Password:

Successfully set password for user uid=george,ou=People,dc=example,dc=com
Delete a user

sudo ldapdeleteuser george

Note that this won’t delete the user’s primary group, but will remove the user from supplementary ones.

Add a group

sudo ldapaddgroup ga

Delete a group

sudo ldapdeletegroup qa

Add a user to a group
sudo ldapaddusertogroup george ga

You should now see a memberUid attribute for the “qa” group with a value of “george”.

Remove a user from a group
sudo ldapdeleteuserfromgroup george ga

The memberUid attribute should now be removed from the “qa” group.

157

Manage user attributes with ldapmodifyuser

The ldapmodifyuser script allows you to add, remove, or replace a user's attributes. The script uses the same
syntax as the ldapmodify‘ utility. For example:

sudo ldapmodifyuser george

About to modify the following entry :
dn: uid=george,ou=People,dc=example,dc=com
objectClass: account

objectClass: posixAccount

cn: george

uid: george

uidNumber: 10001

gidNumber: 10001

homeDirectory: /home/george

loginShell: /bin/bash

gecos: george

description: User account

userPassword:: elNTSEF9eXFsTFcyWlhwWkFleGUybVdFWHZKRzJIVMjFTSGIOvcHk=

Enter your modifications here, end with CTRL-D.
dn: uid=george,ou=People,dc=example,dc=com
replace: gecos

gecos: George Carlin

The user’s gecos should now be “George Carlin”.

ldapscripts templates

A nice feature of ldapscripts is the template system. Templates allow you to customise the attributes of user, group,
and machine objects. For example, to enable the user template, edit /etc/ldapscripts/ldapscripts.conf by changing:

UTEMPLATE="/etc/ldapscripts/ldapadduser.template"

There are sample templates in the /usr/share/doc/ldapscripts/examples directory. Copy or rename the ldapad-
duser.template.sample file to /etc/1ldapscripts/ldapadduser.template:

sudo cp /usr/share/doc/ldapscripts/examples/ldapadduser.template.sample \
/etc/ldapscripts/ldapadduser.template

Edit the new template to add the desired attributes. The following will create new users with an objectClass of
“inetOrgPerson”:

dn: uid=<user>,<usuffix>,<suffix>
objectClass: inetOrgPerson
objectClass: posixAccount
cn: <user>

sn: <ask>

uid: <user>

uidNumber: <uid>
gidNumber: <gid>
homeDirectory: <home>
loginShell: <shell>

gecos: <user>

description: User account
title: Employee

Notice the <ask> option used for the sn attribute. This will make ldapadduser prompt you for its value.
There are utilities in the package that were not covered here. This command will output a list of them:

dpkg -L ldapscripts | grep /usr/sbin

Next steps

Now that you know how to set up and modify users and groups, you may wish to learn more about how access control
works. If you're already familiar with this topic, it’s a good idea to secure your LDAP communication by setting up
Transport Layer Security (TLS).

158

When authenticating to an OpenLDAP server it is best to do so using an encrypted session. This can be accomplished
using Transport Layer Security (TLS).

Here, we will be our own Certificate Authority (CA) and then create and sign our LDAP server certificate as that CA.
This guide will use the certtool utility to complete these tasks. For simplicity, this is being done on the OpenLDAP
server itself, but your real internal CA should be elsewhere.

Install the gnutls-bin and ssl-cert packages:

sudo apt install gnutls-bin ssl-cert

Create a private key for the Certificate Authority:

sudo certtool --generate-privkey --bits 4096 --outfile /etc/ssl/private/mycakey.pem
Create the template/file /etc/ssl/ca.info to define the CA:

cn = Example Company
ca

cert signing key
expiration days = 3650

Create the self-signed CA certificate:

sudo certtool --generate-self-signed \

--load-privkey /etc/ssl/private/mycakey.pem \
--template /etc/ssl/ca.info \

--outfile /usr/local/share/ca-certificates/mycacert.crt

Note:

Yes, the --outfile path is correct. ~We are writing the CA certificate to /usr/local/share/ca-
certificates. This is where update-ca-certificates will pick up trusted local CAs from. To pick up CAs
from /usr/share/ca-certificates, a call to dpkg-reconfigure ca-certificates is necessary.

Run update-ca-certificates to add the new CA certificate to the list of trusted CAs. Note the one added CA:

$ sudo update-ca-certificates

Updating certificates in /etc/ssl/certs...

1 added, O removed; done.

Running hooks in /etc/ca-certificates/update.d...
done.

This also creates a /etc/ssl/certs/mycacert.pem symlink pointing to the real file in /usr/local/share/ca-certificates.
Make a private key for the server:

sudo certtool --generate-privkey \
--bits 2048 \
--outfile /etc/ldap/ldap01 slapd key.pem

Note:
Replace 1dap0l in the filename with your server’s hostname. Naming the certificate and key for the host
and service that will be using them will help keep things clear.

Create the /etc/ss1/1dap0l.info info file containing:

organization = Example Company
cn = ldap0l.example.com

tls www _server

encryption key

signing key

expiration days = 365

The above certificate is good for 1 year, and it’s valid only for the 1dap01.example.com hostname. You can adjust this
according to your needs.

Create the server’s certificate:

sudo certtool --generate-certificate \
--load-privkey /etc/ldap/ldap0l slapd key.pem \
--load-ca-certificate /etc/ssl/certs/mycacert.pem \
--load-ca-privkey /etc/ssl/private/mycakey.pem \
--template /etc/ssl/ldapOl.info \

159

--outfile /etc/ldap/ldap0l slapd cert.pem
Adjust permissions and ownership:

sudo chgrp openldap /etc/ldap/ldap0l slapd key.pem
sudo chmod 0640 /etc/ldap/ldapOl slapd key.pem

Your server is now ready to accept the new TLS configuration.
Create the file certinfo.ldif with the following contents (adjust paths and filenames accordingly):

dn: cn=config
add: olcTLSCACertificateFile
olcTLSCACertificateFile: /etc/ssl/certs/mycacert.pem

add: olcTLSCertificateFile
olcTLSCertificateFile: /etc/ldap/ldap0@l slapd cert.pem

add: olcTLSCertificateKeyFile
olcTLSCertificateKeyFile: /etc/ldap/ldap@l slapd key.pem

Use the ldapmodify command to tell slapd about our TLS work via the slapd-config database:
sudo ldapmodify -Y EXTERNAL -H ldapi:/// -f certinfo.ldif

If you need access to LDAPS (LDAP over SSL), then you need to edit /etc/default/slapd and include ldaps:/// in
SLAPD SERVICES like below:

SLAPD SERVICES="1ldap:/// ldapi:/// ldaps:///"

And restart slapd with: sudo systemctl restart slapd.

Note that StartTLS will be available without the change above, and does NOT need a slapd restart.
Test StartTLS:

$ ldapwhoami -x -ZZ -H ldap://ldap0l.example.com
anonymous

Test LDAPS:

$ ldapwhoami -x -H ldaps://ldap0l.example.com
anonymous

Certificate for an OpenLDAP replica

To generate a certificate pair for an OpenLDAP replica (consumer), create a holding directory (which will be used for
the eventual transfer) and run the following:

mkdir ldap02-ssl

cd ldap02-ssl

certtool --generate-privkey \
--bits 2048 \

--outfile ldap02 slapd key.pem

Create an info file, 1dap02.info, for the Consumer server, adjusting its values according to your requirements:

organization = Example Company
cn = ldap02.example.com
tls_www_server

encryption key

signing key

expiration days = 365

Create the Consumer’s certificate:

sudo certtool --generate-certificate \
--load-privkey ldap02 slapd key.pem \
--load-ca-certificate /etc/ssl/certs/mycacert.pem \
--load-ca-privkey /etc/ssl/private/mycakey.pem \
--template ldap02.info \

--outfile 1dap02 slapd cert.pem

160

Note:

We had to use sudo to get access to the CA’s private key. This means the generated certificate file is owned
by root. You should change that ownership back to your regular user before copying these files over to the
Consumer.

Get a copy of the CA certificate:
cp /etc/ssl/certs/mycacert.pem .
We're done. Now transfer the 1dap02-ssl directory to the Consumer. Here we use scp (adjust accordingly):

cd ..
scp -r ldap02-ssl user@consumer:

On the Consumer side, install the certificate files you just transferred:

sudo cp ldap02 slapd cert.pem ldap02 slapd key.pem /etc/ldap

sudo chgrp openldap /etc/ldap/ldap02 slapd key.pem

sudo chmod 0640 /etc/ldap/ldap02 slapd key.pem

sudo cp mycacert.pem /usr/local/share/ca-certificates/mycacert.crt
sudo update-ca-certificates

Create the file certinfo.ldif with the following contents (adjust accordingly regarding paths and filenames, if needed):

dn: cn=config
add: olcTLSCACertificateFile
olcTLSCACertificateFile: /etc/ssl/certs/mycacert.pem

add: olcTLSCertificateFile
olcTLSCertificateFile: /etc/ldap/ldap02 slapd cert.pem

add: olcTLSCertificateKeyFile
olcTLSCertificateKeyFile: /etc/ldap/ldap02 slapd key.pem

Configure the slapd-config database:
sudo ldapmodify -Y EXTERNAL -H ldapi:/// -f certinfo.ldif

Like before, if you want to enable LDAPS, edit /etc/default/slapd and add ldaps:/// to SLAPD SERVICES, and then
restart slapd.

Test StartTLS:

$ ldapwhoami -x -ZZ -H ldap://ldap02.example.com
anonymous

Test LDAPS:

$ ldapwhoami -x -H ldaps://ldap02.example.com
anonymous

Now we have LDAP running just the way we want, it is time to ensure we can save all of our work and restore it as
needed.

What we need is a way to back up the directory database(s) — specifically the configuration backend (cn=config) and
the DIT (de=ezample,dc=com). If we are going to backup those databases into, say, /export/backup, we could use
slapcat as shown in the following script, called /usr/local/bin/ldapbackup:

#!/bin/bash
set -e

BACKUP_PATH=/export/backup
SLAPCAT=/usr/sbin/slapcat

nice ${SLAPCAT} -b cn=config > ${BACKUP PATH}/config.ldif

nice ${SLAPCAT} -b dc=example,dc=com > ${BACKUP PATH}/example.com.ldif
chown root:root ${BACKUP PATH}/*

chmod 600 ${BACKUP PATH}/*.ldif

Note:
These files are uncompressed text files containing everything in your directory including the tree layout,

161

usernames, and every password. So, you might want to consider making /export/backup an encrypted
partition and even having the script encrypt those files as it creates them. Ideally you should do both, but
that depends on your security requirements.

Then, it is just a matter of having a cron script to run this program as often as you feel comfortable with. For many, once
a day suffices. For others, more often is required. Here is an example of a cron script called /etc/cron.d/ldapbackup
that is run every night at 22:45h:

MAILTO=backup-emails@domain.com
45 22 * * * root /usr/local/bin/1ldapbackup

Now the files are created, they should be copied to a backup server.
Assuming we did a fresh reinstall of LDAP, the restore process could be something like this:

#!/bin/bash
set -e

BACKUP_PATH=/export/backup
SLAPADD=/usr/sbhin/slapadd

if [-n "$(ls -1 /var/lib/ldap/* 2>/dev/null)" -0 -n "$(ls -1 /etc/ldap/slapd.d/* 2>/dev/null)" 1; then
echo Run the following to remove the existing db:
echo sudo systemctl stop slapd.service
echo sudo rm -rf /etc/ldap/slapd.d/* /var/lib/ldap/*
exit 1
fi
sudo systemctl stop slapd.service ||
sudo slapadd -F /etc/ldap/slapd.d -b cn=config -1 /export/backup/config.ldif
sudo slapadd -F /etc/ldap/slapd.d -b dc=example,dc=com -1 /export/backup/example.com.ldif
sudo chown -R openldap:openldap /etc/ldap/slapd.d/
sudo chown -R openldap:openldap /var/lib/ldap/
sudo systemctl start slapd.service

This is a simplistic backup strategy, of course. It’s being shown here as a reference for the basic tooling you can use
for backups and restores.

Kerberos is a network authentication system based on the principal of a trusted third party. The other two parties
being the user and the service the user wishes to authenticate to. Not all services and applications can use Kerberos,
but for those that can, it brings the network environment one step closer to being Single Sign On (SSO).

This section covers installation and configuration of a Kerberos server, and some example client configurations.

Overview

If you are new to Kerberos there are a few terms that are good to understand before setting up a Kerberos server.
Most of the terms will relate to things you may be familiar with in other environments:

e Principal: any users, computers, and services provided by servers need to be defined as Kerberos Principals.

e Instances: are a variation for service principals. For example, the principal for an NFS service will have an
instance for the hostname of the server, like nfs/server.example.com@REALM. Similarly admin privileges on a
principal use an instance of /admin, like john/admin@REALM, differentiating it from john@REALM. These variations
fit nicely with ACLs.

e Realms: the unique realm of control provided by the Kerberos installation. Think of it as the domain or group
your hosts and users belong to. Convention dictates the realm should be in uppercase. By default, Ubuntu will
use the DNS domain converted to uppercase (EXAMPLE.COM) as the realm.

o Key Distribution Center: (KDC) consist of three parts: a database of all principals, the authentication server,
and the ticket granting server. For each realm there must be at least one KDC.

o Ticket Granting Tickel: issued by the Authentication Server (AS), the Ticket Granting Ticket (TGT) is encrypted
in the user’s password which is known only to the user and the KDC. This is the starting point for a user to
acquire additional tickets for the services being accessed.

o Ticket Granting Server: (TGS) issues service tickets to clients upon request.

e Tickets: confirm the identity of the two principals. One principal being a user and the other a service requested
by the user. Tickets establish an encryption key used for secure communication during the authenticated session.

162

e Keytab Files: contain encryption keys for a service or host extracted from the KDC principal database.

To put the pieces together, a Realm has at least one KDC, preferably more for redundancy, which contains a database
of Principals. When a user principal logs into a workstation that is configured for Kerberos authentication, the KDC
issues a Ticket Granting Ticket (TGT). If the user supplied credentials match, the user is authenticated and can then
request tickets for Kerberized services from the Ticket Granting Server (TGS). The service tickets allow the user to
authenticate to the service without entering another username and password.

Resources
¢ For more information on MIT’s version of Kerberos, see the MIT Kerberos site.

o Also, feel free to stop by the #ubuntu-server and #kerberos IRC channels on Libera.Chat if you have Kerberos
questions.

e Another guide for installing Kerberos on Debian, includes PKINIT

Installation
For this discussion, we will create a MIT Kerberos domain with the following features (edit them to fit your needs):
e Realm: EXAMPLE.COM
e Primary KDC': kdcO1.example.com
e Secondary KDC' kdc02.example.com
o User principal: ubuntu
e Admin principal: ubuntu/admin

Before installing the Kerberos server, a properly configured DNS server is needed for your domain. Since the Kerberos
Realm by convention matches the domain name, this section uses the EXAMPLE.COM domain configured in the section
Primary Server of the DNS documentation.

Also, Kerberos is a time sensitive protocol. If the local system time between a client machine and the server differs
by more than five minutes (by default), the workstation will not be able to authenticate. To correct the problem all
hosts should have their time synchronized using the same Network Time Protocol (NTP) server. Check out the NTP
chapter for more details.

The first step in creating a Kerberos Realm is to install the krb5-kdc and krb5-admin-server packages. From a terminal
enter:

sudo apt install krb5-kdc krb5-admin-server

You will be asked at the end of the install to supply the hostname for the Kerberos and Admin servers, which may or
may not be the same server, for the realm. Since we are going to create the realm, and thus these servers, type in the
full hostname of this server.

Note

By default the realm name will be domain name of the KDC server.
Next, create the new realm with the kdb5 newrealm utility:
sudo krb5 newrealm

It will ask you for a database master password, which is used to encrypt the local database. Chose a secure password:
its strength is not verified for you.

Configuration

The questions asked during installation are used to configure the /etc/krb5.conf and /etc/krb5kdc/kdc. conf files. The
former is used by the kerberos 5 libraries, and the latter configures the KDC. If you need to adjust the Key Distribution
Center (KDC) settings simply edit the file and restart the krb5-kdc daemon. If you need to reconfigure Kerberos from
scratch, perhaps to change the realm name, you can do so by typing

sudo dpkg-reconfigure krb5-kdc
Note

The manpage for krb5.conf is in the krb5-doc package.

163

http://web.mit.edu/Kerberos/
https://libera.chat/
http://techpubs.spinlocksolutions.com/dklar/kerberos.html

Let’s create our first principal. Since there is no principal create yet, we need to use kadmin.local, which uses a local
unix socket to talk to the KDC, and requires root privileges:

$ sudo kadmin.local

Authenticating as principal root/admin@EXAMPLE.COM with password.
kadmin.local: addprinc ubuntu

WARNING: no policy specified for ubuntu@EXAMPLE.COM; defaulting to no policy
Enter password for principal "ubuntu@EXAMPLE.COM":

Re-enter password for principal "ubuntu@EXAMPLE.COM":

Principal "ubuntu@EXAMPLE.COM" created.

kadmin.local: quit

To be able to use kadmin remotely, we should create an admin principal. Convention suggests it should be an admin
instance, as that also makes creating generic ACLs easier. Let’s create an admin instance for the ubuntu principal:

$ sudo kadmin.local

Authenticating as principal root/admin@EXAMPLE.COM with password.

kadmin.local: addprinc ubuntu/admin

WARNING: no policy specified for ubuntu/admin@EXAMPLE.COM; defaulting to no policy
Enter password for principal "ubuntu/admin@EXAMPLE.COM":

Re-enter password for principal "ubuntu/admin@EXAMPLE.COM":

Principal "ubuntu/admin@EXAMPLE.COM" created.

kadmin.local: quit

Next, the new admin principal needs to have the appropriate Access Control List (ACL) permissions. The permissions
are configured in the /etc/krb5kdc/kadm5.acl file:

ubuntu/admin@EXAMPLE.COM *

You can also use a more generic form for this ACL:

*/admin@EXAMPLE. COM *

The above will grant all privileges to any admin instance of a principal. See the kadm5.acl manpage for details.
Now restart the krb5-admin-server for the new ACL to take affect:

sudo systemctl restart krb5-admin-server.service

The new user principal can be tested using the kinit utility:

$ kinit ubuntu/admin
Password for ubuntu/admin@EXAMPLE.COM:

After entering the password, use the klist utility to view information about the Ticket Granting Ticket (TGT):

$ klist
Ticket cache: FILE:/tmp/krb5cc_1000
Default principal: ubuntu/admin@EXAMPLE.COM

Valid starting Expires Service principal
04/03/20 19:16:57 04/04/20 05:16:57 krbtgt/EXAMPLE.COM@EXAMPLE.COM
renew until 04/04/20 19:16:55

Where the cache filename krb5cc_1000 is composed of the prefix krb5cc_ and the user id (uid), which in this case is
1000.

kinit will inspect /etc/krb5.conf to find out which KDC to contact, and its address. The KDC can also be found via
DNS lookups for special TXT and SRV records. You can add these records to your example.com DNS zone:

_kerberos. udp.EXAMPLE.COM. IN SRV 1 0 88 kdcOl.example.com.
_kerberos. tcp.EXAMPLE.COM. IN SRV 1 0 88 kdcOl.example.com.
_kerberos. udp.EXAMPLE.COM. IN SRV 10 0 88 kdc02.example.com.
_kerberos. tcp.EXAMPLE.COM. IN SRV 10 0 88 kdc02.example.com.
_kerberos-adm. tcp.EXAMPLE.COM. IN SRV 1 0 749 kdc0@l.example.com.
_kpasswd._udp.EXAMPLE.COM. IN SRV 1 0 464 kdcOl.example.com.

See the DNS chapter for detailed instructions on setting up DNS.

A very quick and useful way to troubleshoot what kinit is doing is to set the environment variable KRB5 TRACE to a
file, or stderr, and it will show extra information. The output is quite verbose:

164

http://manpages.ubuntu.com/manpages/jammy/man5/kadm5.acl.5.html

$ KRB5 TRACE=/dev/stderr kinit ubuntu/admin

[2898] 1585941845.278578: Getting initial credentials for ubuntu/admin@EXAMPLE.COM
[2898] 1585941845.278580: Sending unauthenticated request

[2898] 1585941845.278581: Sending request (189 bytes) to EXAMPLE.COM

[2898] 1585941845.278582: Resolving hostname kdcOl.example.com

(...)

Your new Kerberos Realm is now ready to authenticate clients.
The specific steps to enable Kerberos for a service can vary a bit, but in general the following is needed:

e a principal for the service: usually service/host@REALM
e a keytab accessible to the service wherever it’s running: usually in /etc/krb5.keytab

For example, let’s create a principal for an LDAP service running on the ldap-server.example.com host:

ubuntu@ldap-server:~$ sudo kadmin -p ubuntu/admin

Authenticating as principal ubuntu/admin with password.

Password for ubuntu/admin@EXAMPLE.COM:

kadmin: addprinc -randkey ldap/ldap-server.example.com

No policy specified for ldap/ldap-server.example.com@EXAMPLE.COM; defaulting to no policy
Principal "ldap/ldap-server.example.com@EXAMPLE.COM" created.

Let’s dig a bit into what is happening here:

e the kadmin command is being run in the ldap-server machine, not on the KDC. We are using kadmin remotely

e it’s being run with sudo, the reason will become clear later

o we are logged in on the server as wbuntu, but specifying a ubuntu/admin principal. Remember the ubuntu
principal has no special privileges

 the name of the principal we are creating follows the pattern service/hostname

e in order to select a random secret, we pass the -randkey parameter. Otherwise we would be asked to type in a
password.

With the principal created, we need to extract the key from the KDC and store it in the ldap-server host, so that the
ldap service can use it to authenticate itself with the KDC. Still in the same kadmin session:

kadmin: ktadd ldap/ldap-server.example.com

Entry for principal 1ldap/ldap-server.example.com with kvno 2, encryption type aes256-cts-hmac-shal-
96 added to keytab FILE:/etc/krb5.keytab.

Entry for principal 1ldap/ldap-server.example.com with kvno 2, encryption type aesl28-cts-hmac-shal-
96 added to keytab FILE:/etc/krb5.keytab.

This is why he needed to run kadmin with sudo: so that it can write to /etc/krb5.keytab. This is the system keytab
file, which is the default file for all keys that might be needed for services on this host. And we can list them with
klist. Back in the shell:

$ sudo klist -k
Keytab name: FILE:/etc/krb5.keytab
KVNO Principal

2 ldap/ldap-server.example.com@EXAMPLE.COM
2 ldap/ldap-server.example.com@EXAMPLE.COM

If you don’t have the kadmin utility on the target host, one alternative is to extract the keys on a different host and
into a different file, and then transfer this file securely to the target server. For example:

kadmin: ktadd -k /home/ubuntu/ldap.keytab ldap/ldap-server.example.com

Entry for principal 1ldap/ldap-server.example.com with kvno 3, encryption type aes256-cts-hmac-shal-
96 added to keytab WRFILE:/home/ubuntu/ldap.keytab.

Entry for principal 1ldap/ldap-server.example.com with kvno 3, encryption type aesl28-cts-hmac-shal-
96 added to keytab WRFILE:/home/ubuntu/ldap.keytab.

Note

Notice how the kvno changed from 2 to 3 in the example above, when using ktadd a second time? This is
the key version, and it basically invalidated the key with kvno 2 that was extracted before. Everytime a
key is extracted with ktadd, its version is bumped and that invalidates the previous ones!

In this case, as long as the target location is writable, you don’t even have to run kadmin with sudo.

Then use scp to transfer it to the target host:

165

$ scp /home/ubuntu/ldap.keytab ldap-server.example.com:
And over there copy it to /etc/krb5.keytab, making sure it’s mode 0600 and owned by root:root.

Encryption is at the heart of Kerberos, and it supports multiple cryptographic algorithms. The default choices are
good enough for most deployments, but specific situations might need to tweak these settings.

This document will explain the basic configuration parameters of Kerberos that control the selection of encryption
algorithms used in a Kerberos deployment.

Server-side configuration

There are two main server-side configuration parameters that control the encryption types used on the server for its
database and its collection or principals. Both exist in /etc/krb5kdc/kdc.conf inside the [realms] section and are as
follows:

e master key type
Specifies the key type of the master key. This is used to encrypt the database, and the default is aes256-cts-
hmac-shal-96.

e supported enctypes
Specifies the default key/salt combinations of principals for this realm. The default is aes256-cts-hmac-shal-
96:normal aesl28-cts-hmac-shal-96:normal, and the encryption types should be listed in order of preference.

Possible values for the encryption algorithms are listed in the MIT documentation on encryption types, and the salt
types can be seen in the MIT keysalt lists.

Here is an example showing the default values (other settings removed for brevity):

[realms]
EXAMPLE.INTERNAL = {
(...)
master_key type = aes256-cts
supported enctypes = aes256-cts-hmac-shal-96:normal aesl28-cts-hmac-shal-96:normal
(...)
}

The master key is created once per realm, when the realm is bootstrapped. That is usually done with the krb5 newrealm
tool (see Kerberos Server for details). You can check the master key type with either of these commands on the KDC
server:

$ sudo kadmin.local

kadmin.local: getprinc K/M
Principal: K/M@EXAMPLE.INTERNAL
(...)

Number of keys: 1

Key: vno 1, aes256-cts-hmac-shal-96
(...)

$ sudo klist -ke /etc/krb5kdc/stash
Keytab name: FILE:/etc/krb5kdc/stash
KVNO Principal

1 K/M@EXAMPLE.INTERNAL (aes256-cts-hmac-shal-96)

When a new Kerberos principal is created through the kadmind service (via the kadmin or kadmin.local utilities), the
types of encryption keys it will get are controlled via the supported enctypes configuration parameter.

For example, let’s create an ubuntu principal, and check the keys that were created for it (output abbreviated):

$ sudo kadmin.local

Authenticating as principal root/admin@EXAMPLE.INTERNAL with password.
kadmin.local: addprinc ubuntu

No policy specified for ubuntu@EXAMPLE.INTERNAL; defaulting to no policy
Enter password for principal "ubuntu@EXAMPLE.INTERNAL":

Re-enter password for principal "ubuntu@EXAMPLE.INTERNAL":

Principal "ubuntu@EXAMPLE.INTERNAL" created.

kadmin.local: getprinc ubuntu
Principal: ubuntu@EXAMPLE.INTERNAL

166

https://web.mit.edu/kerberos/krb5-latest/doc/admin/conf_files/kdc_conf.html#encryption-types
https://web.mit.edu/kerberos/krb5-latest/doc/admin/conf_files/kdc_conf.html#keysalt-lists

(...)

Number of keys: 2

Key: vno 1, aes256-cts-hmac-shal-96
Key: vno 1, aesl28-cts-hmac-shal-96
(...)

Two keys were created for the ubuntu principal, following the default setting of supported enctypes in kdc.conf for
this realm.

Note:

The server config supported enctypes has the default list of key types that are created for a principal. This
list applies to the moment when that principal is created by kadmind. Changing that setting after the fact
won’t affect the keys that the principal in question has after that event. In particular, principals can be
created with specific key types regardless of the supported enctypes setting. See the -e parameter for the
kadmin add_ principal command.

If we had supported_enctypes set to aes256-sha2:normal aesl28-sha2:normal camellia256-cts:normal in kdc.conf,
then the ubuntu principal would get three key types:

kadmin.local: getprinc ubuntu
Principal: ubuntu@EXAMPLE.INTERNAL
(...)

Number of keys: 3

Key: vno 1, aes256-cts-hmac-sha384-192
Key: vno 1, aesl28-cts-hmac-sha256-128
Key: vno 1, camellia256-cts-cmac

Note:

Bootstrapping a new Kerberos realm via the krb5 newrealm command also creates some system principals
required by Kerberos, such as kadmin/admin, kadmin/changepw and others. They will all also get the same
number of keys each: one per encryption type in supported enctypes.

Client-side configuration

When we say “client-side”, we really mean “applications linked with the Kerberos libraries”. These live on the server
too, so keep that in mind.

The encryption types supported by the Kerberos libraries are defined in the /etc/krb5.conf file, inside the [libde-
faults] section, via the permitted enctypes parameter.

Example:

[libdefaults]
(...)
permitted enctypes = aes256-cts-hmac-shal-96 aesl128-cts-hmac-shal-96

This parameter contains a space-separated list of encryption type names, in order of preference. Default value: aes256-
cts-hmac-shal-96 aesl28-cts-hmac-shal-96 aes256-cts-hmac-sha384-192 aesl28-cts-hmac-sha256-128 des3-cbc-shal
arcfour-hmac-md5 camellia256-cts-cmac camellial28-cts-cmac.

Possible values for the encryption algorithms are listed in the MIT documentation (same ones as for the KDC).

Note:
There are more encryption-related parameters in krb5.conf, but most take their defaults from permit-
ted_enctypes. See the MIT libdefaults documentation for more information.

Putting it all together

When a client performs Kerberos authentication and requests a ticket from the KDC, the encryption type used in that
ticket is decided by picking the common set of:

e The encryption types supported by the server for that principal
e The encryption types supported by the client

If there is no common algorithm between what the client accepts, and what the server has to offer for that specific
principal, then kinit will fail.

For example, if the principal on the server has:

kadmin.local: getprinc ubuntu
Principal: ubuntu@EXAMPLE.INTERNAL

167

https://web.mit.edu/kerberos/krb5-latest/doc/admin/database.html#add-principal
https://web.mit.edu/kerberos/krb5-latest/doc/admin/conf_files/kdc_conf.html#encryption-types
https://web.mit.edu/kerberos/krb5-latest/doc/admin/conf_files/krb5_conf.html#libdefaults

(...)

Number of keys: 2

Key: vno 1, aes256-cts-hmac-sha384-192
Key: vno 1, aesl28-cts-hmac-sha256-128

And the client’s krb5.conf has:
permitted enctypes = aes256-shal aesl28-shal

Then kinit will fail, because the client only supports shal variants, and the server only has sha2 to offer for that
particular principal the client is requesting:

$ kinit ubuntu

kinit: Generic error (see e-text) while getting initial credentials
The server log (journalctl -u krb5-admin-server.service) will have more details about the error:

Apr 19 19:31:49 j-kdc krb5kdc[8597]: AS REQ (2 etypes {aes256-cts-hmac-shal-96(18), aesl28-cts-hmac-shal-
96(17)}) fd42:78f4:b1c4:3964:216:3eff:feda:118c: GET LOCAL TGT: ubuntu@EXAMPLE.INTERNAL for krbtgt/EXAMPLE.INTERNALQEX/

This log says that there was an AS-REQ request which accepted two encryption types, but there was no matching key
type on the server database for that principal.

Changing encryption types

Changing encryption types of an existing Kerberos realm is no small task. Just changing the configuration settings
won’t recreate existing keys, nor add new ones. The modifications have to be done in incremental steps.

MIT Kerberos has a guide on updating encryption types that covers many scenarios, including deployments with
multiple replicating servers:

References

e Encryption types in MIT Kerberos

e krb5.conf encryption related configurations options
e Migrating away from older encryption types

e kdc.conf manpage

e krb5.conf manpage

e Kerberos V5 concepts

Once you have one Key Distribution Center (KDC) on your network, it is good practice to have a Secondary KDC
in case the primary becomes unavailable. Also, if you have Kerberos clients that are in different networks (possibly
separated by routers using NAT), it is wise to place a secondary KDC in each of those networks.

Note

The native replication mechanism explained here relies on a cronjob, and essentially dumps the DB on the
primary and loads it back up on the secondary. You may want to take a look at using the kldap backend
which can use the OpenLDAP replication mechanism. It is explained further below.

First, install the packages, and when asked for the Kerberos and Admin server names enter the name of the Primary
KDC:

sudo apt install krb5-kdc krb5-admin-server
Once you have the packages installed, create the host principals for both KDCs. From a terminal prompt, enter:

$ kadmin -q "addprinc -randkey host/kdcOl.example.com"
$ kadmin -q "addprinc -randkey host/kdc02.example.com"

Note

The kadmin command defaults to using a principal like username/admin@EXAMPLE.COM, where user-
name is your current shell user. If you need to override that, use -p <principal-you-want>

Extract the key file for the kdc02 principal, which is this server we are on::
$ sudo kadmin -p ubuntu/admin -q "ktadd host/kdc02.example.com"

Next, there needs to be a kpropd.acl file on each KDC that lists all KDCs for the Realm. For example, on both
primary and secondary KDC, create /etc/krb5kdc/kpropd.acl:

168

https://web.mit.edu/kerberos/krb5-latest/doc/admin/enctypes.html#migrating-away-from-older-encryption-types
https://web.mit.edu/kerberos/krb5-latest/doc/admin/enctypes.html
https://web.mit.edu/kerberos/krb5-latest/doc/admin/enctypes.html#configuration-variables
https://web.mit.edu/kerberos/krb5-latest/doc/admin/enctypes.html#migrating-away-from-older-encryption-types
https://manpages.ubuntu.com/manpages/jammy/man5/kdc.conf.5.html
https://manpages.ubuntu.com/manpages/jammy/man5/krb5.conf.5.html
https://web.mit.edu/kerberos/krb5-latest/doc/basic/index.html

host/kdc01.example.com@EXAMPLE.COM
host/kdc02.example.com@EXAMPLE.COM

Note

It’s customary to allow both KDCs because one may want to switch their roles if one goes bad. For such
an eventuality, both are already listed here.

Create an empty database on the Secondary KDC:

$ sudo kdb5 util create -s

Now install kpropd daemon, which listens for connections from the kprop utility from the primary kdc:

$ sudo apt install krb5-kpropd

The service will be running right after installation.

From a terminal on the Primary KDC, create a dump file of the principal database:

$ sudo kdb5 util dump /var/lib/krb5kdc/dump

Still on the Primary KDC, extract its key:

$ sudo kadmin.local -q "ktadd host/kdcOl.example.com"

On the Primary KDC, run the kprop utility to push the database dump made before to the Secondary KDC:

$ sudo kprop -r EXAMPLE.COM -f /var/lib/krb5kdc/dump kdc02.example.com
Database propagation to kdc02.example.com: SUCCEEDED

Note the SUCCEEDED message, which signals that the propagation worked. If there is an error message check
/var/log/syslog on the secondary KDC for more information.

You may also want to create a cron job to periodically update the database on the Secondary KDC. For example, the
following will push the database every hour:

m h dom mon dow command
0 * * * * root /usr/sbin/kdb5 util dump /var/lib/krb5kdc/dump && /usr/sbin/kprop -r EXAMPLE.COM -
f /var/lib/krb5kdc/dump kdc02.example.com

Finally, start the krb5-kdc daemon on the Secondary KDC:
$ sudo systemctl start krb5-kdc.service
Note
The Secondary KDC does not run an admin server, since it’s a read-only copy

From now on, you can specify both KDC servers in /etc/krb5.conf for the EXAMPLE.COM realm, in any host participating
in this realm (including kdc0l and kdc@2), but remember that there can only be one admin server and that’s the one
running on kdc0l:

[realms]
EXAMPLE.COM = {
kdc = kdcOl.example.com
kdc = kdc02.example.com
admin server = kdcOl.example.com
}

The Secondary KDC' should now be able to issue tickets for the Realm. You can test this by stopping the krb5-kdc
daemon on the Primary KDC, then by using kinit to request a ticket. If all goes well you should receive a ticket from
the Secondary KDC. Otherwise, check /var/log/syslog and /var/log/auth.log in the Secondary KDC.

This section covers configuring a Linux system as a Kerberos client. This will allow access to any kerberized services
once a user has successfully logged into the system.

Note that Kerberos alone is not enough for a user to exist in a Linux system. Meaning, we cannot just point the
system at a kerberos server and expect all the kerberos principals to be able to login on the linux system, simply
because these users do not ezist locally. Kerberos only provides authentication: it doesn’t know about user groups,
Linux uids and gids, home directories, etc. Normally another network source is used for this information, such as an
LDAP or Windows server, and, in the old days, NIS was used for that as well.

169

Installation

If you have local users matching the principals in a Kerberos realm, and just want to switch the authentication from
local to remote using Kerberos, you can follow this section. This is not a very usual scenario, but serves to highlight
the separation between user authentication and user information (full name, uid, gid, home directory, groups, etc). If
you just want to be able to grab tickets and use them, it’s enough to install krb5-user and run kinit.

We are going to use sssd with a trick so that it will fetch the user information from the local system files, instead of
a remote source which is the common case.

To install the packages enter the following in a terminal prompt:
$ sudo apt install krb5-user sssd-krb5

You will be prompted for the addresses of your KDCs and admin servers. If you have been following this chapter so
far, the KDCs will be: kdc0l.example.com kdc02.example.com (space separated)

And the admin server will be: kdc@l1.example.com. Remember that kdc02 is a read-only copy of the primary KDC, so
it doesn’t run an admin server.

Note
If you have added the appropriate SRV records to DNS, none of those prompts will need answering.

Configuration

If you missed the questions earlier, you can reconfigure the package to fill them in again: sudo dpkg-reconfigure
krb5-config.

You can test the kerberos configuration by requesting a ticket using the kinit utility. For example:

$ kinit ubuntu
Password for ubuntu@EXAMPLE.COM:

Note

kinit doesn’t need for the principal to exist as a local user in the system. In fact, you can kinit any
principal you want. If you don’t specify one, then the tool will use the username of whoever is running
kinit.

The only remaining configuration now is for sssd. Create the file /etc/sssd/sssd.conf with the following content:

[sssd]
config file version = 2
services = pam

domains = example.com

[pam]

[domain/example.com]

id provider = proxy

proxy_1lib_name = files

auth_provider = krb5

krb5 server = kdcOl.example.com,kdc02.example.com
krb5 kpasswd = kdcO1l.example.com

krb5 realm = EXAMPLE.COM

The above configuration will use kerberos for authentication (auth_provider), but will use the local system users for
user and group information (id_provider).

Adjust the permissions of the config file and start sssd:

$ sudo chown root:root /etc/sssd/sssd.conf
$ sudo chmod 0600 /etc/sssd/sssd.conf
$ sudo systemctl start sssd

Just by having installed sssd and its dependencies, PAM will already have been configured to use sssd, with a fallback
to local user authentication. To try it out, if this is a workstation, simply switch users (in the GUI), or open a login
terminal (CTRL-ALT-<number>), or spawn a login shell with sudo login, and try logging in using the name of a
kerberos principal. Remember that this user must already exist on the local system:

170

$ sudo login

focal-krb5-client login: ubuntu

Password:

Welcome to Ubuntu Focal Fossa (development branch) (GNU/Linux 5.4.0-21-generic x86 64)

Last login: Thu Apr 9 21:23:50 UTC 2020 from 10.20.20.1 on pts/0
$ klist

Ticket cache: FILE:/tmp/krb5cc_1000_N1fnSX

Default principal: ubuntu@EXAMPLE.COM

Valid starting Expires Service principal
04/09/20 21:36:12 04/10/20 07:36:12 krbtgt/EXAMPLE.COM@EXAMPLE.COM
renew until 04/10/20 21:36:12

And you will have a Kerberos ticket already right after login.

Kerberos supports a few database backends. The default one is what we have been using so far, called db2. The DB
Types documentation shows all the options, one of which is LDAP.

There are several reasons why one would want to have the Kerberos principals stored in LDAP as opposed to a local
on-disk database. There are also cases when it is not a good idea. Each site has to evaluate the pros and cons. Here
are a few:

o the OpenLDAP replication is faster and more robust then the native Kerberos one, based on a cron job

o setting things up with the LDAP backend isn’t exactly trivial and shouldn’t be attempted by administrators
without prior knowledge of OpenLDAP

o as highlighted in LDAP section of DB Types, since krb5kdc is single threaded there may be higher latency in
servicing requests when using the OpenLDAP backend

e if you already have OpenLDAP setup for other things, like storing users and groups, adding the Kerberos
attributes to the same mix might be beneficial and can provide a nice integrated story

This section covers configuring a primary and secondary kerberos server to use OpenLDAP for the principal database.
Note that as of version 1.18, the KDC from MIT Kerberos does not support a primary KDC using a read-only
consumer (secondary) LDAP server. What we have to consider here is that a Primary KDC is read-write, and it needs
a read-write backend. The Secondaries can use both a read-write and read-only backend, because they are expected
to be read-only. Therefore there are only some possible layouts we can use:

1. Simple case: Primary KDC connected to primary OpenLDAP, Secondary KDC connected to both Primary and
Secondary OpenLDAP

2. Extended simple case: Multiple Primary KDCs connected to one Primary OpenLDAP, and multiple Secondary
KDCs connected to Primary and Secondary OpenLDAP

3. OpenLDAP with multi-master replication: multiple primary KDCs connected to all primary OpenLDAP servers

We haven’t covered OpenLDAP multi-master replication in this guide, so we will show the first case only. The second
scenario is an extension: just add another primary KDC to the mix, talking to the same primary OpenLDAP server.

Configuring OpenLDAP

We are going to install the OpenLDAP server on the same host as the KDC, to simplify the communication between
them. In such a setup, we can use the ldapi:/// transport, which is via an unix socket, and don’t need to setup SSL
certificates to secure the communication between the Kerberos services and OpenLDAP. Note, however, that SSL is
still needed for the OpenLDAP replication. See LDAP with TLS for details.

If you want to use an existing OpenLDAP server that you have somewhere else, that’s of course also possible, but
keep in mind that you should then use SSL for the communication between the KDC and this OpenLDAP server.

First, the necessary schema needs to be loaded on an OpenLDAP server that has network connectivity to the Primary
and Secondary KDCs. The rest of this section assumes that you also have LDAP replication configured between at
least two servers. For information on setting up OpenLDAP see OpenLDAP Server.

Note

cn=admin,dc=example,dc=com is a default admin user that is created during the installation of the slapd
package (the OpenLDAP server). The domain component will change for your server, so adjust accordingly.

o Install the necessary packages (it’s assumed that OpenLDAP is already installed):

sudo apt install krb5-kdc-ldap krb5-admin-server

171

https://web.mit.edu/kerberos/krb5-latest/doc/admin/dbtypes.html
https://web.mit.edu/kerberos/krb5-latest/doc/admin/dbtypes.html
https://web.mit.edu/kerberos/krb5-latest/doc/admin/dbtypes.html#ldap-module-kldap
https://krbdev.mit.edu/rt/Ticket/Display.html?id=7754

Next, extract the kerberos.schema.gz file:

sudo cp /usr/share/doc/krb5-kdc-1ldap/kerberos.schema.gz /etc/ldap/schema/
sudo gunzip /etc/ldap/schema/kerberos.schema.gz

The kerberos schema needs to be added to the cn=config tree. This schema file needs to be converted to LDIF
format before it can be added. For that we will use a helper tool, called schema2ldif, provided by the package
of the same name which is available in the Universe archive:

sudo apt install schema2ldif
To import the kerberos schema, run:

$ sudo ldap-schema-manager -i kerberos.schema

SASL/EXTERNAL authentication started

SASL username: gidNumber=0+uidNumber=0,cn=peercred, cn=external, cn=auth

SASL SSF: 0

executing 'ldapadd -Y EXTERNAL -H ldapi:/// -f /etc/ldap/schema/kerberos.ldif'
SASL/EXTERNAL authentication started

SASL username: gidNumber=0+uidNumber=0,cn=peercred, cn=external,cn=auth

SASL SSF: 0

adding new entry "cn=kerberos,cn=schema,cn=config"

With the new schema loaded, let’s index an attribute often used in searches:

$ sudo ldapmodify -Q -Y EXTERNAL -H ldapi:/// <<EOF
dn: olcDatabase={1}mdb,cn=config

add: olcDbIndex

olcDbIndex: krbPrincipalName eq,pres,sub

EOF

modifying entry "olcDatabase={1}mdb,cn=config"

Let’s create LDAP entries for the Kerberos administrative entities that will contact the OpenLDAP server to
perform operations. There are two:

— ldap__kdc__dn: needs to have read rights on the realm container, principal container and realm sub-trees.
If disable last__success and disable__lockout are not set, however, then ldap__kdc__dn needs write
access to the kerberos container just like the admin dn below.

— ldap__kadmind__dn: needs to have read and write rights on the realm container, principal container and
realm sub-trees

Here is the command to create these entities:

$ ldapadd -x -D cn=admin,dc=example,dc=com -W <<EOF
dn: uid=kdc-service,dc=example,dc=com

uid: kdc-service

objectClass: account

objectClass: simpleSecurityObject

userPassword: {CRYPT}x

description: Account used for the Kerberos KDC

dn: uid=kadmin-service,dc=example,dc=com

uid: kadmin-service

objectClass: account

objectClass: simpleSecurityObject

userPassword: {CRYPT}x

description: Account used for the Kerberos Admin server
EOF

Enter LDAP Password:

adding new entry "uid=kdc-service,dc=example,dc=com"

adding new entry "uid=kadmin-service,dc=example,dc=com"

Now let’s set a password for them. Note that first the tool asks for the password you want for the specified user
dn, and then for the password of the ecn=admin dn:

$ ldappasswd -x -D cn=admin,dc=example,dc=com -W -S uid=kdc-service,dc=example,dc=com
New password: <-- password you want for uid-kdc-service

172

Re-enter new password:
Enter LDAP Password: <-- password for the dn specified with the -D option

Repeat for the uid=kadmin-service dn. These passwords will be needed later.
You can test these with ldapwhoami:

$ ldapwhoami -x -D uid=kdc-service,dc=example,dc=com -W
Enter LDAP Password:
dn:uid=kdc-service,dc=example,dc=com

o Finally, update the Access Control Lists (ACL). These can be tricky, as it highly depends on what you have
defined already. By default, the slapd package configures your database with the following ACLs:

olcAccess: {0}to attrs=userPassword by self write by anonymous auth by * none
olcAccess: {1}to attrs=shadowLastChange by self write by * read
olcAccess: {2}to * by * read

We need to insert new rules before the final to * by * read one, to control access to the Kerberos related entries
and attributes:

$ sudo ldapmodify -Q -Y EXTERNAL -H ldapi:/// <<EOF

dn: olcDatabase={1}mdb,cn=config

add: olcAccess

olcAccess: {2}to attrs=krbPrincipalKey
by anonymous auth
by dn.exact="uid=kdc-service,dc=example,dc=com" read
by dn.exact="uid=kadmin-service,dc=example,dc=com" write
by self write
by * none

add: olcAccess

olcAccess: {3}to dn.subtree="cn=krbContainer,dc=example,dc=com"
by dn.exact="uid=kdc-service,dc=example,dc=com" read
by dn.exact="uid=kadmin-service,dc=example,dc=com" write
by * none

EOF

modifying entry "olcDatabase={1}mdb,cn=config"

This will make the existing {2} rule become {4}. Check with sudo slapcat -b cn=config (the output below was
reformatted a bit for clarity):

olcAccess: {0}to attrs=userPassword
by self write
by anonymous auth
by * none
olcAccess: {1}to attrs=shadowLastChange
by self write
by * read
olcAccess: {2}to attrs=krbPrincipalKey by anonymous auth
by dn.exact="uid=kdc-service,dc=example,dc=com" read
by dn.exact="uid=kadmin-service,dc=example,dc=com" write
by self write
by * none
olcAccess: {3}to dn.subtree="cn=krbContainer,dc=example,dc=com"
by dn.exact="uid=kdc-service,dc=example,dc=com" read
by dn.exact="uid=kadmin-service,dc=example,dc=com" write
by * none
olcAccess: {4}to * by * read

That’s it, your LDAP directory is now ready to serve as a Kerberos principal database.

Primary KDC Configuration (LDAP)

With OpenLDAP configured it is time to configure the KDC. In this example we are doing it in the same OpenLDAP
server to take advantage of local unix socket communication.

¢ Reconfigure the krb5-config package if neededd to get a good starting point with /etc/krb5.conf:

173

sudo dpkg-reconfigure krb5-config
e Now edit /etc/krb5.conf adding the database module option to the EXAMPLE.COM realm section:

[realms]
EXAMPLE.COM
kdc kdcO1l.example.com
kdc kdc02.example.com
admin server = kdcOl.example.com
default domain = example.com
database module = openldap ldapconf

{

}
Then also add these new sections:

[dbdefaults]
ldap_kerberos_container_dn = cn=krbContainer,dc=example,dc=com

[dbmodules]
openldap ldapconf = {
db library = kldap

if either of these is false, then the ldap kdc dn needs to
have write access

disable last success = true

disable lockout = true

this object needs to have read rights on
the realm container, principal container and realm sub-trees
ldap_kdc dn = "uid=kdc-service,dc=example,dc=com"

this object needs to have read and write rights on
the realm container, principal container and realm sub-trees
ldap kadmind dn = "uid=kadmin-service,dc=example,dc=com"

ldap_service password file = /etc/krb5kdc/service.keyfile
ldap_servers = ldapi:///
ldap _conns per server = 5

}
e Next, use the kdb5 ldap util utility to create the realm:

$ sudo kdb5 ldap util -D cn=admin,dc=example,dc=com create -subtrees dc=example,dc=com -r EXAMPLE.COM -
s -H ldapi:///

Password for "cn=admin,dc=example,dc=com":

Initializing database for realm 'EXAMPLE.COM'

You will be prompted for the database Master Password.

It is important that you NOT FORGET this password.

Enter KDC database master key:

Re-enter KDC database master key to verify:

e Create a stash of the password used to bind to the LDAP server. Run it once for each Ildap kdc dn and
ldap__kadmin__dn::

sudo kdb5 ldap util -D cn=admin,dc=example,dc=com stashsrvpw -f /etc/krb5kdc/service.keyfile uid=kdc-
service,dc=example,dc=com
sudo kdb5 ldap util -D cn=admin,dc=example,dc=com stashsrvpw -f /etc/krb5kdc/service.keyfile uid=kadmin-
service,dc=example,dc=com

Note

The /etc/krb5kdc/service.keyfile file now contains clear text versions of the passwords used by the
KDC to contact the LDAP server!

e Create a /etc/krb5kdc/kadms.acl file for the admin server, if you haven’t already:
*/admin@EXAMPLE. COM *
o Start the Kerberos KDC and admin server:

174

sudo systemctl start krb5-kdc.service krb5-admin-server.service

You can now add Kerberos principals to the LDAP database, and they will be copied to any other LDAP servers
configured for replication. To add a principal using the kadmin.local utility enter:

$ sudo kadmin.local

Authenticating as principal root/admin@EXAMPLE.COM with password.
kadmin.local: addprinc ubuntu

WARNING: no policy specified for ubuntu@EXAMPLE.COM; defaulting to no policy
Enter password for principal "ubuntu@EXAMPLE.COM":

Re-enter password for principal "ubuntu@EXAMPLE.COM":

Principal "ubuntu@EXAMPLE.COM" created.

kadmin. local:

The above will create an ubuntu principal with a dn of krbPrincipalName=ubuntu@EXAMPLE.COM, cn=EXAMPLE.COM, cn=krbContainer,dc
Let’s say, however, that you already have an user in your directory, and it’s in uid=testuserl, ou=People, dc=example,dc=com,

how to add the kerberos attributes to it? You use the -x parameter to specify the location. For the Idap_kadmin__dn

to be able to write to it, we first need to update the ACLs:

$ sudo ldapmodify -Q -Y EXTERNAL -H ldapi:/// <<EOF

dn: olcDatabase={1}mdb,cn=config

add: olcAccess

olcAccess: {4}to dn.subtree="ou=People,dc=example,dc=com”
by dn.exact="uid=kdc-service,dc=example,dc=com” read
by dn.exact="uid=kadmin-service,dc=example,dc=com” write
by * break

EOF

And now we can specify the new location:

$ sudo kadmin.local

Authenticating as principal root/admin@EXAMPLE.COM with password.

kadmin.local: addprinc -x dn=uid=testuserl,ou=People,dc=example,dc=com testuserl
WARNING: no policy specified for testuserl@EXAMPLE.COM; defaulting to no policy
Enter password for principal "testuserl@EXAMPLE.COM":

Re-enter password for principal "testuserl@EXAMPLE.COM":

Principal "testuserl@EXAMPLE.COM" created.

Since the specified dn already exists, kadmin.local will just add the required kerberos attributes to this existing entry.
If it didn’t exist, it would be created from scratch, with just the kerberos attributes, like what happened with the
ubuntu example above, but in the specified location.

Note

The ldap__kadmin__dn DN (uid=kadmin-service in our example) does not have write access to the location
specified by the -x parameter, you will get an Insufficient access error.

Both places are visible for kinit, since, when the realm was created with kdb5 ldap util, the default value for the
search scope and base were taken: subtree, and dc=example,dc=com.

Secondary KDC Configuration (LDAP)

The setup of the secondary KDC (and its OpenLDAP replica) is very similar. Once you have the OpenLDAP replication
setup, repeat these steps on the secondary:

e install krb5-kdc-ldap, ldap-utils. Do not install krb5-admin-server.
e load the kerberos schema using schema2ldif
e add the index for krbPrincipalName
e add the ACLs
o configure krbs.conf in the same way, initially. If you want and if you configured SSL properly, you can add
ldaps://kdcOl.example.com to the ldap_servers list after ldapi:///, so that the Secondary KDC can have two
LDAP backends at its disposal
e DO NOT run kdb5 ldap util. There is no need to create the database since it’s being replicated from the
Primary
e copy over the following files from the Primary KDC and place them in the same location on the Secondary:
— /etc/krb5kdc/stash
— /etc/krb5kdc/service.keyfile
e start the KDC: sudo systemctl start krb5-kdc.service

175

Resources
e Configuring Kerberos with OpenLDAP back-end
e MIT Kerberos backend types

SSSD stands for System Security Services Daemon and it’s actually a collection of daemons that handle authentication,
authorization, and user and group information from a variety of network sources. At its core it has support for:

e Active Directory
« LDAP
e Kerberos

SSSD provides PAM and NSS modules to integrate these remote sources into your system and allow remote users to
login and be recognized as valid users, including group membership. To allow for disconnected operation, SSSD also
can also cache this information, so that users can continue to login in the event of a network failure, or other problem
of the same sort.

This guide will focus on the most common scenarios where SSSD is deployed.

References
o Upstream project: https://sssd.io/

This section describes the use of sssd to authenticate user logins against an Active Directory via using sssd’s “ad”
provider. At the end, Active Directory users will be able to login on the host using their AD credentials. Group
membership will also be maintained.

Group Policies for Ubuntu
SSSD manages user authentication and sets initial security policies.

ADSys serves as a Group Policy client for Ubuntu, streamlining the configuration of Ubuntu systems within a Microsoft
Active Directory environment.

If you are interested in Group Policies support for Ubuntu, detailed information can be found in the ADSys documen-
tation on Active Directory GPO support.

Prerequisites, Assumptions, and Requirements
e This guide does not explain Active Directory, how it works, how to set one up, or how to maintain it.

e This guide assumes that a working Active Directory domain is already configured and you have access to the
credentials to join a machine to that domain.

e The domain controller is acting as an authoritative DNS server for the domain.
o The domain controller is the primary DNS resolver (check with systemd-resolve --status)
e System time is correct and in sync, maintained via a service like chrony or nip

e The domain used in this example is ad1l.example.com .

Software Installation
Install the following packages:

sudo apt install sssd-ad sssd-tools realmd adcli

Join the domain
We will use the realm command, from the realmd package, to join the domain and create the sssd configuration.
Let’s verify the domain is discoverable via DNS:

$ sudo realm -v discover adl.example.com
* Resolving: 1ldap. tcp.adl.example.com
* Performing LDAP DSE lookup on: 10.51.0.5
* Successfully discovered: adl.example.com
adl.example.com
type: kerberos
realm-name: AD1.EXAMPLE.COM

176

https://web.mit.edu/kerberos/krb5-latest/doc/admin/conf_ldap.html#conf-ldap
https://web.mit.edu/kerberos/krb5-latest/doc/admin/dbtypes.html
https://sssd.io/
https://canonical-adsys.readthedocs-hosted.com/en/stable/
https://canonical-adsys.readthedocs-hosted.com/en/stable/

domain-name: adl.example.com
configured: no

server-software: active-directory
client-software: sssd
required-package: sssd-tools
required-package: sssd
required-package: libnss-sss
required-package: libpam-sss
required-package: adcli
required-package: samba-common-bin

This performs several checks and determines the best software stack to use with sssd. sssd can install the missing
packages via packagekit, but we installed them already previously.

Now let’s join the domain:

$ sudo realm join adl.example.com
Password for Administrator:

That was quite uneventful. If you want to see what it was doing, pass the -v option:

$ sudo realm join -v adl.example.com
* Resolving: 1ldap. tcp.adl.example.com
* Performing LDAP DSE lookup on: 10.51.0.5
* Successfully discovered: adl.example.com
Password for Administrator:
* Unconditionally checking packages
* Resolving required packages
* LANG=C /usr/sbin/adcli join --verbose --domain adl.example.com --domain-realm AD1.EXAMPLE.COM --domain-
controller 10.51.0.5 --login-type user --login-user Administrator --stdin-password
* Using domain name: adl.example.com
Calculated computer account name from fqdn: AD-CLIENT
Using domain realm: adl.example.com
Sending NetlLogon ping to domain controller: 10.51.0.5
Received NetLogon info from: SERVER1.adl.example.com
Wrote out krb5.conf snippet to /var/cache/realmd/adcli-krb5-hUfTUg/krb5.d/adcli-krb5-conf-hv2kzi
Authenticated as user: Administrator@AD1.EXAMPLE.COM
Looked up short domain name: AD1
Looked up domain SID: S-1-5-21-2660147319-831819607-3409034899
Using fully qualified name: ad-client.adl.example.com
Using domain name: adl.example.com
Using computer account name: AD-CLIENT
Using domain realm: adl.example.com
Calculated computer account name from fqdn: AD-CLIENT
Generated 120 character computer password
Using keytab: FILE:/etc/krb5.keytab
Found computer account for AD-CLIENT$ at: CN=AD-CLIENT,CN=Computers,DC=adl,DC=example,DC=com
Sending NetLogon ping to domain controller: 10.51.0.5
Received NetLogon info from: SERVER1.adl.example.com
Set computer password
Retrieved kvno '3' for computer account in directory: CN=AD-CLIENT,CN=Computers,DC=adl,DC=example,DC=com
Checking RestrictedKrbHost/ad-client.adl.example.com
Added RestrictedKrbHost/ad-client.adl.example.com
Checking RestrictedKrbHost/AD-CLIENT
Added RestrictedKrbHost/AD-CLIENT
Checking host/ad-client.adl.example.com
Added host/ad-client.adl.example.com
Checking host/AD-CLIENT
Added host/AD-CLIENT
Discovered which keytab salt to use
Added the entries to the keytab: AD-CLIENT$@AD1.EXAMPLE.COM: FILE:/etc/krb5.keytab
Added the entries to the keytab: host/AD-CLIENT@AD1.EXAMPLE.COM: FILE:/etc/krb5.keytab
Added the entries to the keytab: host/ad-client.adl.example.com@AD1.EXAMPLE.COM: FILE:/etc/krb5.keytab
Added the entries to the keytab: RestrictedKrbHost/AD-CLIENT@AD1.EXAMPLE.COM: FILE:/etc/krb5.keytab
Added the entries to the keytab: RestrictedKrbHost/ad-client.adl.example.com@AD1.EXAMPLE.COM: FILE:/etc/krb5.keytab

% X X K K X K KK K X K KK XK X K K K K X K K K K X K X X K XX

177

* /usr/sbin/update-rc.d sssd enable
* Jusr/sbin/service sssd restart
* Successfully enrolled machine in realm

By default, realm will use the Administrator account of the domain to request the join. If you need to use another
account, pass it to the tool with the -U option.

Another popular way of joining a domain is using an OTP, or One Time Password, token. For that, use the --one-
time-password option.

SSSD Configuration

The realm tool already took care of creating an sssd configuration, adding the pam and nss modules, and starting the
necessary services.

Let’s take a look at /etc/sssd/sssd.conf:

[sssd]

domains = adl.example.com
config file version = 2
services = nss, pam

[domain/adl.example.com]

default _shell = /bin/bash

krb5 store password if offline = True
cache credentials = True

krb5 realm = AD1.EXAMPLE.COM

realmd tags = manages-system joined-with-adcli
id provider = ad

fallback homedir = /home/%u@%d

ad domain = adl.example.com

use fully qualified names = True
ldap_id mapping = True

access provider = ad

Note

Something very important to remember is that this file must have permissions 0600 and ownership root:root,
or else sssd won'’t start!

Let’s highlight a few things from this config:

e cache_credentials: this allows logins when the AD server is unreachable

e home directory: it’s by default /home/<user>@<domain>. For example, the AD user john will have a home directory
of /home/john@adl.example.com

o use_fully qualified _names: users will be of the form user@domain, not just user. This should only be changed
if you are certain no other domains will ever join the AD forest, via one of the several possible trust relationships

Automatic home directory creation

What the realm tool didn’t do for us is setup pam mkhomedir, so that network users can get a home directory when
they login. This remaining step can be done by running the following command:

sudo pam-auth-update --enable mkhomedir

Checks

You should now be able to fetch information about AD users. In this example, John Smith is an AD user:

$ getent passwd john@adl.example.com
john@adl.example.com:*:1725801106:1725800513:John Smith:/home/john@adl.example.com:/bin/bash

Let’s see his groups:

$ groups john@adl.example.com
john@adl.example.com : domain users@adl.example.com engineering@adl.example.com

Note

If you just changed the group membership of a user, it may be a while before sssd notices due to caching.

178

Finally, how about we try a login:

$ sudo login

ad-client login: john@adl.example.com

Password:

Welcome to Ubuntu 20.04 LTS (GNU/Linux 5.4.0-24-generic x86 64)

Creating directory '/home/john@adl.example.com'.

john@adl.example.com@ad-client:~$

Notice how the home directory was automatically created.

You can also use ssh, but note that the command will look a bit funny because of the multiple @ signs:

$ ssh john@adl.example.com@l0.51.0.11

Welcome to Ubuntu 20.04 LTS (GNU/Linux 5.4.0-24-generic x86 64)
(...)

Last login: Thu Apr 16 21:22:55 2020
john@adl.example.com@ad-client:~$

Note

In the ssh example, public key authentication was used, so no password was required. Remember that ssh
password authentication is by default disabled in /etc/ssh/sshd_config.

Kerberos Tickets

If you install krb5-user, your AD users will also get a kerberos ticket upon logging in:

john@adl.example.com@ad-client:~$ klist
Ticket cache: FILE:/tmp/krb5cc 1725801106 9UxVIz
Default principal: john@AD1.EXAMPLE.COM

Valid starting Expires Service principal
04/16/20 21:32:12 04/17/20 07:32:12 krbtgt/AD1.EXAMPLE.COM@AD1.EXAMPLE.COM
renew until 04/17/20 21:32:12

Note

realm also configured /etc/krb5.conf for you, so there should be no further configuration prompts when
installing krb5-user

Let’s test with smbclient using kerberos authentication to list he shares of the domain controller:

john@adl.example.com@ad-client:~$ smbclient -k -L serverl.adl.example.com

Sharename Type Comment

ADMINS$ Disk Remote Admin

C$ Disk Default share

IPCS$ IPC Remote IPC
NETLOGON Disk Logon server share
SYSVOL Disk Logon server share

SMB1 disabled -- no workgroup available
Notice how we now have a ticket for the cifs service, which was used for the share list above:

john@adl.example.com@ad-client:~$ klist
Ticket cache: FILE:/tmp/krb5cc 1725801106 9UxVIz
Default principal: john@AD1.EXAMPLE.COM

Valid starting Expires Service principal
04/16/20 21:32:12 04/17/20 07:32:12 krbtgt/AD1.EXAMPLE.COM@AD1.EXAMPLE.COM

renew until 04/17/20 21:32:12
04/16/20 21:32:21 04/17/20 07:32:12 cifs/serverl.adl.example.com@AD1.EXAMPLE.COM

Desktop Ubuntu Authentication

The desktop login only shows local users in the list to pick from, and that’s on purpose.

179

To login with an Active Directory user for the first time, follow these steps:
e click on the “Not listed?” option:
click-not-listed
click-not-listed1024 x 768 14.5 KB
e type in the login name followed by the password:
type-in-username
type-in-usernamel024x768 16.3 KB
e the next time you login, the AD user will be listed as if it was a local user:
next-time

next-timel024x768 16.1 KB

Known Issues

When logging in on a system joined with an Active Directory domain, sssd (the package responsible for this integration)
will try to apply Group Policies by default. There are cases where if a specific policy is missing, the login will be
denied.

This is being tracked in bug #1934997. Until the fix becomes available, please see comment #5 in that bug report for
existing workarounds.

Resources
e GitHub SSSD Project
e Active Directory DNS Zone Entries

SSSD can also use LDAP for authentication, authorization, and user/group information. In this section we will
configure a host to authenticate users from an OpenLDAP directory.

Prerequisites, Assumptions, and Requirements
For this setup, we need:

e an existing OpenLDAP server with SSL enabled and using the RFC2307 schema for users and groups
« a client host where we will install the necessary tools and login as a user from the LDAP server

Software Installation
Install the following packages:

sudo apt install sssd-ldap ldap-utils

SSSD Configuration
Create the /etc/sssd/sssd.conf configuration file, with permissions 0600 and ownership root:root, and this content:

[sssd]
config_file_version = 2
domains = example.com

[domain/example.com]

id provider = ldap

auth provider = ldap

ldap uri = ldap://1ldap0l.example.com
cache credentials = True

ldap _search base = dc=example,dc=com

Make sure to start the sssd service:

sudo systemctl start sssd.service

180

https://ubuntucommunity.s3.us-east-2.amazonaws.com/original/2X/2/291d9ae9e6db85986154208a843963a6bd4eb350.png
https://ubuntucommunity.s3.us-east-2.amazonaws.com/original/2X/6/6940e589fd250228137dce0ac847583b52217583.png
https://ubuntucommunity.s3.us-east-2.amazonaws.com/original/2X/9/9c1744413a7e6fad58fc38f3dfbe21ea2d1541e2.png
https://bugs.launchpad.net/ubuntu/+source/sssd/+bug/1934997
https://bugs.launchpad.net/ubuntu/+source/sssd/+bug/1934997/comments/5
https://github.com/SSSD/sssd
https://technet.microsoft.com/en-us/library/cc759550%28v=ws.10%29.aspx

Note

sssd will use START TLS by default for authentication requests against the LDAP server (the
auth__provider), but not for the id_provider. If you want to also enable START TLS for the id_provider,
specify ldap id use start tls = true.

Automatic home directory creation
To enable automatic home directory creation, run the following command:

sudo pam-auth-update --enable mkhomedir

Check SSL setup on the client

The client must be able to use START _TLS when connecting to the LDAP server, with full certificate checking. This
means:

« the client host knows and trusts the CA that signed the LDAP server certificate

o the server certificate was issued for the correct host (1dap0l.example.com in this guide)
e the time is correct on all hosts performing the TLS connection

o and, of course, that neither certificate (CA or server’s) expired

If using a custom CA, an easy way to have a host trust it is to place it in /usr/local/share/ca-certificates/ with a
.crt extension and run sudo update-ca-certificates.

Alternatively, you can edit /etc/ldap/ldap.conf and point TLS CACERT to the CA public key file.
Note
You may have to restart sssd after these changes: sudo systemctl restart sssd

Once that is all done, check that you can connect to the LDAP server using verified SSL. connections:

$ ldapwhoami -x -ZZ -H ldap://ldap0l.example.com
anonymous

and for ldaps (if enabled in /etc/default/slapd):
$ ldapwhoami -x -H ldaps://ldap0l.example.com

The -7z parameter tells the tool to use START TLS, and that it must not fail. If you have LDAP logging enabled
on the server, it will show something like this:

slapd[779]: conn=1032 op=0 STARTTLS

slapd[779]: conn=1032 op=0 RESULT oid= err=0 text=

slapd[779]: conn=1032 fd=15 TLS established tls ssf=256 ssf=256
slapd[779]: conn=1032 op=1 BIND dn="" method=128

slapd[779]: conn=1032 op=1 RESULT tag=97 err=0 text=
slapd[779]: conn=1032 op=2 EXT 0id=1.3.6.1.4.1.4203.1.11.3
slapd[779]: conn=1032 op=2 WHOAMI

slapd[779]: conn=1032 op=2 RESULT oid= err=0 text=

START TLS with err=0 and TLS established is what we want to see there, and, of course, the WHOAMI extended
operation.

Final verification
In this example, the LDAP server has the following user and group entry we are going to use for testing:

dn: uid=john,ou=People,dc=example,dc=com
uid: john

objectClass: inetOrgPerson
objectClass: posixAccount
cn: John Smith

sn: Smith

givenName: John

mail: john@example.com
userPassword: johnsecret
uidNumber: 10001
gidNumber: 10001
loginShell: /bin/bash

181

homeDirectory: /home/john

dn: cn=john,ou=Group,dc=example,dc=com
cn: john

objectClass: posixGroup

gidNumber: 10001

memberUid: john

dn: cn=Engineering, ou=Group,dc=example,dc=com
cn: Engineering

objectClass: posixGroup

gidNumber: 10100

memberUid: john

The user john should be known to the system:

ubuntu@ldap-client:~$ getent passwd john

john:*:10001:10001:John Smith:/home/john:/bin/bash
ubuntu@ldap-client:~$ id john

uid=10001(john) gid=10001(john) groups=10001(john),10100(Engineering)
And we should be able to authenticate as john:

ubuntu@ldap-client:~$ sudo login

ldap-client login: john

Password:

Welcome to Ubuntu Focal Fossa (development branch) (GNU/Linux 5.4.0-24-generic x86 64)
(...)

Creating directory '/home/john'.

john@ldap-client:~$

Finally, we can mix it all together in a setup that is very similar to Active Directory in terms of the technologies used:
use LDAP for users and groups, and Kerberos for authentication.

Prerequisites, Assumptions, and Requirements
For this setup, we will need:

e an existing OpenLDAP server using the RFC2307 schema for users and groups. SSL support is recommended,
but not strictly necessary because authentication in this setup is being done via Kerberos, and not LDAP.

o a Kerberos server. It doesn’t have to be using the OpenLDAP backend

o a client host where we will install and configure SSSD

Software Installation

On the client host, install the following packages:

sudo apt install sssd-ldap sssd-krb5 ldap-utils krb5-user

You may be asked about the default Kerberos realm. For this guide, we are using EXAMPLE . COM.

At this point, you should alreaedy be able to obtain tickets from your Kerberos server, assuming DNS records point
at it like explained elsewhere in this guide:

$ kinit ubuntu
Password for ubuntu@EXAMPLE.COM:

ubuntu@ldap-krb-client:~$ klist
Ticket cache: FILE:/tmp/krb5cc 16000
Default principal: ubuntu@EXAMPLE.COM

Valid starting Expires Service principal
04/17/20 19:51:06 04/18/20 05:51:06 krbtgt/EXAMPLE.COM@EXAMPLE.COM
renew until 04/18/20 19:51:05

But we want to be able to login as an LDAP user, authenticated via Kerberos. Let’s continue with the configuration.

182

SSSD Configuration

Create the /etc/sssd/sssd.conf configuration file, with permissions 0600 and ownership root:root, and this content:

[sssd]
config file version = 2
domains = example.com

[domain/example.com]

id provider = ldap

ldap uri = ldap://1ldap0l.example.com

ldap search base = dc=example,dc=com

auth _provider = krb5

krb5 server = kdc@l.example.com,kdc02.example.com
krb5_kpasswd = kdc01l.example.com

krb5_realm = EXAMPLE.COM

cache credentials = True

This example uses two KDCs, which made it necessary to also specify the krbd_ kpasswd server because the second
KDC is a replica and is not running the admin server.

Start the sssd service:

sudo systemctl start sssd.service

Automatic home directory creation
To enable automatic home directory creation, run the following command:

sudo pam-auth-update --enable mkhomedir

Final verification
In this example, the LDAP server has the following user and group entry we are going to use for testing:

dn: uid=john,ou=People,dc=example,dc=com
uid: john

objectClass: inetOrgPerson
objectClass: posixAccount
cn: John Smith

sn: Smith

givenName: John

mail: john@example.com
uidNumber: 10001
gidNumber: 10001
loginShell: /bin/bash
homeDirectory: /home/john

dn: cn=john,ou=Group,dc=example,dc=com
cn: john

objectClass: posixGroup

gidNumber: 10001

memberUid: john

dn: cn=Engineering,ou=Group,dc=example,dc=com
cn: Engineering

objectClass: posixGroup

gidNumber: 10100

memberUid: john

Note how the john user has no userPassword attribute.
The user john should be known to the system:
ubuntu@ldap-client:~$ getent passwd john
john:*:10001:10001:John Smith:/home/john:/bin/bash

ubuntu@ldap-client:~$ id john

183

uid=10001(john) gid=10001(john) groups=10001(john),10100(Engineering)
Let’s try a login as this user:

ubuntu@ldap-krb-client:~$ sudo login

ldap-krb-client login: john

Password:

Welcome to Ubuntu 20.04 LTS (GNU/Linux 5.4.0-24-generic x86 64)
(...)

Creating directory '/home/john'.

john@ldap-krb-client:~$ klist
Ticket cache: FILE:/tmp/krb5cc 10001 BOrxWr
Default principal: john@EXAMPLE.COM

Valid starting Expires Service principal

04/17/20 20:29:50 04/18/20 06:29:50 krbtgt/EXAMPLE.COM@EXAMPLE.COM
renew until 04/18/20 20:29:50

john@ldap-krb-client:~$

We logged in using the kerberos password, and user/group information from the LDAP server.

SSSD and KDC spoofing

When using SSSD to manage kerberos logins on a Linux host, there is an attack scenario you should be aware of:
KDC spoofing.

The objective of the attacker is to login on a workstation that is using Kerberos authentication. Let’s say he knows
john is a valid user on that machine.

The attacker first deploys a rogue KDC server in the network, and creates the john principal there with a password
of his choosing. What he has to do now is to have his rogue KDC respond to the login request from the workstation,
before (or instead of) the real KDC. If the workstation isn’t authenticating the KDC, it will accept the reply from the
rogue server and let john in.

There is a configuration parameter that can be set to protect the workstation from this attack. It will have SSSD
authenticate the KDC, and block the login if the KDC cannot be verified. This option is called krb5 validate, and
it’s false by default.

To enable it, edit /etc/sssd/sssd.conf and add this line to the domain section:

[sssd]
config file version = 2
domains = example.com

[domain/example.com]
id provider = ldap

krb5_validate = True

The second step is to create a host principal on the KDC for this workstation. This is how the KDC’s authenticity is
verified. It’s like a “machine account”, with a shared secret that the attacker cannot control and replicate in his rogue
KDC...The host principal has the format host/<fqdn>@REALM.

After the host principal is created, its keytab needs to be stored on the workstation. This two step process can be
easily done on the workstation itself via kadmin (not kadmin.local) to contact the KDC remotely:

$ sudo kadmin -p ubuntu/admin

kadmin: addprinc -randkey host/ldap-krb-client.example.com@EXAMPLE.COM

WARNING: no policy specified for host/ldap-krb-client.example.com@EXAMPLE.COM; defaulting to no policy
Principal "host/ldap-krb-client.example.com@EXAMPLE.COM" created.

kadmin: ktadd -k /etc/krb5.keytab host/ldap-krb-client.example.com

Entry for principal host/ldap-krb-client.example.com with kvno 6, encryption type aes256-cts-hmac-shal-
96 added to keytab WRFILE:/etc/krb5.keytab.

Entry for principal host/ldap-krb-client.example.com with kvno 6, encryption type aesl28-cts-hmac-shal-
96 added to keytab WRFILE:/etc/krb5.keytab.

Then exit the tool and make sure the permissions on the keytab file are tight:

184

sudo chmod 0600 /etc/krb5.keytab
sudo chown root:root /etc/krb5.keytab

You can also do it on the KDC itself using kadmin.local, but you will have to store the keytab temporarily in another
file and securely copy it over to the workstation.

Once these steps are complete, you can restart sssd on the workstation and perform the login. If the rogue KDC
picks the attempt up and replies, it will fail the host verification. With debugging we can see that happening on the
workstation:

==> /var/log/sssd/krb5 child.log <==

(Mon Apr 20 19:43:58 2020) [[sssd[krb5 child[2102]]1]] [validate tgt] (06x0020): TGT failed verification using key for [host
krb-client.example.com@EXAMPLE.COM] .

(Mon Apr 20 19:43:58 2020) [[sssd[krb5 child[2102]1]] [get and save tgt] (0x0020): 1741: [-1765328377][Server host/ldap-
krb-client.example.com@EXAMPLE.COM not found in Kerberos databasel

And the login is denied. If the real KDC picks it up, however, the host verification succeeds:

==> /var/log/sssd/krb5 child.log <==
(Mon Apr 20 19:46:22 2020) [[sssd[krb5 child[2268]1]1] [validate tgt] (0x0400): TGT verified using key for [host/ldap-
krb-client.example.com@EXAMPLE.COM] .

And the login is accepted.

Here are some tips to help troubleshoot sssd.

debug level
The debug level of sssd can be changed on-the-fly via sssctl, from the sssd-tools package:

sudo apt install sssd-tools
sssctl debug-level <new-level>

Or change add it to the config file and restart sssd:

[sssd]
config file version = 2
domains = example.com

[domain/example.com]
debug level = 6

Either will yield more logs in /var/log/sssd/*.log and can help identify what is going on. The sssctl approach has
the clear advantage of not having to restart the service.

Caching

Caching is useful to speed things up, but it can get in the way big time when troubleshooting. It’s useful to be able
to remove the cache while chasing down a problem. This can also be done with the sssctl tool from the sssd-tools
package.

You can either remove the whole cache:

sssctl cache-remove

Creating backup of local data...

SSSD backup of local data already exists, override? (yes/no) [no] yes
Removing cache files...

SSSD= needs to be running. Start SSSD now? (yes/no) [yes] yes

Or just one element:
sssctl cache-expire -u john
Or expire everything:

sssctl cache-expire -E

DNS

Kerberos is quite sensitive to DNS issues. If you suspect something related to DNS, here are two suggestions:

185

FQDN hostname

Make sure hostname -f returns a fully qualified domain name. Set it in /etc/hostname if necessary, and use sudo
hostnamectl set-hostname <fqdn> to set it at runtime.

Reverse name lookup

You can try disabling a default reverse name lookup that the krbb libraries do, by editing (or creating) /etc/krb5.conf
and setting rdns = false in the [libdefaults] section:

[libdefaults]
rdns = false

WireGuard is a simple, fast and modern VPN implementation, widely deployed and cross-platform.

VPNs have traditionally been hard to understand, configure and deploy. WireGuard removed most of that complexity
by focusing on its single task, and leaving out things like key distribution and pushed configurations. You get a
network interface which encrypts and verifies the traffic, and the remaining tasks like setting up addresses, routing,
etc, are left to the usual system tools like ip-route(8) and ip-address(8).

Setting up the cryptographic keys is very much similar to configuring ssh for key based authentication: each side of
the connection has its own private and public key, and the peers’ public key, and this is enough to start encrypting
and verifying the exchanged traffic.

For more details on how WireGuard works, and information on its availability in other platforms, please see the
references section.

WireGuard Concepts

It helps to think of WireGuard primarly as a network interface, like any other. It will have the usual attributes, like
IP address, CIDR, and there will be some routing associated with it. But it also has WireGuard specific attributes,
which handle the VPN part of things.

All of this can be configured via different tools. WireGuard itself ships its own tools in the userspace package
wireguard-tools: wg(8) and wg-quick(8). But these are not strictly needed: any userspace with the right privileges
and kernel calls can configure a WireGuard interface. For example, systemd-networkd and network-manager can do it
on their own, without the WireGuad userspace utilities.

Important attributes of a WireGuard interface are:

o private key: together with the corresponding public key, they are used to authenticate and encrypt data. This
is generated with the wg genkey command.
o listen port: the UDP port that WireGuard will be listening to for incoming traffic.
o List of peers, each one with:
— public key: the public counterpart of the private key. Generated from the private key of that peer, using
the wg pubkey command.
— endpoint: where to send the encrypted traffic to. This is optional, but at least one of the corresponding
peers must have it to bootstrap the connection.
— allowed IPs: list of inner tunnel destination networks or addresses for this peer when sending traffic, or,
when receiving traffic, which source networks or addresses are allowed to send traffic to us.

NOTE

Cryptography is not simple. When we say that, for example, a private key is used to decrypt or sign
traffic, and a public key is used to encrypt or verify the authenticity of traffic, this is a simplification and is
hiding a lot of important details. WireGuard has a detailed explanation of its protocols and cryptography
handling in their website, at https://www.wireguard.com/protocol/

These parameters can be set with the low-level wg(8) tool, directly via the command line or with a configuration file.
This tool, however, doesn’t handle the non-WireGuard settings of the interface. It won’t assign an IP address to it,
for example, nor setup routing. For this reason, it’s more common to use wg-quick(8).

wg-quick(8) will handle the lifecycle of the WireGuard interface. It can bring it up or down, setup routing, execute
arbitrary commands before or after the interface is up, and more. It augments the configuration file that wg(8) can
use, with its own extra settings, which is important to keep in mind when feeding that file to wg(8), as it will contain
settings wg(8) knows nothing about.

The wg-quick(8) configuration file can have an arbitrary name, and can even be placed anywhere on the system, but
the best practice is:

¢ Place the file in /etc/wireguard.

186

https://manpages.ubuntu.com/manpages/jammy/man8/ip-route.8.html
https://manpages.ubuntu.com/manpages/jammy/man8/ip-address.8.html
https://manpages.ubuntu.com/manpages/jammy/man8/wg.8.html
https://manpages.ubuntu.com/manpages/jammy/man8/wg-quick.8.html
https://www.wireguard.com/protocol/
https://manpages.ubuntu.com/manpages/jammy/man8/wg.8.html
https://manpages.ubuntu.com/manpages/jammy/man8/wg-quick.8.html
https://manpages.ubuntu.com/manpages/jammy/man8/wg-quick.8.html
https://manpages.ubuntu.com/manpages/jammy/man8/wg.8.html
https://manpages.ubuntu.com/manpages/jammy/man8/wg.8.html
https://manpages.ubuntu.com/manpages/jammy/man8/wg.8.html
https://manpages.ubuntu.com/manpages/jammy/man8/wg-quick.8.html

o Name it after the interface it controls.

For example, a file called /etc/wireguard/wg0.conf will have the needed configurations setting for a WireGuard network
interface called wgd. By following this practice, you get the benefit of being able to call wg-quick with just the interface
name:

$ sudo wg-quick up wgo

And that will bring the wg0 interface up, give it an IP address, setup routing, and configure the WireGuard specific
parameters for it to work. This interface is usually called wg0, but can have any valid network interface name, like
office (it doesn’t need an index number after the name), homel, etc. It can help to give it a meaningful name if you
plan to connect to multiple peers.

Let’s go over an example of such a configuration file:

[Interface]

PrivateKey = eJdSgoS7BZ/uWkuSREN+vhCIPPr3M3U1B3v1Su/amwWk=
ListenPort = 51000

Address = 10.10.11.10/24

[Peer]

office

PublicKey = xeWmdxiljgebpcItFlouRoOntrgFekquRJZQ0+vsQVs=
Endpoint = wg.example.com:51000 # fake endpoint, just an example
AllowedIPs = 10.10.11.0/24, 10.10.10.0/24

In the [Interface] section:

e Address: this is the IP address, and CIDR, that the WireGuard interface will be setup with.
o ListenPort: the UDP port WireGuard will use for traffic (listening and sending).
e PrivateKey: the secret key used to decrypt traffic destined to this interface.

The peers list, each one in its own [Peer] section (example above has just one), comes next:

e PublicKey: the key that will be used to encrypt traffic to this peer.

e Endpoint: where to send encrypted traffic to.

e AllowedIPs: when sending traffic, this is the list of target addresses that identify this peer. When receiving
traffic, it’s the list of addresses that are allowed to be the source of the traffic.

To generate the keypairs for each peer, the wg(8) command is used:

$ umask 077
$ wg genkey > wg0.key
$ wg pubkey < wg0.key > wg0.pub

And then the contents of wg0.key and wg0.pub can be used in the configuration file.
This is what it looks like when this interface is brought up by wg-quick(8):

$ sudo wg-quick up wgo

[#] ip link add wg0 type wireguard

[#] wg setconf wgO /dev/fd/63

[#] ip -4 address add 10.10.11.10/24 dev wg0
[#] ip link set mtu 1420 up dev wg0®

[#] ip -4 route add 10.10.10.0/24 dev wgO

This is what wg-quick(8) did for us:

e Created the WireGuard wg0 interface.

o Configured it with the data from the configuration file.

o Added the IP/CIDR from the Address field to the wge interface.

o Calculated a proper MTU (which can be overridden in the config if needed)
e Added a route for AllowedIPs.

Note that in this example AllowedIPs is a list of two CIDR network blocks, but wg-quick(8) only added a route
for 10.10.10.0/24 and skipped 10.10.11.0/24. That’s because the Address was already specified as a /24 one. Had
we specified the address as 10.10.11.10/32 instead, then wg-quick(8) would have added a route for 10.10.11.0/24
explicitly.

To better understand how AllowedIPs work, let’s go through a quick example.

187

https://manpages.ubuntu.com/manpages/jammy/man8/wg.8.html
https://manpages.ubuntu.com/manpages/jammy/man8/wg-quick.8.html
https://manpages.ubuntu.com/manpages/jammy/man8/wg-quick.8.html
https://manpages.ubuntu.com/manpages/jammy/man8/wg-quick.8.html
https://manpages.ubuntu.com/manpages/jammy/man8/wg-quick.8.html

Let’s say this system wants to send traffic to 10.10.10.201/24. There is a route for it which says to use the wg0 interface
for that:

$ ip route get 10.10.10.201
10.10.10.201 dev wgO src 10.10.11.10 uid 16000
cache

Since wg0 is a WireGuard interface, it will consult its configuration to see if any peer has that target address in the
AllowedIPs list. Turns out one peer has it, in which case the traffic will:

a) Be authenticated as us, and encrypted for that peer.
b) Sent away via the configured Endpoint.

Now let’s picture the reverse. This system received traffic on the ListenPort UDP port. If it can be decrypted, and
verified as having come from one of the listed peers using its respective public key, and if the source IP matches the
corresponding AllowedIPs list, then the traffic is accepted.

What if there is no Endpoint? Well, to bootstrap the VPN, at least one of the peers must have an Endpoint, or else
it won’t know where to send the traffic to, and you will get an error saying “Destination address required” (see the
troubleshooting section for details).

But once the peers know each other, the one that didn’t have an Endpoint setting in the interface will remember where
the traffic came from, and use that address as the current endpoint. This has a very nice side effect of automatically
tracking the so called “road warrior” peer, which keeps changing its IP. That is very common with laptops that keep
being suspended and awakened in a new network, and then try to establish the VPN again from that new address.

Peers

You will notice that the term “peers” is used preferably to “server” or “client”. Other terms used in some VPN
documentation are “left” and “right”, which is already starting to convey that the difference between a “server” and
a “client” is a bit blurry. It only matters, if at all, at the start of the traffic exchange: who sends the first packet of
data. In that sense, “servers” expect to sit idle and wait for connections to be initiated to them, and “clients” are the
initiators. For example, a laptop on a public cafe initiating a connection to the company VPN peer. The laptop needs
to know the address of that peer, because it’s initiating the exchange. But the “server” doesn’t need to know the IP
of the laptop beforehand.

On a site to site VPN, however, when two separate networks are connected through the tunnel, who is the server, and
who is the client? Both, so it’s best to call them “peers” instead.

Putting it all together
Key takeaways from this introduction:

e Each peer participating in the WireGuard VPN has a private key and a public key.

e AllowedIPs is used as a routing key when sending traffic, and as an ACL when receiving traffic.

e To establish a VPN with a remote peer, you need its public key. Likewise, the remote peer will need your public
key.

o At least one of the peers needs an Endpoint configured in order to be able to initiate the VPN.

To help better understand these and other concepts, we will create some WireGuard VPNs in the next sections,
illustrating some common setups.

NOTE

Throghout this guide, we will sometimes mention a VPN “connection”. This is technically false, as Wire-
Guard uses UDP and there is no persistent connection. The term is used just to facilitate understanding,
and means that the peers in the examples know each other and have completed a handshake already.

References

e See the WireGuard website for more detailed information.

e The WireGuard Quickstart has a good introduction and demo.
o wg(8) and wg-quick(8) manual pages.

¢ Detailed explanation of the algorithms used by WireGuard.

To help understand the WireGuard concepts, we will show some practical setups that hopefully match many scenarios
out there.

188

https://www.wireguard.com
https://www.wireguard.com/quickstart/
https://manpages.ubuntu.com/manpages/jammy/man8/wg.8.html
https://manpages.ubuntu.com/manpages/jammy/man8/wg-quick.8.html
https://www.wireguard.com/protocol/

This is probably the most common setup for a VPN: connecting a single system to a remote site, and getting access
to the remote network “as if you were there”.

Where to place the remote WireGuard endpoint in the network will vary a lot depending on the topology. It can be
in a firewall box, the router itself, or some random system in the middle of the network.

Here we will cover a simpler case more resembling what a home network could be like:

public internet

XXXXXX pppd
— XX XXXX — router |
| Fpppo xxx XX V!
| | XX X | home 10.10.10.0/24
| | XXX XXX " ! |
— XXXXX | | |
| | |

[1 [1 [1
| | ||
|pi4| |NAS | [...]
| | |
L | L | L |

This diagram represents a typical simple home network setup. You have a router/modem, usually provided by the
ISP (Internet Service Provider), and some internal devices like a Raspberry PI perhaps, a NAS (Network Attached
Storage), and some other device.

There are basically two approaches that can be taken here: install WireGuard on the router, or on another system in
the home network. We will discuss both in the following sections.

Note that in this scenario the “fixed” side, the home network, normally won’t have a WireGuard Endpoint configured,
as the peer is typically “on the road” and will have a dynamic TP address.

In this diagram, we are depicting a home network with some devices and a router where we can install WireGuard.

public internet — wg0 10.10.11.1/24
10.10.11.2/24 | VPN network
home0 | XXXXXX pppd —4

—— XX Xxxxxx —— router |

| Fwlan® xx XX e home network, .home domain

| | XX X [.1 10.10.10.0/24

| | XXX XXX L I |

L XXXXXX | | |
Laptop in L L .
Coffee shop

[1 [1 [1
[[[
|pid| |NAS | [oon]
[[[
L | L | L |

Of course, this setup is only possible if you can install software on the router. Most of the time, when it’s provided
by your ISP, you can’t. But some ISPs allow their device to be put in a bridge mode, in which case you can use your
own device (a computer, or a Raspberry PI, or something else) as the routing device.

Since the router is the default gateway of the network already, this means you can create a whole new network for your
VPN users. You also won’t have to create any (D)NAT rules since the router is directly reachable from the Internet.

Let’s define some addresses, networks, and terms used in this guide:

e laptop in coffee shop: just your normal user at a coffee shop, using the provided WiFi access to connect to their
home network. This will be one of our peers in the VPN setup.

e home0: this will be the WireGuard interface on the laptop. It’s called home® to convey the information that it is
used to connect to the home network.

e router: the existing router at the home network. It has a public interface ppp0 that has a routable but dynamic
IPv4 address (not CGNAT), and an internal interface at 10.10.10.1/24 which is the default gateway for the
home network.

e home network: the existing home network, 10.10.10.0/24 in this example, with existing devices that the user
wishes to access remotely over the WireGuard VPN.

e 10.10.11.0/24: the WireGuard VPN network. This is a whole new network that was created just for the VPN
users.

189

e wg0 on the router: this is the WireGuard interface that we will bring up on the router, at the 10.10.11.1/24
address. It is the gateway for the 10.10.11.0/24 VPN network.

With this topology, if, say, the NAS wants to send traffic to 10.10.11.2/24, it will send it to the default gateway (since
the NAS has no specific route to 10.10.11.0/24), and the gateway will know how to send it to 10.10.11.2/2/ because
it has the wg0 interface on that network.

Configuration

First, we need to create keys for the peers of this setup. We need one pair of keys for the laptop, and another for the
home router:

$ umask 077

$ wg genkey > laptop-private.key

$ wg pubkey < laptop-private.key > laptop-public.key
$ wg genkey > router-private.key

$ wg pubkey < router-private.key > router-public.key

Let’s create the router wge interface configuration file. The file will be /etc/wireguard/wg0.conf and have these
contents:

[Interface]
PrivateKey = <contents-of-router-private.key>
ListenPort = 51000

Address = 10.10.11.1/24

[Peer]
PublicKey = <contents-of-laptop-public.key>
AllowedIPs = 10.10.11.2

There is no Endpoint configured for the laptop peer, because we don’t know what IP address it will have beforehand,
nor will that IP address be always the same. This laptop can be connecting from a coffee shop free wifi, or an airport
lounge, or a friend’s house.

Not having an endpoint here also means that the home network side will never be able to initiate the VPN connection.
It will sit and wait, and can only respond to VPN handshake requests, at which time it will learn the endpoint from
the peer and use that until it changes (the peer reconnects from a different site) or times out.

IMPORTANT

This configuration file contains a secret: PrivateKey. Make sure to adjust its permissions accordingly,
like:

sudo chmod 0600 /etc/wireguard/wg0.conf
sudo chown root: /etc/wireguard/wg0.conf

When activated, this will bring up a wg0 interface with the address 10.10.11.1/24, listening on port 51000/udp, and
add a route for the 10.10.11.0/24 network using that interface.

The Peer section is identifying a peer via its public key, and listing who can connect from that peer. This AllowedIPs
setting has two meanings:

o When sending packets, the AllowedIPs list serves as a routing table, indicating that this peer’s public key should
be used to encrypt the traffic.

¢ When receiving packets, AllowedIPs behaves like an access control list. After decryption, the traffic is only
allowed if it matches the list.

Finally, the ListenPort parameter specifies the UDP port on which WireGuard will listen for traffic. This port will
have to be allowed in the firewall rules of the router. There is no default nor a standard port for WireGuard, so you
can pick any value you prefer.

Now let’s create a similar configuration on the other peer, the laptop. Here the interface is called home0, so the
configuration file is /etc/wireguard/home0.conf:

[Interface]
PrivateKey = <contents-of-laptop-private.key>
ListenPort = 51000

Address = 10.10.11.2/24

[Peer]
PublicKey = <contents-of-router-public.key>

190

Endpoint = <home-ppp0O-IP-or-hostname>:51000
AllowedIPs = 10.10.11.0/24,10.10.10.0/24

IMPORTANT

Like before, this configuration file contains a secret: PrivateKey. Make sure to adjust its permissions
accordingly, like:

sudo chmod 0600 /etc/wireguard/home0@.conf
sudo chown root: /etc/wireguard/home@.conf

We have given this laptop the 10.10.11.2/24 address. It could have been any valid address in the 10.10.11.0/24
network, as long as it doesn’t collide with an existing one, and is allowed in the router’s peer’s AllowedIPs list.

NOTE

You may have noticed by now that address allocation is manual, and not via something like DHCP. Keep
tabs on it!

In the [Peer] stanza for the laptop we have:

e The usual PublicKey item, which identifies the peer. Traffic to this peer will be encrypted using this public key.

e Endpoint: this tells WireGuard where to actually send the encrypted traffic to. Since in our scenario the laptop
will be initiating connections, it has to know the public IP address of the home router. If your ISP gave you
a fixed IP address, great, nothing else to do. If however you have a dynamic IP address, one that changes
everytime you establish a new connection, then you will have to setup some sort of dynamic DNS service. There
are many free such services available on the Internet, but setting one up is out of scope for this guide.

e In AllowedIPs we list our destinations. The VPN network 10.10.11.0/24 is listed so that we can ping wg0 on the
home router as well as other devices on the same VPN, and the actual home network, which is 10.10.10.0/24.

If we had used 0.0.0.0/0 alone in AllowedIPs, then the VPN would become our default gateway, and all traffic would
be sent to this peer. See Default Gateway for details on that type of setup.

Testing
With these configuration files in place, it’s time to bring the WireGuard interfaces up.
On the home router, run:

$ sudo wg-quick up wgo

[#] ip link add wg0 type wireguard

[#] wg setconf wg0 /dev/fd/63

[#] ip -4 address add 10.10.11.1/24 dev wg0O
[#] ip link set mtu 1378 up dev wg0

Verify you have a wg0 interface with an address of 10.10.11.1/24:

$ ip a show dev wg0
9: wg0: <POINTOPOINT,NOARP,UP,LOWER UP> mtu 1378 qdisc noqueue state UNKNOWN group default glen 1000
link/none
inet 10.10.11.1/24 scope global wg0
valid_lft forever preferred 1ft forever

Verify you have a wg0 interface up with an address of 10.10.11.1/24:

$ ip a show dev wg0
9: wg0: <POINTOPOINT,NOARP,UP,LOWER UP> mtu 1378 qdisc noqueue state UNKNOWN group default glen 1000
link/none
inet 10.10.11.1/24 scope global wg0
valid 1ft forever preferred 1ft forever

And a route to the 10.10.1.0/24 network via the wg0 interface:

$ ip route | grep wg0
10.10.11.0/24 dev wg0 proto kernel scope link src 10.10.11.1

And wg show should show some status information, but no connected peer yet:

$ sudo wg show

interface: wgo
public key: <router public key>
private key: (hidden)
listening port: 51000

191

peer: <laptop public key>
allowed ips: 10.10.11.2/32

In particular, verify that the public keys listed match what you created and expect.

Before we start the interface on the other peer, it helps to leave the above show command running continuously, so we
can see when there are changes:

$ sudo watch wg show
Now start the interface on the laptop:

$ sudo wg-quick up home0®

[#] ip link add home® type wireguard

[#] wg setconf home® /dev/fd/63

[#] ip -4 address add 10.10.11.2/24 dev home0
[#] ip link set mtu 1420 up dev home®

[#] ip -4 route add 10.10.10.0/24 dev home0

Similarly, verify the interface’s IP and added routes:

$ ip a show dev home0®
24: home0O: <POINTOPOINT,NOARP,UP,LOWER UP> mtu 1420 qdisc noqueue state UNKNOWN group default qlen 1000
link/none
inet 10.10.11.2/24 scope global home0®
valid 1ft forever preferred 1ft forever

$ ip route | grep home0®
10.10.10.0/24 dev home® scope link
10.10.11.0/24 dev home® proto kernel scope link src 10.10.11.2

Up to this point, the wg show output on the home router probably didn’t change. That’s because we haven’t sent any
traffic to the home network, which didn’t trigger the VPN yet. By default, WireGuard is very “quiet” on the network.

If we trigger some traffic, however, the VPN will “wake up”. Let’s ping the internal address of the home router a few
times:

$ ping -c 3 10.10.10.1

PING 10.10.10.1 (10.10.10.1) 56(84) bytes of data.

64 bytes from 10.10.10.1: icmp seq=1 ttl=64 time=603 ms
64 bytes from 10.10.10.1: icmp seq=2 ttl=64 time=300 ms
64 bytes from 10.10.10.1: icmp seq=3 ttl=64 time=304 ms

Note how the first ping was slower. That’s because the VPN was “waking up” and being established. Afterwards,
with the tunnel already established, the latency reduced.

At the same time, the wg show output on the home router will have changed to something like this:

$ sudo wg show

interface: wgo
public key: <router public key>
private key: (hidden)
listening port: 51000

peer: <laptop public key>
endpoint: <laptop public IP>:51000
allowed ips: 10.10.11.2/32
latest handshake: 1 minute, 8 seconds ago
transfer: 564 B received, 476 B sent

Sometimes it’s not possible to install WireGuard on the home router itself. Perhaps it’s a closed system to which you
do not have access, or there is no easy build for that architecture, or any other of the many possible reasons.

But you do have a spare system inside your network that you could use. Here we are going to show one way to
make this work. There are others, but we believe this to be the one less involved as it only requires a couple of (very
common) changes in the router itself: NAT port forwarding, and DHCP range editing.

To recap, our home network has the 10.10.10.0/24 address, and we want to connect to it from a remote location and
be “inserted” into that network as if we were there:

192

public internet
10.10.10.3/24

homeo | XXXXXX pppd ——
—— xx xxxxx —— router |
| Fpppd xxx XX L home network, .home domain
| | XX x | 10.10.10.0/24
| | XXX XXX — | |
I — XXXXXX | | |
—L | l
wge — |

[1

.

10.10.10.10/32 |pid| |NAS|
.

L | L |

Reserved for VPN users:
10.10.10.2-9

Router changes

Since in this scenario we don’t have a new network dedicated to our VPN users, we need to “carve out” a section of
the home network and reserve it to the VPN.

The easiest way to reserve IPs for the VPN is to change the router configuration (assuming it’s responsible for DHCP
in this network) and tell its DHCP server to only hand out addresses from a specific range, leaving a “hole” for our
VPN users.

For example, in the case of the 10.10.10.0/24 network, the DHCP server on the router might already be configured
to hand out IP addresses from 10.10.10.2 through 10.10.10.254. We can carve out a “hole” for our VPN users by
reducing the DHCP range, like below:

Network 10.10.10.0/24

Usable Addresses 10.10.10.2 - 10.10.10.254 (.1 is the router)
DHCP Range 10.10.10.50 - 10.10.10.254

VPN Range 10.10.10.10 - 160.10.10.59

Or any other layout that is better suited for your case. In that way, the router will never hand out a DHCP address
that conflicts with one that we selected for a VPN user.

The second change we need to do in the router is to port forward the WireGuard traffic to the internal system that will
be the endpoint. In the diagram above, we selected the 10.10.10.10 system to be the internal WireGuard endpoint,
and we will run it on the 51000/udp port. Therefore, you need to configure the router to forward all 51000/udp traffic
t0 10.10.10.10 on the same 51000/udp port.

Finally, we also need to allow hosts on the internet to send traffic to the router on the 51000/udp port we selected
for WireGuard. This is done in the firewall rules of the device. Sometimes just doing the port forwarding from before
also configures the firewall to allow that traffic, but better check.

Now we are ready to configure the internal endpoint.

Configuring the internal WireGuard endpoint
Install the wireguard package:

$ sudo apt install wireguard

Generate the keys for this host:

$ umask 077
$ wg genkey > internal-private.key
$ wg pubkey < internal-private.key > internal-public.key

And create the /etc/wireguard/wg0.conf file with these contents:

[Interfacel

Address = 10.10.10.10/32

ListenPort = 51000

PrivateKey = <contents of internal-private.key>

193

[Peer]

laptop

PublicKey = <contents of laptop-public.key>

AllowedIPs = 10.10.10.11/32 # any available IP in the VPN range

NOTE

Just like in the Peer to Site scenario with WireGuard on the router, there is no Endpoint configuration
here for the laptop peer, because we don’t know where it will be connecting from beforehand.

The final step is to configure this internal system as a router for the VPN users. For that, we need to enable a couple
of settings:

e ip_forward: to enable forwarding (aka, routing) of traffic between interfaces.
e proxy arp: to reply to arp requests on behalf of the VPN systems, as if they were locally present on the network
segment.

To do that, and make it persist across reboots, create the file /etc/sysctl.d/70-wireguard-routing.conf file with this
content:

net.ipv4.ip forward =1
net.ipv4.conf.all.proxy arp =1

Then run this command to apply those settings:
$ sudo sysctl -p /etc/sysctl.d/70-wireguard-routing.conf -w
Now the WireGuard interface can be brought up:

$ sudo wg-quick up wgo

Configuring the peer

The peer configuration will be very similar to what was done before. What changes will be the address, since now it
won’t be on an exclusive network for the VPN, but have an address carved out of the home network block.

Let’s call this new configuration file /etc/wireguard/home internal.conf:

[Interfacel

ListenPort = 51000

Address = 10.10.10.11/24

PrivateKey = <contents of the private key for this system>

[Peer]

PublicKey = <contents of internal-public.key>
Endpoint = <home-ppp0O-IP-or-hostname>:51000
AllowedIPs = 10.10.10.0/24

And bring up this WireGuard interface:
$ sudo wg-quick up home internal
NOTE

There is no need to add an index number to the end of the interface name. That is a convention, but not
strictly a requirement.

Testing

With the WireGuard interfaces up on both peers, traffic should flow seamlessly in the 10.10.10.0/24 network between
remote and local systems.

More specifically, it’s best to test the non-trivial cases, that is, traffic between the remote peer and a host other than
the one with the WireGuard interface on the home network.

Another usual VPN configuration where one could deploy WireGuard is to connect two distinct networks over the
internet. Here is a simplified diagram:

194

— WireGuard tunnel ———

| 10.10.9.0/31 |
| |
10.10.9.0 wgA| XX |wgB 10.10.9.1
— XXX XXXX ——
alpha site | |ext XX XX ext| | beta site
I x — |
10.10.10.0/24 | | XX XX | | 10.10.11.0/24
| X x .
L X L
10.10.10.1]| XX X |10.10.11.1
— XX XXX XX — ..
| | XX XXXXX | |
| | | |
— — public internet — —
. . | |
L L L1 L1

The goal here is to seamlessly integrate network *alpha* with network *beta*, so that systems on the *alpha* site can
transparently access systems on the *beta* site, and vice-versa.

Such a setup as a few particular details:

Both peers are likely to be always up and running.

We can’t assume one side will always be the initiator, like the laptop in a coffee shop scenario.

Because of the above, both peers should have a static endpoint, like a fixed IP address, or valid domain name.
Since we are not assigning VPN IPs to all systems on each side, the VPN network here will be very small (a /31,
which allows for two IPs) and only used for routing. The only systems with an IP in the VPN network are the
gateways themselves.

There will be no NAT applied to traffic going over the WireGuard network. Therefore, the networks of both
sites must be different and not overlap.

This is what an mtr report from a system in the beta network to an alpha system will look like:

ubuntu@bl:~$ mtr -n -r 10.10.10.230
Start: 2022-09-02T18:56:51+0000

HOST: bl Loss%s Snt Last Avg Best Wrst StDev
1.]-- 10.10.11.1 0.0% 10 0.1 0.1 0.1 0.2 0.0
2.]-- 10.10.9.0 0.0% 10 299.6 299.3 298.3 300.0 0.6
3.]-- 10.10.10.230 0.0% 10 299.1 299.1 298.0 300.2 0.6

NOTE

Technically, a /31 CIDR network has no usable IP addresses, since the first one is the network address, and
the second (and last) one is the broadcast address. RFC 3021 however allows for it, but if you encounter
routing or other networking issues, switch to a /30 CIDR and its two valid host ips.

Configuring WireGuard

On the system that is the gateway for each site, and has internet connectivity, we start by installing WireGuard and
generating the keys. For the alpha site:

$ sudo apt install wireguard
$ wg genkey | sudo tee /etc/wireguard/wgA.key
$ sudo cat /etc/wireguard/wgA.key | wg pubkey | sudo tee /etc/wireguard/wgA.pub

And the configuration on alpha will be:

[Interface]

PostUp = wg set %i private-key /etc/wireguard/%i.key
Address = 10.10.9.0/31

ListenPort = 51000

[Peer]

beta site

PublicKey = <contents of /etc/wireguard/wgB.pub>
AllowedIPs = 10.10.11.0/24,10.10.9.0/31

Endpoint = <beta-gw-ip>:51000

195

https://www.ietf.org/rfc/rfc3021.txt

On the gateway for the beta site we take similar steps:

$ sudo apt install wireguard
$ wg genkey | sudo tee /etc/wireguard/wgB.key
$ sudo cat /etc/wireguard/wgB.key | wg pubkey | sudo tee /etc/wireguard/wgB.pub

And create the corresponding configuration file for beta:

[Interface]

Address = 10.10.9.1/31

PostUp = wg set %i private-key /etc/wireguard/%i.key
ListenPort = 51000

[Peer]

alpha site

PublicKey = <contents of /etc/wireguard/wgA.pub>
AllowedIPs = 10.10.10.0/24,10.10.9.0/31

Endpoint = <alpha-gw-ip>:51000

IMPORTANT

WireGuard is being setup on the gateways for these two networks. As such, there are no changes needed
on individual hosts of each network, but keep in mind that the WireGuard tunneling and encryption is
only happening between the alpha and beta gateways, and NOT between the hosts of each network.

Bringing the interfaces up

Since this VPN is permanent between static sites, it’s best to use the systemd unit file for wg-quick to bring the
interfaces up and control them in general. In particular, we want them to be brought up automatically on reboot
events.

On alpha:

$ sudo systemctl enable --now wg-quick@wgA
And similarly on beta:

$ sudo systemctl enable --now wg-quick@wgB

This both enables the interface on reboot, and starts it right away.

Firewall and routing

Both gateways probably already have some routing and firewall rules. These might need changes depending on how
they are setup.

The individual hosts on each network won’t need any changes regarding the remote alpha or beta networks, because
they will just send that traffic to the default gateway (as any other non-local traffic), which knows how to route it
because of the routes that wg-quick added.

In the configuration we did so far, there have been no restrictions in place, so traffic between both sites flows without
impediments.

In general, what needs to be done or checked is:

e Make sure both gateways can contact each other on the specified endpoint addresses and UDP port. In the case
of this example, that’s port 51000. For extra security, create a firewall rule only allowing each peer to contact
this port, instead of the Internet at large.

e Do NOT masquerade or NAT the traffic coming from the internal network and going out via the WireGuard
interface towards the other site. This is purely routed traffic.

e There shouldn’t be any routing changes needed on the gateways, since wg-quick takes care of adding the route
for the remote site, but do check the routing table to see if it makes sense (ip route and ip route | grep wg are
a good start).

e You may have to create new firewall rules if you need to restrict traffic between the alpha and beta networks.
For example, if you want to prevent ssh between the sites, you could add a firewall rule like this one to alpha:

$ sudo iptables -A FORWARD -i wgA -p tcp --dport 22 -j REJECT

And similarly on beta:

196

$ sudo iptables -A FORWARD -i wgB -p tcp --dport 22 -j REJECT

You can add these as PostUp actions in the WireGuard interface config. Just don’t forget the remove them in
the corresponding PreDown hook, or you will end up with multiple rules.

WireGuard can also be setup to route all traffic through the VPN, and not just specific remote networks. There could
be many reasons for this, but mostly they are related to privacy.

Here we will assume a scenario where the local network is considered untrusted, and we want to leak as little information
as possible about our behavior on the Internet. This could be the case of an airport, or a coffee shop, a conference, a
hotel, or any other public network.

public untrusted — wgo 10.90.90.2/24
10.90.90.1/24 network/internet | VPN network

wgo | XXXXXX —

—— XX xxxxx —— VPN gw |

| Fwlan® xx xx ethg L——1

| | XX x

| | XXX XXX

— XXXXXX

Laptop

For this to work best, we need a system we can reach on the internet and that we control. Most commonly this can
be a simple small VM in a public cloud, but a home network also works. Here we will assume it’s a brand new system
that will be configured from scratch for this very specific purpose.

WireGuard Configuration
Let’s start the configuration by installing WireGuard and generating the keys.
On the client:

$ sudo apt install wireguard

$ umask 077

$ wg genkey > wg0.key

$ wg pubkey < wg0.key > wg0.pub

$ sudo mv wg0.key wg0.pub /etc/wireguard

And on the gateway server:

$ sudo apt install wireguard

$ umask 077

$ wg genkey > gateway0.key

$ wg pubkey < gateway0.key > gateway0.pub

$ sudo mv gateway0O.key gateway0.pub /etc/wireguard

On the client, we will create /etc/wireguard/wg0.conf:

[Interface]

PostUp = wg set %i private-key /etc/wireguard/wg0.key
ListenPort = 51000

Address = 10.90.90.1/24

[Peer]

PublicKey = <contents of gateway0.pub>
Endpoint = <public IP of gateway server>
AllowedIPs = 0.0.0.0/0

Key points here:

o We selected the 10.90.90.1/24 IP address for the WireGuard interface. This can be any private IP address, as
long as it doesn’t conflict with the network you are on, so double check that. If it needs changing, don’t forget
to also change the IP for the WireGuard interface on the gateway server.

e The AllowedIPs value is 0.0.0.0/0, which means “all IPv4 addresses”.

e We are using PostUp to load the private key instead of specifying it directly in the configuration file, so we don’t
have to set the permissions on the config file to 0600.

The counterpart configuration on the gateway server is /etc/wireguard/gateway0.conf with these contents:

[Interfacel
PostUp = wg set %i private-key /etc/wireguard/%i.key

197

Address = 10.90.90.2/24
ListenPort = 51000

[Peer]
PublicKey = <contents of wg0@.pub>
AllowedIPs = 10.90.90.1/32

Since we don’t know from where this remote peer will be connecting, there is no Endpoint setting for it, and the
expectation is that the peer will be the one initiating the VPN.

This finishes the WireGuard configuration on both ends, but there is one extra step we need to take on the gateway
server.

Routing and masquerading

The WireGuard configuration that we did so far is enough to send the traffic from the client in the untrusted network,
to the gateway server. But what about from there on? There are two extra configs we need to make on the gateway
server:

o Masquerade (or apply source NAT rules) the traffic from 10.90.90.1/24.
o Enable IPv4 forwarding so our gateway server acts as a router.

To enable routing, create /etc/sysctl.d/70-wireguard-routing.conf with this content:
net.ipv4.ip forward =1

And run:

$ sudo sysctl -p /etc/sysctl.d/70-wireguard-routing.conf -w

To masquerade the traffic from the VPN, one simple rule is needed:

$ sudo iptables -t nat -A POSTROUTING -s 10.90.90.0/24 -o eth® -j MASQUERADE

Replace eth® with the name of the network interface on the gateway server, if it’s different.

To have this rule persist across reboots, you can add it to /etc/rc.local (create the file if it doesn’t exist and make
it executable):

#!/bin/sh
iptables -t nat -A POSTROUTING -s 10.90.90.0/24 -o eth® -j MASQUERADE

This completes the gateway server configuration.

Testing
Let’s bring up the WireGuard interfaces on both peers.
On the gateway server:

$ sudo wg-quick up gateway0

[#] ip link add gatewayO type wireguard

[#] wg setconf gateway@ /dev/fd/63

[#] ip -4 address add 10.90.90.2/24 dev gateway0

[#] ip link set mtu 1378 up dev gateway0

[#] wg set gateway® private-key /etc/wireguard/gateway0.key

And on the client:

$ sudo wg-quick up wgo

[#] ip link add wg0 type wireguard

[#] wg setconf wgd /dev/fd/63

[#] ip -4 address add 10.90.90.1/24 dev wg0

[#] ip link set mtu 1420 up dev wg0

[#] wg set wgO fwmark 51820

[#] ip -4 route add 0.0.0.0/0 dev wg0 table 51820
[#] ip -4 rule add not fwmark 51820 table 51820
[#] ip -4 rule add table main suppress prefixlength 0
[#] sysctl -q net.ipvé4.conf.all.src valid mark=1
[#] nft -f /dev/fd/63

[#] wg set wgO private-key /etc/wireguard/wg0.key

198

From the client you should now be able to verify that your traffic reaching out to the internet is going through the
gateway server via the WireGuard VPN. For example:

$ mtr -r 1.1.1.1
Start: 2022-09-01T12:42:59+0000

HOST: laptop.lan Loss% Snt Last Avg Best Wrst StDev
1.]-- 10.90.90.2 0.0% 10 184.9 185.5 184.9 186.9 0.6
2.]-- 10.48.128.1 0.0% 10 185.6 185.8 185.2 188.3 0.9
(...)
7.|-- one.one.one.one 0.0% 10 186.2 186.3 185.9 186.6 0.2

Above, hop 1 is the gateway0 interface on the gateway server, then 10.48.128.1 is the default gateway for that server,
then come some in between hops, and the final hit is the target.

If you just look at the output of ip route, however, it’s not immediately obvious that the WireGuard VPN is the
default gateway:

$ ip route

default via 192.168.122.1 dev enplsO proto dhcp src 192.168.122.160 metric 100
10.90.90.0/24 dev wgd proto kernel scope link src 10.90.90.1

192.168.122.0/24 dev enplsO® proto kernel scope link src 192.168.122.160 metric 100
192.168.122.1 dev enplsO proto dhcp scope link src 192.168.122.160 metric 100

That’s because WireGuard is using fwmarks and policy routing. WireGuard cannot simply set the wg0 interface as the
default gateway: that traffic needs to reach the specified endpoint on port 51000/UDP outside of the VPN tunnel.

If you want to dive deeper into how this works, check ip rule list, ip route list table 51820, and consult the
documentation on “Linux Policy Routing”.

DNS leaks

The traffic is now being routed through the VPN to the gateway server that you control, and from there on to the
Internet at large. The local network you are in cannot see the contents of that traffic, because it’s encrypted. But you
are still leaking information about the sites you access via DNS.

When the laptop got its IP address in the local (untrusted) network it is sitting in, it likely also got a pair of IPs
for DNS servers to use. These might be servers from that local network, or other DNS servers from the internet like
1.1.1.1 or 8.8.8.8. When you access an internet site, a DNS query will be sent to those servers to discover their IP
addresses. Sure, that traffic goes over the VPN, but at some point it exits the VPN, and then reaches those servers,
which will then know what you are trying to access.

There are DNS leak detectors out there, and if you want a quick check you can try out https://dnsleaktest.com. It
will tell you which DNS servers your connection is using, and it’s up to you if you trust them or not. You might
be surprised that, even if you are in a conference network for example, using a default gateway VPN like the one
described here, you are still using the DNS servers from the conference infrastructure. In a way, the DNS traffic is
leaving your machine encrypted, and then coming back in clear text to the local DNS server.

There are basically two things you can do about this: select a specific DNS server to use for your VPN connection, or
install your own DNS server.

Selecting a DNS server

If you can use a DNS server that you trust, or don’t mind using, that is probably the easiest solution. Many people
would start with the DNS server assigned to the gateway server used for the VPN. This address can be checked by
running the following command in a shell on the gateway server:

$ resolvectl status
Global

Protocols: -LLMNR -mDNS -DNSOverTLS DNSSEC=no/unsupported
resolv.conf mode: stub

Link 2 (ens2)
Current Scopes: DNS
Protocols: +DefaultRoute +LLMNR -mDNS -DNSOverTLS DNSSEC=no/unsupported
Current DNS Server: 10.48.0.5
DNS Servers: 10.48.0.5
DNS Domain: openstacklocal

199

https://dnsleaktest.com

Link 5 (gateway0)
Current Scopes: none
Protocols: -DefaultRoute +LLMNR -mDNS -DNSOverTLS DNSSEC=no/unsupported

Look for Current DNS Server. In the example above, it’s 10.48.0.5.

Let’s change the WireGuard wg0 interface config to use that DNS server. Edit /etc/wireguard/wg0.conf and add a
second PostUp line with the resolvectl command like below:

[Interface]

PostUp = wg set %i private-key /etc/wireguard/wg0.key

PostUp = resolvectl dns %i 10.48.0.5; resolvectl domain %i \~.
ListenPort = 51000

Address = 10.90.90.1/24

[Peer]

PublicKey = <contents of gateway®.pub>
Endpoint = <public IP of gateway server>
AllowedIPs = 0.0.0.0/0

You can run that resolvectl command by hand if you want to avoid having to restart the WireGuard VPN:
$ sudo resolvectl dns wgO 10.48.0.5; sudo resolvectl domain wg0 \~.

Or just restart the WireGuard interface:

$ sudo wg-quick down wg0; sudo wg-quick up wgo

And if you check again for DNS leaks, this time you’ll that you are only using the DNS server you specified.

Installing your own DNS server

If you don’t want to use even the DNS server from the hosting provider where you have your gateway server, another
alternative is to install your own DNS server.

There are multiple choices out there for this: bind9 and unbound are quite popular, and easy to find quick tutorials
and instructions on how to do it.

Here we will proceed with bind9, which is in the Ubuntu Main repository.

On the gateway server, install the bind9 package:

$ sudo apt install bind9

And that’s it for the server part.

On the client, add a PostUp line specifying this IP (or change the line we added in the previous section):

[Interface]

PostUp = wg set %i private-key /etc/wireguard/wg0.key

PostUp = resolvectl dns %i 10.90.90.2; resolvectl domain %i \~.
ListenPort = 51000

Address = 10.90.90.1/24

[Peer]

PublicKey = <contents of gateway®.pub>
Endpoint = <public IP of gateway server>
AllowedIPs = 0.0.0.0/0

And restart the WireGuard interface. Now your VPN client will be using the gateway server as the DNS server.

Here are some common tasks and other helpful tips that can help you in your WireGuard deployment.

Controlling the WireGuard interface with systemd

The wg-quick tool is a simple way to bring the WireGuard interface up and down. That control is also exposed via a
systemd service, which means the standard systemctl tool can be used.

Probably the best benefit of this is to be able to configure the interface to be brought up automatically when the
system is booted up. For example, to configure the wg0 interface to be brought up at boot:

$ sudo systemctl enable wg-quick@wg0

200

The name of the systemd service follows the WireGuard interface name, and multiple such services can be en-
abled/started at the same time. You can also use the systemctl status, start, stop, reload and restart commands
to control the WireGuard interface and query its status:

$ sudo systemctl reload wg-quick@wg®

The reload action does what we expect: it reloads the configuration of the interface without disrupting existing
WireGuard tunnels. To add or remove peers, reload is sufficient, but if wg-quick options, like PostUp, Address or
others alike, are changed, then a restart is needed.

DNS resolving

Let’s say when you are inside the home network, literally at home, you can connect to your other systems via DNS
names, because your router at 10.10.10.1 can act as an internal DNS server. It would be nice to have this capability
also when connected via the WireGuard VPN.

To do that, we can add a PostUp command to the WireGuard configuration to run a command for us right after the
VPN is established. This command can be anything you would run in a shell, as root. We can use that to adjust the
DNS resolver configuration of the laptop that is remotely connected to the home network.

For example, if we have a WireGuard setup as follows:

o home® WIreGuard interface.
e .home DNS domain for the remote network.
e 10.10.10.1/24 is the DNS server for the .home domain, reachable after the VPN is established.

We can add this PostUp command to the homed. conf configuration file to have our systemd-based resolver use 10.10.10.1
as the DNS server for any queries for the .home domain:

[Interface]

PostUp = resolvectl dns %i 10.10.10.1; resolvectl domain %i \~home

For PostUp (and PostDown, see the wg-quick(8) manpage for details), the %i text is replaced with the WireGuard
interface name. In this case, that would be home0.

These two resolvectl commands tell the local systemd-resolved resolver to a) associate the DNS server at 10.10.10.1
to the home0 interface; and b) associate the home domain to the home0 interface.

When you bring the home® WireGuard interface up again, it will run the resolvectl commands:

$ sudo wg-quick up home0®

[#] ip link add home® type wireguard

[#] wg setconf home® /dev/fd/63

[#] ip -4 address add 10.10.11.2/24 dev home0

[#] ip link set mtu 1420 up dev home0

[#] ip -4 route add 10.10.10.0/24 dev home0

[#] resolvectl dns home@ 10.10.10.1; resolvectl domain home® \~home

You can verify that it worked by pinging some hostname in your home network, or checking the DNS resolution status
for the home0 interface:

$ resolvectl status home0
Link 26 (home0)
Current Scopes: DNS
Protocols: -DefaultRoute +LLMNR -mDNS -DNSOverTLS DNSSEC=no/unsupported
Current DNS Server: 10.10.10.1
DNS Servers: 10.10.10.1
DNS Domain: ~home

If you are using systemctl to control the WireGuard interface, this is the type of change (adding or changing PostUp)
where the reload action won’t be enough, and you actually need to issue a restart.

NOTE

The wg-quick(8) manpage documents the DNS setting of the WireGuard interface which has the same
purpose, but only works if you have resolveconf installed. Ubuntu systems by default don’t, and rely on
systemd-resolved instead.

201

Adding another peer
To add another peer to an existing WireGuard setup, we have to:

1. generate a new keypair for the new peer
2. create a new [Peer] section on the “other side” of the WireGuard setup
3. pick a new IP for the new peer

Let’s call the new system ontheroad, and generate the keys for it:

$ umask 077

$ wg genkey > ontheroad-private.key

$ wg pubkey < ontheroad-private.key > ontheroad-public.key

$ 1s -la ontheroad.*

Srw------- 1 ubuntu ubuntu 45 Aug 22 20:12 ontheroad-private.key
SrW------- 1 ubuntu ubuntu 45 Aug 22 20:13 ontheroad-public.key

As for its IP address, let’s pick 10.10.11.3/24 for it, which is the next one in sequence of one of the previous examples
in this guide:

[Interface]

PrivateKey = <contents-of-ontheroad-private.key>
ListenPort = 51000

Address = 10.10.11.3/24

[Peer]

PublicKey = <contents-of-router-public.key>
Endpoint = <home-ppp0O-IP-or-hostname>:51000
AllowedIPs = 10.10.11.0/24,10.10.10.0/24

The only difference between this config and one for an existing system in this same WireGuard setup will be PrivateKey
and Address.

On the “other side”, we add the new [Peer] section to the existing config:

[Interface]

PrivateKey = <contents-of-router-private.key>
ListenPort = 51000

Address = 10.10.11.1/24

[Peer]

laptop

PublicKey = <contents-of-laptop-public.key>
AllowedIPs = 10.10.11.2

[Peer]

ontheroad

PublicKey = <contents-of-ontheroad-public.key>
AllowedIPs = 10.10.11.3

To update the interface with the new peer without disrupting existing connections, we use the reload action of the
systemd unit:

$ systemctl reload wg-quick@wg0

NOTE

For this case of a “server” or “vpn gateway”, where we are just adding another peer to an existing config,
the systemctl reload action will work well enough to insert the new peer in the wireguard configuration.
But it won’t create new routes, or do any of the other steps that wg-quick does. Depending on the setup,
you might need a full restart so that wg-quick can fully do its job.

Adding a smartphone peer

WireGuard can be installed on many different platforms, and smartphones are included. The usptream installation
page has links for Android and iOS apps.

Such a mobile client can be configured more easily with the use of QR codes.

We start by creating the new peer’s config normally, as if it were any other system (generate keys, pick an IP address,
etc). Then, to convert that configuration file to a QR code, install the grencode package:

202

https://www.wireguard.com/install/#android-play-store-f-droid
https://www.wireguard.com/install/#ios-app-store

$ sudo apt install grencode
And run the following command (assuming the config was written to phone.conf):
$ cat phone.conf | grencode -t ansiutf8

That will generate a QR code in the terminal, ready for scanning with the smartphone app. Note that there is no
need for a graphical environment, and this command can be run remotely over SSH for example.

Note that you need to put the private key contents directly into that configuration file, and not use PostUp to load it
from a separate file.

IMPORTANT
Treat this QR code as a secret, as it contains the private key for the wireguard interface!

Here are some security tips for your WireGuard deployment.

Traffic goes both ways

Remember that the VPN traffic goes both ways. Once you are connected to the remote network, it means any device
on that network can connect back to you! That is, unless you create specific firewall rules for this VPN network.

Since WireGuard is “just” an interface, you can create normal firewall rules for its traffic, and control the access to
the network resources as usual. This is done more easily if you have a dedicated network for the VPN clients.

Using PreSharedKey

You may add another layer of cryptographic protection to your VPN with the PreSharedKey option. Its usage is
optional, and adds a layer of symmetric-key cryptography to the traffic between specific peers.

Such a key can be generated with the genpsk command:

$ wg genpsk
vx1X6eMMin8uhxbKEhe/i0xi8ru+qlqWzCdjESXoFZY=

And then used in a [Peer] section, like this:

[Peer]

PublicKey =

Endpoint =

AllowedIPs =

PresharedKey = vx1X6eMMin8uhxbKEhe/i0xi8ru+qlqWzCdjESXoFZY=

Both sides need to have the same Presharedkey in their respective [Peer] sections.

Preventing accidental leakage of the private keys

When troubleshooting WireGuard, it’s common to post the contents of the interface configuration file somewhere for
others to help, like in a mailing list, or internet forum. Since the private key is listed in that file, one has to remember
to strip or obfuscate it before sharing, or else the secret is leaked.

To avoid such mistakes, we can remove the private key from the configuration and leave it in its own file. This can be
done via a PostUp hook. For example, let’s update the home0.conf file to use such a hook:

[Interface]

ListenPort = 51000

Address = 10.10.11.3/24

PostUp = wg set %i private-key /etc/wireguard/%i.key

[Peer]

PublicKey = <contents-of-router-public.key>
Endpoint = 10.48.132.39:51000

AllowedIPs = 10.10.11.0/24,10.10.10.0/24

The %i macro is replaced by the WireGuard interface name (home0 in this case). When the interface comes up, the
PostUp shell commands will be executed with that substitution in place, and the private key for this interface will be
set with the contents of the /etc/wireguard/home0.key file.

There are some other advantages to this method, and perhaps one disadvantage.

Pros:

203

e The configuration file can now safely be stored in version control, like a git repository, without fear of leaking
the private key (unless you also use the PreSharedKey option, which is also a secret).

e Since the key is now stored in a file, you can give that file a meaningful name, which helps to avoid mixups with
keys and peers when setting up WireGuard.

Cons:

e You cannot directly use the grcode tool to convert this image to a qrcode and use it to configure the mobile
version of WireGuard, because that tool won’t go after the private key in that separate file.

General troubleshooting checklist:

e Verify public and private keys. When dealing with multiple peers, it’s easy to mix these up, specially because
the contents of these keys is just random data. There is nothing identifying them, and public and private keys
are basically the same format-wise.

e Verify AllowedIPs list on all peers.

e Check with ip route and ip addr show dev <wg-interface> if the routes and IPs are set as you expect.

e Double check that you have /proc/sys/net/ipv4/ip_forward set to 1 where needed.

¢ When injecting the VPN users into an existing network, without routing, make sure /proc/sys/net/ipv4/conf/all/proxy ar
is set to 1.

e Make sure the above /proc entries are in /etc/sysctl.conf or a file in /etc/sysctl.d so that they persist reboots.

It can be helpful to leave a terminal open with the watch wg command. Here is a sample output showing a system
with two peers configured, where only one has established the VPN so far:

Every 2.0s: wg j-wg: Fri Aug 26 17:44:37 2022
interface: wgo@
public key: +T3T3HTMeyrEDvim8FBxbYjbz+/P0e0tG3R1v19kImM=

private key: (hidden)
listening port: 51000

peer: 2cJdFcNzXv4YUGyDTahtOfrbsrFsCByatPnNzKTs0Qo=
endpoint: 10.172.196.106:51000
allowed ips: 10.10.11.2/32
latest handshake: 3 hours, 27 minutes, 35 seconds ago
transfer: 3.06 KiB received, 2.80 KiB sent

peer: ZliZlhlarZqvfxPMyME2ECtXDk611NB7uzLAD4McpgI=
allowed ips: 10.10.11.3/32

Kernel debug messages

WireGuard is also silent when it comes to logging. Being a kernel module essentially, we need to explicitly enable
verbose logging of its module. This is done with the following command:

$ echo "module wireguard +p" | sudo tee /sys/kernel/debug/dynamic_debug/control

This will write WireGuard logging messages to the kernel log, which can be watched live with:
$ sudo dmesg -wT

To disable logging, run this:

$ echo "module wireguard -p" | sudo tee /sys/kernel/debug/dynamic_debug/control

Destination address required
If you ping an IP and get back an error like this:

$ ping 10.10.11.2

PING 10.10.11.2 (10.10.11.2) 56(84) bytes of data.

From 10.10.11.1 icmp seq=1 Destination Host Unreachable
ping: sendmsg: Destination address required

This is happening because the WireGuard interface selected for this destination doesn’t know the endpoint for it. In
other words, it doesn’t know where to send the encrypted traffic.

One common scenario for this is on a peer where there is no Endpoint configuration, which is perfectly valid, and the
host is trying to send traffic to that peer. Let’s take the coffee shop scenario we described earlier as an example.

204

The laptop is connected to the VPN and exchanging traffic as usual. Then it stops for a bit (the person went to get
one more cup). Traffic ceases (WireGuard is silent, remember). If the WireGuard on the home router is now restarted,
when it comes back up, it won’t know how to reach the laptop, because it was never contacted by it before. This
means that at this time, if the home router tries to send traffic to the laptop in the coffee shop, it will get the above
error.

Now the laptop user comes back, and generates some traffic to the home network (remember: the laptop has the home
network’s Endpoint value). The VPN “wakes up”, data is exchanged, handshakes completed, and now the home router
knows the Endpoint associated with the laptop, and can again initiate new traffic to it without issues.

Another possibility is that one of the peers is behind a NAT, and there wasn’t enough traffic for the stateful firewall
to consider the “connection” alive, and it dropped the NAT mapping it had. In this case, the peer might benefit from
the PersistentKeepalive configuration, which makes WireGuard send a keepalive probe every so many seconds.

Required key not available
This error:

$ ping 10.10.11.1

PING 10.10.11.1 (10.10.11.1) 56(84) bytes of data.

From 10.10.11.2 icmp seq=1 Destination Host Unreachable
ping: sendmsg: Required key not available

Can happen when you have a route directing traffic to the WireGuard interface, but that interface does not have the
target address listed in its AllowedIPs configuration.

If you have enabled kernel debugging for WireGuard, you will also see a message like this one in the dmesg output:
wireguard: home@: No peer has allowed IPs matching 10.10.11.1

QEMU is a machine emulator that can run operating systems and programs for one machine on a different machine.
However, it is more often used as a virtualiser in collaboration with KVM kernel components. In that case it uses the
hardware virtualisation technology to virtualise guests.

Although QEMU has a command line interface and a monitor to interact with running guests, they are typically only
used for development purposes. libvirt provides an abstraction from specific versions and hypervisors and encapsulates
some workarounds and best practices.

Running QEMU/KVM

While there are more user-friendly and comfortable ways, the quickest way to get started with QEMU is by directly
running it from the netboot ISO. You can achieve this by running the following command:

Warning:
This example is just for illustration purposes - it is not generally recommended without verifying the
checksums; Multipass and UVTool are much better ways to get actual guests easily.

sudo gemu-system-x86 64 -enable-kvm -cdrom http://archive.ubuntu.com/ubuntu/dists/bionic-updates/main/installer-
amd64/current/images/netboot/mini.iso

Downloading the ISO provides for faster access at runtime. We can now allocate the space for the VM:
gemu-img create -f qcow2 disk.qcow 5G

And then we can use the disk space we have just allocated for storage by adding the argument: -drive
file=disk.qcow, format=qcow2.

These tools can do much more, as you’ll discover in their respective (long) manpages. They can also be made more
consumable for specific use-cases and needs through a vast selection of auxiliary tools - for example virt-manager for
Ul-driven use through libvirt. But in general, it comes down to:

gemu-system-x86 64 options image[s]

So take a look at the QEMU manpage, gemu-img and the QEMU documentation and see which options best suit your
needs.

Next steps

QEMU can be extended in many different ways. If you’d like to take QEMU further, you might want to check out
this follow-up guide on virtualizing graphics using QEMU/KVM, or this guide on how you can use QEMU to create
MicroVMs.

205

http://wiki.qemu.org/Main_Page
https://www.linux-kvm.org/page/Main_Page
https://qemu-project.gitlab.io/qemu/system/invocation.html
https://qemu-project.gitlab.io/qemu/system/monitor.html
https://manpages.ubuntu.com/
https://virt-manager.org/
https://libvirt.org/
http://manpages.ubuntu.com/manpages/bionic/man1/qemu-system.1.html
http://manpages.ubuntu.com/manpages/bionic/man1/qemu-img.1.html
https://www.qemu.org/documentation/

Multipass is the recommended method for creating Ubuntu VMs on Ubuntu. It’s designed for developers who want a
fresh Ubuntu environment with a single command, and it works on Linux, Windows and macOS.

On Linux it’s available as a snap:
sudo snap install multipass
If you’re running an older version of Ubuntu where snapd isn’t pre-installed, you will need to install it first:

sudo apt update
sudo apt install snapd

Find available images

To find available images you can use the multipass find command, which will produce a list like this:

Image Aliases Version Description

snapcraft:corel8 18.04 20201111 Snapcraft builder for Core 18
snapcraft:core20 20.04 20210921 Snapcraft builder for Core 20
snapcraft:core22 22.04 20220426 Snapcraft builder for Core 22

snapcraft:devel 20221128 Snapcraft builder for the devel series

core corel6 20200818 Ubuntu Core 16

corel8 20211124 Ubuntu Core 18

18.04 bionic 20221117 Ubuntu 18.04 LTS

20.04 focal 20221115.1 Ubuntu 20.04 LTS

22.04 jammy, lts 20221117 Ubuntu 22.04 LTS

22.10 kinetic 20221101 Ubuntu 22.10

daily:23.04 devel, lunar 20221127 Ubuntu 23.04

appliance:adguard-home 20200812 Ubuntu AdGuard Home Appliance
appliance:mosquitto 20200812 Ubuntu Mosquitto Appliance
appliance:nextcloud 20200812 Ubuntu Nextcloud Appliance

appliance:openhab 20200812 Ubuntu openHAB Home Appliance
appliance:plexmediaserver 20200812 Ubuntu Plex Media Server Appliance
anbox-cloud-appliance latest Anbox Cloud Appliance

charm-dev latest A development and testing environment for charmers
docker latest A Docker environment with Portainer and related tools
jellyfin latest Jellyfin is a Free Software Media System that puts you in control of manag:
minikube latest minikube is local Kubernetes

Launch a fresh instance of the Ubuntu Jammy (22.04) LTS

You can launch a fresh instance by specifying either the image name from the list (in this example, 22.04) or using an
alias, if the image has one.

$ multipass launch 22.04
Launched: cleansing-guanaco

This command is equivalent to: multipass launch jammy or multipass launch lts in the list above. It will launch an
instance based on the specified image, and provide it with a random name — in this case, cleansing-guanaco.

Check out the running instances
You can check out the currently running instance(s) by using the "multipass list* command:

$ multipass list
Name State IPv4 Image
cleansing-guanaco Running 10.140.26.17 Ubuntu 22.04 LTS

Learn more about the VM instance you just launched
You can use the multipass info command to find out more details about the VM instance parameters:

$ multipass info cleansing-guanaco

Name: cleansing-guanaco

State: Running

IPv4: 10.140.26.17

Release: Ubuntu 22.04.1 LTS

Image hash: dc5b5a43c267 (Ubuntu 22.04 LTS)

206

https://multipass.run

Load: 0.45 0.19 0.07

Disk usage: 1.4G out of 4.7G
Memory usage: 168.3M out of 969.5M
Mounts: --

Connect to a running instance
To enter the VM you created, use the shell command:

$ multipass shell cleansing-guanaco
Welcome to Ubuntu 22.04.1 LTS (GNU/Linux 5.15.0-53-generic x86 64)
(...)

ubuntu@cleansing-guanaco:~$
Disconnect from the instance

Don’t forget to log out (or Ctrl + D) when you are done, or you may find yourself heading all the way down the
Inception levels...

Run commands inside an instance from outside

$ multipass exec cleansing-guanaco -- lsb release -a
No LSB modules are available.
Distributor ID: Ubuntu

Description: Ubuntu 22.04.1 LTS
Release: 22.04
Codename: jammy

Stop or start an instance

You can stop an instance to save resources using the stop command:
$ multipass stop cleansing-guanaco

You can start it back up again using the start command:

$ multipass start cleansing-guanaco

Delete the instance

Once you are finished with the instance, you can delete it as follows:
$ multipass delete cleansing-guanaco

It will now show up as deleted when you use the list command:

$ multipass list
Name State IPv4 Image
cleansing-guanaco Deleted -- Not Available

And when you want to completely get rid of it (and any other deleted instances), you can use the purge command:
$ multipass purge
Which we can check again using list:

$ multipass list
No instances found.

Integrate with the rest of your virtualization

You might have other virtualization already based on libvirt, either through using the similar older uvtool or through
the more common virt-manager.

You might, for example, want those guests to be on the same bridge to communicate with each other, or if you need
access to the graphical output for some reason.

Fortunately it is possible to integrate this by using the libvirt backend of Multipass:
$ sudo multipass set local.driver=libvirt

Now when you start a guest you can also access it via tools like virt-manager or virsh:

207

https://virt-manager.org/
https://virt-manager.org/

$ multipass launch 1lts
Launched: engaged-amberjack

$ virsh list
Id Name State

15 engaged-amberjack running

For more detailed and comprehensive instructions on changing your drivers, refer to the Multipass drivers documen-
tation.

Get help

You can use the following commands on the CLI:

multipass help
multipass help <command>
multipass help --all

Or, check out the Multipass documentation for more details on how to use it.

With Ubuntu being one of the most popular operating systems on many cloud platforms, the availability of stable
and secure cloud images has become very important. Since Ubuntu 12.04, the use of cloud images outside of a cloud
infrastructure has been improved so that it is now possible to use those images to create a virtual machine without
needing a complete installation.

Creating virtual machines using uvtool

Starting with Ubuntu 14.04 LTS, a tool called uvtool has greatly facilitated the creation of virtual machines (VMs)
using cloud images. uvtool provides a simple mechanism for synchronising cloud images locally and using them to
create new VMs in minutes.

Install uvtool packages

The following packages and their dependencies are required in order to use uvtool:
e uvtool
e uvtool-libvirt

To install uvtool, run:

sudo apt -y install uvtool

This will install uvtool’s main commands, uvt-simplestreams-libvirt and uvt-kvm.

Get the Ubuntu cloud image with uvt-simplestreams-libvirt

This is one of the major simplifications that uvtool provides. It knows where to find the cloud images so you only
need one command to get a new cloud image. For instance, if you want to synchronise all cloud images for the amd64
architecture, the uvtool command would be:

uvt-simplestreams-libvirt --verbose sync arch=amd64

After all the images have been downloaded from the Internet, you will have a complete set of locally-stored cloud
images. To see what has been downloaded, use the following command:

uvt-simplestreams-libvirt query
Which will provide you with a list like this:

release=bionic arch=amd64 label=daily (20191107)
release=focal arch=amd64 label=daily (20191029)

In the case where you want to synchronise only one specific cloud image, you need to use the release= and arch= filters

to identify which image needs to be synchronised.

uvt-simplestreams-libvirt sync release=DISTRO-SHORT-CODENAME arch=amd64

208

https://discourse.ubuntu.com/t/-/8294

Furthermore, you can provide an alternative URL to fetch images from. A common case is the daily image, which
helps you get the very latest images, or if you need access to the not-yet-released development release of Ubuntu. As
an example:

uvt-simplestreams-libvirt sync --source http://cloud-images.ubuntu.com/daily [... further options]

Create a valid SSH key

To connect to the virtual machine once it has been created, you must first have a valid SSH key available for the
Ubuntu user. If your environment does not have an SSH key, you can create one using the ssh-keygen command,
which will produce similar output to this:

Generating public/private rsa key pair.

Enter file in which to save the key (/home/ubuntu/.ssh/id rsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/ubuntu/.ssh/id rsa.

Your public key has been saved in /home/ubuntu/.ssh/id rsa.pub.

The key fingerprint is:

4d:ba:5d:57:¢c9:49:ef:b5:ab:71:14:56:6e:2b:ad:9b ubuntu@DISTRO-SHORT-CODENAMES
The key's randomart image 1is:

+--[RSA 2048]----+

|

| 0.=|
| il
| + o+=|
| S=.]
| o] + .
| oo |
| *
| E |
e +

Create the VM using uvt-kvm
To create a new virtual machine using uvtool, run the following in a terminal:
uvt-kvm create firsttest

This will create a VM named ‘firsttest’ using the current locally-available LTS cloud image. If you want to specify a
release to be used to create the VM, you need to use the release= filter, and the short codename of the release, e.g.
“jammy”:

uvt-kvm create secondtest release=DISTRO-SHORT-CODENAME
The uvt-kvm wait command can be used to wait until the creation of the VM has completed:

uvt-kvm wait secondttest

Connect to the running VM
Once the virtual machine creation is completed, you can connect to it using SSH:
uvt-kvm ssh secondtest

You can also connect to your VM using a regular SSH session using the IP address of the VM. The address can be
queried using the following command:

$ uvt-kvm ip secondtest

192.168.122.199

$ ssh -i ~/.ssh/id rsa ubuntu@l92.168.122.199

[...]

To run a command as administrator (user "root"), use "sudo <command>".
See "man sudo root" for details.

ubuntu@secondtest:~$

209

Get the list of running VMs

You can get the list of VMs running on your system with the uvt-kvm list command.

Destroy your VM
Once you are finished with your VM, you can destroy it with:
uvt-kvm destroy secondtest

Note:
Unlike libvirt’s destroy or undefine actions, this will (by default) also remove the associated virtual storage
files.

More uvt-kvm options
The following options can be used to change some of the characteristics of the VM that you are creating:
e --memory : Amount of RAM in megabytes. Default: 512.
e --disk : Size of the OS disk in gigabytes. Default: 8.
e --cpu: Number of CPU cores. Default: 1.
Some other parameters will have an impact on the cloud-init configuration:
e --password <password> : Allows logging into the VM using the Ubuntu account and this provided password.

e --run-script-once <script file> : Run script file as root on the VM the first time it is booted, but never
again.

e --packages <package list> : Install the comma-separated packages specified in package list on first boot.

A complete description of all available modifiers is available in the uvt-kvm manpages.

Resources

If you are interested in learning more, have questions or suggestions, please contact the Ubuntu Server Team at:
e IRC: #ubuntu-server on Libera
e Mailing list: ubuntu-server at lists.ubuntu.com

The Virtual Machine Manager, through the virt-manager package, provides a graphical user interface (GUI) for
managing local and remote virtual machines. In addition to the virt-manager utility itself, the package also contains
a collection of other helpful tools like virt-install, virt-clone and virt-viewer.

Install virt-manager
To install virt-manager, enter:
sudo apt install virt-manager

Since virt-manager requires a Graphical User Interface (GUI) environment we recommend installing it on a workstation
or test machine instead of a production server. To connect to the local libvirt service, enter:

virt-manager
You can connect to the libvirt service running on another host by entering the following in a terminal prompt:
virt-manager -c gemu+ssh://virtnodel.mydomain.com/system

Note:
The above example assumes that SSH connectivity between the management system and the target system
has already been configured, and uses SSH keys for authentication. SSH keys are needed because libvirt

sends the password prompt to another process. See our guide on OpenSSH for details on how to set up
SSH keys.

210

https://manpages.ubuntu.com/manpages/lunar/en/man1/uvt-kvm.1.html
https://kiwiirc.com/nextclient/irc.libera.chat/ubuntu-server
https://lists.ubuntu.com/mailman/listinfo/ubuntu-server
https://virt-manager.org/

Use virt-manager to manage guests
Guest lifecycle

When using virt-manager it is always important to know the context you're looking at. The main window initially
lists only the currently-defined guests. You'll see their name, state (e.g., ‘Shutoff’ or ‘Running’) and a small chart
showing the CPU usage.

virt-manager-gui-start

In this context, there isn’t much to do except start/stop a guest. However, by double-clicking on a guest or by clicking
the Open button at the top of the window, you can see the guest itself. For a running guest that includes the guest’s
main-console/virtual-screen output.

virt-manager-gui-showoutput
virt-manager-gui-showoutput1594x 894 364 KB

If you are deeper in the guest configuration, clicking on “Show the graphical console” in the top left of the guest’s
window will get you back to this output.

Guest modification

virt-manager provides a handy, GUlI-assisted way to edit guest definitions. To do so, the per-guest context view will
have “Show virtual hardware details” at the top of the guest window. Here, you can edit the virtual hardware of the
guest, which will alter the guest representation behind the scenes.

virt-manager-gui-edit
virt-manager-gui-edit1406 x 706 282 KB

The UI edit ability is limited to the features known to (and supported by) that GUI feature. Not only does libvirt
grow features faster than virt-manager can keep up — adding every feature would also overload the Ul and render it
unusable.

To strike a balance between the two, there also is the XML view which can be reached via the “Edit libvirt XML”
button.

virt-manager-gui- XML
virt-manager-gui-XML1406x 706 340 KB

By default, this will be read-only and you can see what the Ul-driven actions have changed. You can allow read-write
access in this view via the “Preferences”. This is the same content that the virsh edit of the libvirt-client exposes.

Virtual Machine Viewer (virt-viewer)

The Virtual Machine Viewer application, through virt-viewer, allows you to connect to a virtual machine’s console
like virt-manager does, but reduced to the GUI functionality. virt-viewer requires a GUI to interface with the virtual
machine.

Install virt-viewer

If virt-viewer is not already installed, you can install it from the terminal with the following command:
sudo apt install virt-viewer

Once a virtual machine is installed and running you can connect to the virtual machine’s console by using:
virt-viewer <guestname>

The UI will show a window representing the virtual screen of the guest, just like with virt-manager above, but without
the extra buttons and features around it.

virt-viewer-gui-showoutput

virt-viewer-gui-showoutput1105x 958 164 KB

Similarly to virt-manager, virt-viewer can also connect to a remote host using SSH with key authentication:
virt-viewer -c gemu+ssh://virtnodel.mydomain.com/system <guestname>

Be sure to replace web _devel with the appropriate virtual machine name.

If configured to use a bridged network interface you can also set up SSH access to the virtual machine.

211

https://ubuntucommunity.s3.us-east-2.amazonaws.com/original/2X/7/7859f9fc0c79ef6866fc436bb775a28f1b342cde.png
https://libvirt.org/formatdomain.html
https://ubuntucommunity.s3.us-east-2.amazonaws.com/original/2X/f/f5d42f8bdcb87b3818b5b6c04f5ccec5a15fef3d.png
https://ubuntucommunity.s3.us-east-2.amazonaws.com/original/2X/1/102df4e3030498b1768cc48685cb6f922cec0244.png
https://ubuntucommunity.s3.us-east-2.amazonaws.com/original/2X/4/43f32c1efdd95a44b512cb6461bf360e64f60277.png

virt-install

virt-install is part of the virtinst package. It can help with installing classic ISO-based systems and provides a
CLI for the most common options needed to do so.

Install virt-install

To install virt-install, if it is not installed already, run the following from a terminal prompt:
sudo apt install virtinst

There are several options available when using virt-install. For example:

virt-install \
--name web devel \
--ram 8192 \
--disk path=/home/doug/vm/web devel.img,bus=virtio,size=50 \
--cdrom focal-desktop-amd64.iso \
--network network=default,model=virtio \
--graphics vnc,listen=0.0.0.0 --noautoconsole --hvm --vcpus=4

There are many more arguments that can be found in the virt-install manpage. However, explaining those of the
example above one by one:

e --name web devel
The name of the new virtual machine will be web_devel.

e --ram 8192
Specifies the amount of memory the virtual machine will use (in megabytes).

e --disk path=/home/doug/vm/web devel.img,bus=virtio,size=50
Indicates the path to the virtual disk which can be a file, partition, or logical volume. In this example a file
named web_devel.img in the current user’s directory, with a size of 50 gigabytes, and using virtio for the disk
bus. Depending on the disk path, virt-install may need to run with elevated privileges.

e --cdrom focal-desktop-amd64.iso
File to be used as a virtual CD-ROM. The file can be either an ISO file or the path to the host’s CD-ROM
device.

e --network
Provides details related to the VM’s network interface. Here the default network is used, and the interface model
is configured for virtio.

e --graphics vnc,listen=0.0.0.0
Exports the guest’s virtual console using VNC and on all host interfaces. Typically servers have no GUI,
so another GUI-based computer on the Local Area Network (LAN) can connect via VNC to complete the
installation.

e --noautoconsole
Will not automatically connect to the virtual machine’s console.

e --hvm : creates a fully virtualised guest.

e --vcpus=4 : allocate 4 virtual CPUs.

After launching virt-install you can connect to the virtual machine’s console either locally using a GUI (if your
server has a GUI), or via a remote VNC client from a GUI-based computer.

virt-clone

The virt-clone application can be used to copy one virtual machine to another. For example:
virt-clone --auto-clone --original focal

Options used:

e --auto-clone

To have virt-clone create guest names and disk paths on its own.
e --original

Name of the virtual machine to copy.

You can also use the -d or --debug option to help troubleshoot problems with virt-clone.
Replace focal with the appropriate virtual machine names for your case.

Warning;:
Please be aware that this is a full clone, therefore any sorts of secrets, keys and for example /etc/machine-id

212

https://manpages.ubuntu.com/manpages/jammy/man1/virt-install.1.html

will be shared. This will cause issues with security and anything that needs to identify the machine like
DHCP. You most likely want to edit those afterwards and de-duplicate them as needed.

Resources
¢ See the KVM home page for more details.
o For more information on libvirt see the libvirt home page
e The Virtual Machine Manager site has more information on virt-manager development.

The libvirt library is used to interface with many different virtualisation technologies. Before getting started with
libvirt it is best to make sure your hardware supports the necessary virtualisation extensions for Kernel-based Virtual
Machine (KVM). To check this, enter the following from a terminal prompt:

kvm-ok
A message will be printed informing you if your CPU does or does not support hardware virtualisation.

Note:
On many computers with processors supporting hardware-assisted virtualisation, it is necessary to first
activate an option in the BIOS to enable it.

Virtual networking

There are a few different ways to allow a virtual machine access to the external network. The default virtual network
configuration includes bridging and iptables rules implementing usermode networking, which uses the SLiRP
protocol. Traffic is NATed through the host interface to the outside network.

To enable external hosts to directly access services on virtual machines a different type of bridge than the default needs
to be configured. This allows the virtual interfaces to connect to the outside network through the physical interface,
making them appear as normal hosts to the rest of the network.

There is a great example of how to configure a bridge and combine it with libvirt so that guests will use it at the
netplan.io documentation.

Install libvirt

To install the necessary packages, from a terminal prompt enter:

sudo apt update
sudo apt install gemu-kvm libvirt-daemon-system

After installing libvirt-daemon-system, the user that will be used to manage virtual machines needs to be added to the
libvirt group. This is done automatically for members of the sudo group, but needs to be done in addition for anyone
else that should access system-wide libvirt resources. Doing so will grant the user access to the advanced networking
options.

In a terminal enter:
sudo adduser $USER libvirt

Note:
If the chosen user is the current user, you will need to log out and back in for the new group membership
to take effect.

You are now ready to install a Guest operating system. Installing a virtual machine follows the same process as
installing the operating system directly on the hardware.

You will need one of the following:

e A way to automate the installation.
e A keyboard and monitor attached to the physical machine.
o To use cloud images which are meant to self-initialise (see Multipass and UVTool).

In the case of virtual machines, a Graphical User Interface (GUI) is analogous to using a physical keyboard and mouse
on a real computer. Instead of installing a GUI the virt-viewer or virt-manager application can be used to connect
to a virtual machine’s console using VNC. See Virtual Machine Manager / Viewer for more information.

213

http://www.linux-kvm.org/
http://libvirt.org/
http://virt-manager.org/
https://libvirt.org/
https://www.linux-kvm.org/page/Main_Page
https://www.linux-kvm.org/page/Main_Page
https://en.wikipedia.org/wiki/Slirp
https://netplan.readthedocs.io/en/latest/netplan-yaml/#properties-for-device-type-bridges
https://netplan.readthedocs.io/en/latest/

Virtual machine management

The following section covers the command-line tools around virsh that are part of libvirt itself. But there are various
options at different levels of complexities and feature-sets, like:

e Multipass
e UVTool

o virt-* tools
e OpenStack

Manage VMs with virsh

There are several utilities available to manage virtual machines and libvirt. The virsh utility can be used from the
command line. Some examples:

e To list running virtual machines:
virsh list
e To start a virtual machine:
virsh start <guestname>
e Similarly, to start a virtual machine at boot:
virsh autostart <guestname>
e Reboot a virtual machine with:
virsh reboot <guestname>

e The state of virtual machines can be saved to a file in order to be restored later. The following will save the
virtual machine state into a file named according to the date:

virsh save <guestname> save-my.state
Once saved, the virtual machine will no longer be running.

e A saved virtual machine can be restored using:
virsh restore save-my.state

e To shut down a virtual machine you can do:
virsh shutdown <guestname>

e« A CD-ROM device can be mounted in a virtual machine by entering:
virsh attach-disk <guestname> /dev/cdrom /media/cdrom

e To change the definition of a guest, virsh exposes the domain via:
virsh edit <gquestname>

This will allow you to edit the XML representation that defines the guest. When saving, it will apply format and
integrity checks on these definitions.

Editing the XML directly certainly is the most powerful way, but also the most complex one. Tools like Virtual
Machine Manager / Viewer can help inexperienced users to do most of the common tasks.

Note:
If virsh (or other vir* tools) connect to something other than the default gemu-kvm/system hypervisor, one
can find alternatives for the --connect option using man virsh or the libvirt docs.

system and session scope

You can pass connection strings to virsh - as well as to most other tools for managing virtualisation.

virsh --connect gemu:///system

There are two options for the connection.

e gemu:///system - connect locally as root to the daemon supervising QEMU and KVM domains
e gemu:///session - connect locally as a normal user to their own set of QEMU and KVM domains

214

https://ubuntu.com/openstack
https://libvirt.org/formatdomain.html
http://libvirt.org/uri.html

The default was always (and still is) gemu:///system as that is the behavior most users are accustomed to. But there
are a few benefits (and drawbacks) to qemu:///session to consider.

gemu:///session is per user and can — on a multi-user system — be used to separate the people.
Most importantly, processes run under the permissions of the user, which means no permission struggle on the just-
downloaded image in your $HOME or the just-attached USB-stick.

On the other hand it can’t access system resources very well, which includes network setup that is known to be hard
with gemu:///session. It falls back to SLiRP networking which is functional but slow, and makes it impossible to be
reached from other systems.

gemu:///system is different in that it is run by the global system-wide libvirt that can arbitrate resources as needed.
But you might need to mv and/or chown files to the right places and change permissions to make them usable.

Applications will usually decide on their primary use-case. Desktop-centric applications often choose gemu:///session
while most solutions that involve an administrator anyway continue to default to gemu:///system.

Further reading:
There is more information about this topic in the libvirt FAQ and this blog post about the topic.

Migration

There are different types of migration available depending on the versions of libvirt and the hypervisor being used. In
general those types are:

o Offline migration
e Live migration
e Postcopy migration

There are various options to those methods, but the entry point for all of them is virsh migrate. Read the integrated
help for more detail.

virsh migrate --help

Some useful documentation on the constraints and considerations of live migration can be found at the Ubuntu Wiki.

Device passthrough/hotplug

If, rather than the hotplugging described here, you want to always pass through a device then add the XML content
of the device to your static guest XML representation via virsh edit <guestname>. In that case you won’t need to
use attach/detach. There are different kinds of passthrough. Types available to you depend on your hardware and
software setup.

o USB hotplug/passthrough
o VF hotplug/Passthrough

Both kinds are handled in a very similar way and while there are various way to do it (e.g. also via QEMU monitor)
driving such a change via libvirt is recommended. That way, libvirt can try to manage all sorts of special cases for
you and also somewhat masks version differences.

In general when driving hotplug via libvirt you create an XML snippet that describes the device just as you would do
in a static guest description. A USB device is usually identified by vendor/product ID:

<hostdev mode='subsystem' type='usb' managed='yes'>
<source>
<vendor id='0x0b6d'/>
<product id='0x3880"'/>
</source>
</hostdev>

Virtual functions are usually assigned via their PCI ID (domain, bus, slot, function).

<hostdev mode='subsystem' type='pci' managed='yes'>
<source>
<address domain='0x0000' bus='0x04' slot='0x10"' function='0x0"'/>
</source>
</hostdev>

215

https://en.wikipedia.org/wiki/Slirp
https://wiki.libvirt.org/page/FAQ#What_is_the_difference_between_qemu:.2F.2F.2Fsystem_and_qemu:.2F.2F.2Fsession.3F_Which_one_should_I_use.3F
https://blog.wikichoon.com/2016/01/qemusystem-vs-qemusession.html
https://libvirt.org/migration.html#offline
https://libvirt.org/migration.html
http://wiki.qemu.org/Features/PostCopyLiveMigration
https://wiki.ubuntu.com/QemuKVMMigration
https://libvirt.org/formatdomain.html

Note:

To get the virtual function in the first place is very device dependent and can therefore not be fully covered
here. But in general it involves setting up an IOMMU, registering via VFIO and sometimes requesting a
number of VFs. Here an example on ppc64el to get 4 VFs on a device:

$ sudo modprobe vfio-pci

identify device

$ lspci -n -s 0005:01:01.3

0005:01:01.3 0200: 10df:e228 (rev 10)

register and request VFs

$ echo 10df e228 | sudo tee /sys/bus/pci/drivers/vfio-pci/new id

$ echo 4 | sudo tee /sys/bus/pci/devices/0005\:01\:00.0/sriov_numvfs

You then attach or detach the device via libvirt by relating the guest with the XML snippet.

virsh attach-device <guestname> <device-xml>
Use the Device in the Guest
virsh detach-device <guestname> <device-xml>

Access QEMU Monitor via libvirt

The QEMU Monitor is the way to interact with QEMU/KVM while a guest is running. This interface has many
powerful features for experienced users. When running under libvirt, the monitor interface is bound by libvirt itself
for management purposes, but a user can still run QEMU monitor commands via libvirt. The general syntax is virsh
gemu-monitor-command [options] [guest] 'command'.

Libvirt covers most use cases needed, but if you ever want/need to work around libvirt or want to tweak very special
options you can e.g. add a device as follows:

virsh gemu-monitor-command --hmp focal-test-log 'drive add 0 if=none,file=/var/lib/libvirt/images/test.img, format=raw, i

But since the monitor is so powerful, you can do a lot — especially for debugging purposes like showing the guest
registers:

virsh gemu-monitor-command --hmp y-ipns 'info registers'

RAX=00ffffc000000000 RBX=ffff8f0f5d5c7e48 RCX=0000000000000000 RDX=ffffeab®007571cO
RSI=0000000000000000 RDI=ffff8f0fdd5c7e48 RBP=ffff8f0f5d5c7el8 RSP=ffff8f0f5d5c7df8
[...]

Huge pages

Using huge pages can help to reduce TLB pressure, page table overhead and speed up some further memory relate
actions. Furthermore by default transparent huge pages are useful, but can be quite some overhead - so if it is clear
that using huge pages is preferred then making them explicit usually has some gains.

While huge page are admittedly harder to manage (especially later in the system’s lifetime if memory is fragmented)
they provide a useful boost especially for rather large guests.

Bonus:
When using device passthrough on very large guests there is an extra benefit of using huge pages as it is
faster to do the initial memory clear on VFIO DMA pin.

Huge page allocation

Huge pages come in different sizes. A mormal page is usually 4k and huge pages are either 2M or 1G, but depending
on the architecture other options are possible.

The simplest yet least reliable way to allocate some huge pages is to just echo a value to sysfs:
echo 256 | sudo tee /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages
Be sure to re-check if it worked:

cat /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

256

There one of these sizes is “default huge page size” which will be used in the auto-mounted /dev/hugepages. Changing
the default size requires a reboot and is set via default hugepagesz.

You can check the current default size:

216

https://www.kernel.org/doc/Documentation/vfio.txt
https://en.wikibooks.org/wiki/QEMU/Monitor
https://www.kernel.org/doc/Documentation/vm/transhuge.txt
https://www.kernel.org/doc/html/v5.4/admin-guide/kernel-parameters.html

grep Hugepagesize /proc/meminfo

Hugepagesize: 2048 kB
But there can be more than one at the same time — so it’s a good idea to check:

$ tail /sys/kernel/mm/hugepages/hugepages-*/nr _hugepages’

==> /sys/kernel/mm/hugepages/hugepages-1048576kB/nr_hugepages <==
0

==> /sys/kernel/mm/hugepages/hugepages-2048kB/nr hugepages <==

2

And even that could — on bigger systems — be further split per Numa node.

One can allocate huge pages at boot or runtime, but due to fragmentation there are no guarantees it works later. The
kernel documentation lists details on both ways.

Huge pages need to be allocated by the kernel as mentioned above but to be consumable they also have to be mounted.
By default, systemd will make /dev/hugepages available for the default huge page size.

Feel free to add more mount points if you need different sized ones. An overview can be queried with:
hugeadm --list-all-mounts

Mount Point Options

/dev/hugepages rw, relatime, pagesize=2M

A one-stop info for the overall huge page status of the system can be reported with:

hugeadm --explain

Huge page usage in libvirt

With the above in place, libvirt can map guest memory to huge pages. In a guest definition add the most simple form
of:

<memoryBacking>
<hugepages/>
</memoryBacking>

That will allocate the huge pages using the default huge page size from an autodetected mount point.
For more control, e.g. how memory is spread over Numa nodes or which page size to use, check out the details at the
libvirt docs.

Controlling addressing bits

This is a topic that rarely matters on a single computer with virtual machines for generic use; libvirt will automatically
use the hypervisor default, which in the case of QEMU is 40 bits. This default aims for compatibility since it will be
the same on all systems, which simplifies migration between them and usually is compatible even with older hardware.

However, it can be very important when driving more advanced use cases. If one needs bigger guest sizes with more
than a terabyte of memory then controlling the addressing bits is crucial.

-hpb machine types

Since Ubuntu 18.04 the QEMU in Ubuntu has provided special machine-types. These have been the Ubuntu machine
type like pc-q35-jammy or pc-i440fx-jammy but with a -hpb suffix. The “hpb” abbreviation stands for “host-physical-
bits”, which is the QEMU option that this represents.

For example, by using pc-q35-jammy-hpb the guest would use the number of physical bits that the Host CPU has
available.

Providing the configuration that a guest should use more address bits as a machine type has the benefit that many
higher level management stacks like for example openstack, are already able to control it through libvirt.

One can check the bits available to a given CPU via the procfs:

A

$ cat /proc/cpuinfo | grep '“~address sizes'

an older server with a E5-2620

address sizes : 46 bits physical, 48 bits virtual
a laptop with an i17-8550U

217

https://www.kernel.org/doc/html/v5.4/vm/numa.html
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
https://www.kernel.org/doc/html/v5.4/vm/numa.html
https://libvirt.org/formatdomain.html#elementsMemoryBacking
https://bugs.launchpad.net/ubuntu/+source/qemu/+bug/1776189

address sizes : 39 bits physical, 48 bits virtual

maxphysaddr guest configuration

Since libvirt version 8.7.0 (>= Ubuntu 22.10 Lunar), maxphysaddr can be controlled via the CPU model and topology
section of the guest configuration.

If one needs just a large guest, like before when using the -hpb types, all that is needed is the following libvirt guest
xml configuration:

<maxphysaddr mode='passthrough' />

Since libvirt 9.2.0 and 9.3.0 (>= Ubuntu 23.10 Mantic), an explicit number of emulated bits or a limit to the
passthrough can be specified. Combined, this pairing can be very useful for computing clusters where the CPUs have
different hardware physical addressing bits. Without these features guests could be large, but potentially unable to
migrate freely between all nodes since not all systems would support the same amount of addressing bits.

But now, one can either set a fix value of addressing bits:
<maxphysaddr mode='emulate' bits='42'/>

Or use the best available by a given hardware, without going over a certain limit to retain some compute node
compatibility.

<maxphysaddr mode='passthrough' limit='41/>

AppArmor isolation

By default libvirt will spawn QEMU guests using AppArmor isolation for enhanced security. The AppArmor rules for
a guest will consist of multiple elements:

o A static part that all guests share => /etc/apparmor.d/abstractions/libvirt-gemu
o A dynamic part created at guest start time and modified on hotplug/unplug => /etc/apparmor.d/libvirt/libvirt-
f9533e35-6b63-45f5-96be-7cccc9696d5e. files

Of the above, the former is provided and updated by the libvirt-daemon package and the latter is generated on guest
start. Neither of the two should be manually edited. They will, by default, cover the vast majority of use cases and
work fine. But there are certain cases where users either want to:

o Further lock down the guest, e.g. by explicitly denying access that usually would be allowed.
e Open up the guest isolation. Most of the time this is needed if the setup on the local machine does not follow
the commonly used paths.

To do so there are two files. Both are local overrides which allow you to modify them without getting them clobbered
or command file prompts on package upgrades.

e /etc/apparmor.d/local/abstractions/libvirt-qgemu
This will be applied to every guest. Therefore it is a rather powerful (if blunt) tool. It is a quite useful place to
add additional deny rules.

e /etc/apparmor.d/local/usr.lib.libvirt.virt-aa-helper
The above-mentioned dynamic part that is individual per guest is generated by a tool called libvirt.virt-aa-
helper. That is under AppArmor isolation as well. This is most commonly used if you want to use uncommon
paths as it allows one to have those uncommon paths in the guest XML (see virsh edit) and have those paths
rendered to the per-guest dynamic rules.

Sharing files between Host <->Guest

To be able to exchange data, the memory of the guest has to be allocated as “shared”. To do so you need to add the
following to the guest config:

<memoryBacking>
<access mode='shared'/>
</memoryBacking>

For performance reasons (it helps virtiofs, but also is generally wise to consider) it
is recommended to use huge pages which then would look like:

<memoryBacking>
<hugepages>
<page size='2048' unit='KiB'/>
</hugepages>
<access mode='shared'/>

218

https://libvirt.org/formatdomain.html#cpu-model-and-topology
https://libvirt.org/formatdomain.html#cpu-model-and-topology
https://gitlab.com/apparmor/apparmor/-/wikis/Libvirt#implementation-overview
https://gitlab.com/apparmor/apparmor/-/wikis/Libvirt#implementation-overview
https://gitlab.com/apparmor/apparmor/-/wikis/FAQ#what-is-default-deny-white-listing
https://libvirt.org/formatdomain.html

</memoryBacking>

In the guest definition one then can add filesytem sections to specify host paths to share with the guest. The target
dir is a bit special as it isn’t really a directory — instead it is a tag that in the guest can be used to access this particular
virtiofs instance.

<filesystem type='mount' accessmode='passthrough'>
<driver type='virtiofs'/>
<source dir='/var/guests/h-virtiofs'/>
<target dir='myfs'/>

</filesystem>

And in the guest this can now be used based on the tag myfs like:
sudo mount -t virtiofs myfs /mnt/

Compared to other Host/Guest file sharing options — commonly Samba, NFS or 9P — virtiofs is usually much faster
and also more compatible with usual file system semantics. For some extra compatibility in regard to filesystem
semantics one can add:

<binary xattr='on'>
<lock posix='on' flock='on'/>
</binary>

See the libvirt domain/filesytem documentation for further details on these.

Note:

While virtiofs works with >=20.10 (Groovy), with >=21.04 (Hirsute) it became more comfortable, espe-
cially in small environments (no hard requirement to specify guest Numa topology, no hard requirement to
use huge pages). If needed to set up on 20.10 or just interested in those details - the libvirt knowledge-base
about virtiofs holds more details about these.

Resources
¢ See the KVM home page for more details.
e For more information on libvirt see the libvirt home page.
— XML configuration of domains and storage are the most often used libvirt reference.
e Another good resource is the Ubuntu Wiki KVM page.
o For basics on how to assign VT-d devices to QEMU/KVM, please see the linux-kvm page.

Containers are a lightweight virtualization technology. They are more akin to an enhanced chroot than to full virtu-
alization like Qemu or VMware, both because they do not emulate hardware and because containers share the same
operating system as the host. Containers are similar to Solaris zones or BSD jails. Linux-vserver and OpenVZ are two
pre-existing, independently developed implementations of containers-like functionality for Linux. In fact, containers
came about as a result of the work to upstream the vserver and OpenVZ functionality.

There are two user-space implementations of containers, each exploiting the same kernel features. Libvirt allows the
use of containers through the LXC driver by connecting to 1xc:///. This can be very convenient as it supports the
same usage as its other drivers. The other implementation, called simply ‘LXC’, is not compatible with libvirt, but is
more flexible with more userspace tools. It is possible to switch between the two, though there are peculiarities which
can cause confusion.

In this document we will mainly describe the 1xc package. Use of libvirt-lxc is not generally recommended due to a
lack of Apparmor protection for libvirt-lxc containers.

In this document, a container name will be shown as CN, C1, or C2.

Installation
The Ixc package can be installed using
sudo apt install lxc

This will pull in the required and recommended dependencies, as well as set up a network bridge for containers to use.
If you wish to use unprivileged containers, you will need to ensure that users have sufficient allocated subuids and
subgids, and will likely want to allow users to connect containers to a bridge (see Basic unprivileged usage below).

219

https://libvirt.org/formatdomain.html#filesystems
https://libvirt.org/kbase/virtiofs.html
https://libvirt.org/kbase/virtiofs.html
http://www.linux-kvm.org/
http://libvirt.org/
https://libvirt.org/formatdomain.html
https://libvirt.org/formatstorage.html
https://help.ubuntu.com/community/KVM
http://www.linux-kvm.org/page/How_to_assign_devices_with_VT-d_in_KVM#Assigning_the_device

Basic usage

LXC can be used in two distinct ways - privileged, by running the Ixc commands as the root user; or unprivileged, by
running the Ixc commands as a non-root user. (The starting of unprivileged containers by the root user is possible,
but not described here.) Unprivileged containers are more limited, for instance being unable to create device nodes
or mount block-backed filesystems. However they are less dangerous to the host, as the root UID in the container is
mapped to a non-root UID on the host.

Basic privileged usage

To create a privileged container, you can simply do:
sudo lxc-create --template download --name ul
or, abbreviated

sudo lxc-create -t download -n ul

This will interactively ask for a container root filesystem type to download — in particular the distribution, release,
and architecture. To create the container non-interactively, you can specify these values on the command line:

sudo lxc-create -t download -n ul -- --dist ubuntu --release DISTRO-SHORT-CODENAME --arch amd64
or
sudo lxc-create -t download -n ul -- -d ubuntu -r DISTRO-SHORT-CODENAME -a amd64

You can now use lxc-1s to list containers, lxc-info to obtain detailed container information, lxc-start to start and
1xc-stop to stop the container. 1xc-attach and lxc-console allow you to enter a container, if ssh is not an option.
1xc-destroy removes the container, including its rootfs. See the manual pages for more information on each command.
An example session might look like:

sudo lxc-1ls --fancy

sudo lxc-start --name ul --daemon
sudo 1xc-info --name ul

sudo lxc-stop --name ul

sudo lxc-destroy --name ul

User namespaces

Unprivileged containers allow users to create and administer containers without having any root privilege. The
feature underpinning this is called user namespaces. User namespaces are hierarchical, with privileged tasks in a
parent namespace being able to map its ids into child namespaces. By default every task on the host runs in the
initial user namespace, where the full range of ids is mapped onto the full range. This can be seen by looking at
/proc/self/uid _map and /proc/self/gid map, which both will show @ 0 4294967295 when read from the initial user
namespace. As of Ubuntu 14.04, when new users are created they are by default offered a range of UIDs. The list of
assigned ids can be seen in the files /etc/subuid and /etc/subgid See their respective manpages for more information.
Subuids and subgids are by convention started at id 100000 to avoid conflicting with system users.

If a user was created on an earlier release, it can be granted a range of ids using usermod, as follows:
sudo usermod -v 100000-200000 -w 100000-200000 userl

The programs newuidmap and newgidmap are setuid-root programs in the uidmap package, which are used internally by
Ixc to map subuids and subgids from the host into the unprivileged container. They ensure that the user only maps
ids which are authorized by the host configuration.

Basic unprivileged usage

To create unprivileged containers, a few first steps are needed. You will need to create a default container configuration
file, specifying your desired id mappings and network setup, as well as configure the host to allow the unprivileged
user to hook into the host network. The example below assumes that your mapped user and group id ranges are
100000-165536. Check your actual user and group id ranges and modify the example accordingly:

grep $USER /etc/subuid
grep $USER /etc/subgid

mkdir -p ~/.config/1xc

echo "lxc.id map = u 0 100000 65536" > ~/.config/1xc/default.conf
echo "lxc.id map = g 0 100000 65536" >> ~/.config/lxc/default.conf
echo "lxc.network.type = veth" >> ~/.config/1xc/default.conf

220

echo "lxc.network.link = lxcbr@" >> ~/.config/lxc/default.conf
echo "$USER veth lxcbr® 2" | sudo tee -a /etc/lxc/lxc-usernet

After this, you can create unprivileged containers the same way as privileged ones, simply without using sudo.

lxc-create -t download -n ul -- -d ubuntu -r DISTRO-SHORT-CODENAME -a amd64
lxc-start -n ul -d

lxc-attach -n ul

lxc-stop -n ul

lxc-destroy -n ul

Nesting

In order to run containers inside containers - referred to as nested containers - two lines must be present in the parent
container configuration file:

1xc.mount.auto = cgroup
lxc.aa profile = lxc-container-default-with-nesting

The first will cause the cgroup manager socket to be bound into the container, so that 1xc inside the container is able
to administer cgroups for its nested containers. The second causes the container to run in a looser Apparmor policy
which allows the container to do the mounting required for starting containers. Note that this policy, when used with
a privileged container, is much less safe than the regular policy or an unprivileged container. See the Apparmor section
for more information.

Global configuration

The following configuration files are consulted by LXC. For privileged use, they are found under /etc/1xc, while for
unprivileged use they are under ~/.config/1xc.

e 1xc.conf may optionally specify alternate values for several Ixc settings, including the Ixcpath, the default
configuration, cgroups to use, a cgroup creation pattern, and storage backend settings for lvm and zfs.

e default.conf specifies configuration which every newly created container should contain. This usually contains
at least a network section, and, for unprivileged users, an id mapping section

e 1lxc-usernet.conf specifies how unprivileged users may connect their containers to the host-owned network.

1xc.conf and default.conf are both under /etc/1xc and $HOME/.config/1xc, while 1xc-usernet.conf is only host-wide.

By default, containers are located under /var/lib/lxc for the root user.

Networking

By default LXC creates a private network namespace for each container, which includes a layer 2 networking stack.
Containers usually connect to the outside world by either having a physical NIC or a veth tunnel endpoint passed into
the container. LXC creates a NATed bridge, Ixcbr0, at host startup. Containers created using the default configuration
will have one veth NIC with the remote end plugged into the lxcbr0 bridge. A NIC can only exist in one namespace
at a time, so a physical NIC passed into the container is not usable on the host.

It is possible to create a container without a private network namespace. In this case, the container will have access
to the host networking like any other application. Note that this is particularly dangerous if the container is running
a distribution with upstart, like Ubuntu, since programs which talk to init, like shutdown, will talk over the abstract
Unix domain socket to the host’s upstart, and shut down the host.

To give containers on IxcbrQ) a persistent ip address based on domain name, you can write entries to
/etc/1xc/dnsmasq. conf like:

dhcp-host=1xcmail, 10.0.3.100
dhcp-host=ttrss,10.0.3.101

If it is desirable for the container to be publicly accessible, there are a few ways to go about it. One is to use iptables
to forward host ports to the container, for instance

iptables -t nat -A PREROUTING -p tcp -i eth® --dport 587 -j DNAT \
--to-destination 10.0.3.100:587

Then, specify the host’s bridge in the container configuration file in place of Ixcbr0, for instance

1xc.network.type = veth
1xc.network.link = bro

221

Finally, you can ask LXC to use macvlan for the container’s NIC. Note that this has limitations and depending on
configuration may not allow the container to talk to the host itself. Therefore the other two options are preferred and
more commonly used.

There are several ways to determine the ip address for a container. First, you can use lxc-1s --fancy which will print
the ip addresses for all running containers, or 1xc-info -i -H -n C1 which will print C1’s ip address. If dnsmasq is
installed on the host, you can also add an entry to /etc/dnsmasq.conf as follows

server=/1xc/10.0.3.1
after which dnsmasq will resolve C1.1xc locally, so that you can do:

ping C1
ssh C1

For more information, see the 1xc.conf(5) manpage as well as the example network configurations under
/usr/share/doc/1xc/examples/.

LXC startup

LXC does not have a long-running daemon. However it does have three upstart jobs.

e /etc/init/lxc-net.conf: is an optional job which only runs if /etc/default/lxc-net specifies USE_LXC BRIDGE
(true by default). It sets up a NATed bridge for containers to use.

e /etc/init/1xc.conf loads the Ixc apparmor profiles and optionally starts any autostart containers. The autostart
containers will be ignored if LXC AUTO (true by default) is set to true in /etc/default/lxc. See the lxc-
autostart manual page for more information on autostarted containers.

e /etc/init/lxc-instance.conf is used by /etc/init/1xc.conf to autostart a container.

Backing Stores

LXC supports several backing stores for container root filesystems. The default is a simple directory backing store,
because it requires no prior host customization, so long as the underlying filesystem is large enough. It also requires no
root privilege to create the backing store, so that it is seamless for unprivileged use. The rootfs for a privileged directory
backed container is located (by default) under /var/lib/1xc/C1/rootfs, while the rootfs for an unprivileged container
is under ~/.local/share/1xc/Cl/rootfs. If a custom Ixcpath is specified in 1xc.system.com, then the container rootfs
will be under $1xcpath/C1/rootfs.

A snapshot clone C2 of a directory backed container C1 becomes an overlayfs backed container, with a rootfs called
overlayfs:/var/lib/1xc/C1l/rootfs:/var/lib/1xc/C2/deltad. Other backing store types include loop, btrfs, LVM and
zfs.

A btrfs backed container mostly looks like a directory backed container, with its root filesystem in the same location.
However, the root filesystem comprises a subvolume, so that a snapshot clone is created using a subvolume snapshot.

The root filesystem for an LVM backed container can be any separate LV. The default VG name can be specified in
Ixc.conf. The filesystem type and size are configurable per-container using lxc-create.

The rootfs for a zfs backed container is a separate zfs filesystem, mounted under the traditional /var/lib/1xc/C1l/rootfs
location. The zfsroot can be specified at lxc-create, and a default can be specified in Ixc.system.conf.

More information on creating containers with the various backing stores can be found in the Ixc-create manual page.

Templates

Creating a container generally involves creating a root filesystem for the container. 1xc-create delegates this
work to templates, which are generally per-distribution. The Ixc templates shipped with lxc can be found under
/usr/share/lxc/templates, and include templates to create Ubuntu, Debian, Fedora, Oracle, centos, and gentoo
containers among others.

Creating distribution images in most cases requires the ability to create device nodes, often requires tools which are
not available in other distributions, and usually is quite time-consuming. Therefore Ixc comes with a special download
template, which downloads pre-built container images from a central 1xc server. The most important use case is to allow
simple creation of unprivileged containers by non-root users, who could not for instance easily run the debootstrap
command.

When running lxc-create, all options which come after — are passed to the template. In the following command,
-name, —template and —bdev are passed to 1xc-create, while —release is passed to the template:

222

lxc-create --template ubuntu --name cl --bdev loop -- --release DISTRO-SHORT-CODENAME

You can obtain help for the options supported by any particular container by passing —help and the template name to
1xc-create. For instance, for help with the download template,

lxc-create --template download --help

Autostart

LXC supports marking containers to be started at system boot. Prior to Ubuntu 14.04, this was done using symbolic
links under the directory /etc/lxc/auto. Starting with Ubuntu 14.04, it is done through the container configuration
files. An entry

1xc.start.auto = 1
lxc.start.delay = 5

would mean that the container should be started at boot, and the system should wait 5 seconds before starting the
next container. LXC also supports ordering and grouping of containers, as well as reboot and shutdown by autostart
groups. See the manual pages for Ixc-autostart and lxc.container.conf for more information.

Apparmor

LXC ships with a default Apparmor profile intended to protect the host from accidental misuses of privilege inside
the container. For instance, the container will not be able to write to /proc/sysrq-trigger or to most /sys files.

The usr.bin.lxc-start profile is entered by running 1xc-start. This profile mainly prevents lxc-start from mounting
new filesystems outside of the container’s root filesystem. Before executing the container’s init, LXC requests a
switch to the container’s profile. By default, this profile is the lxc-container-default policy which is defined in
/etc/apparmor.d/lxc/1xc-default. This profile prevents the container from accessing many dangerous paths, and
from mounting most filesystems.

Programs in a container cannot be further confined - for instance, MySQL runs under the container profile (protecting
the host) but will not be able to enter the MySQL profile (to protect the container).

1xc-execute does not enter an Apparmor profile, but the container it spawns will be confined.

Customizing container policies

If you find that 1xc-start is failing due to a legitimate access which is being denied by its Apparmor policy, you can
disable the lxc-start profile by doing:

sudo apparmor_parser -R /etc/apparmor.d/usr.bin.lxc-start
sudo ln -s /etc/apparmor.d/usr.bin.lxc-start /etc/apparmor.d/disabled/

This will make lxc-start run unconfined, but continue to confine the container itself. If you also wish to disable
confinement of the container, then in addition to disabling the usr.bin.lxc-start profile, you must add:

lxc.aa profile = unconfined
to the container’s configuration file.

LXC ships with a few alternate policies for containers. If you wish to run containers inside containers (nesting), then
you can use the Ixc-container-default-with-nesting profile by adding the following line to the container configuration
file

lxc.aa profile = lxc-container-default-with-nesting

If you wish to use libvirt inside containers, then you will need to edit that policy (which is defined in
/etc/apparmor.d/xc/1xc-default-with-nesting) by uncommenting the following line:

mount fstype=cgroup -> /sys/fs/cgroup/**,
and re-load the policy.

Note that the nesting policy with privileged containers is far less safe than the default policy, as it allows containers
to re-mount /sys and /proc in nonstandard locations, bypassing apparmor protections. Unprivileged containers do
not have this drawback since the container root cannot write to root-owned proc and sys files.

Another profile shipped with Ixc allows containers to mount block filesystem types like ext4. This can be useful in
some cases like maas provisioning, but is deemed generally unsafe since the superblock handlers in the kernel have not
been audited for safe handling of untrusted input.

223

If you need to run a container in a custom profile, you can create a new profile under /etc/apparmor.d/ixc/. Its name
must start with 1xc- in order for l1xc-start to be allowed to transition to that profile. The 1xc-default profile includes
the re-usable abstractions file /etc/apparmor.d/abstractions/1lxc/container-base. An easy way to start a new profile
therefore is to do the same, then add extra permissions at the bottom of your policy.

After creating the policy, load it using:
sudo apparmor_parser -r /etc/apparmor.d/lxc-containers

The profile will automatically be loaded after a reboot, because it is sourced by the file /etc/apparmor.d/lxc-containers.
Finally, to make container CN use this new 1xc-CN-profile, add the following line to its configuration file:

Ixc.aa profile = lxc-CN-profile

Control Groups

Control groups (cgroups) are a kernel feature providing hierarchical task grouping and per-cgroup resource accounting
and limits. They are used in containers to limit block and character device access and to freeze (suspend) containers.
They can be further used to limit memory use and block i/o, guarantee minimum cpu shares, and to lock containers
to specific cpus.

By default, a privileged container CN will be assigned to a cgroup called /1xc/CN. In the case of name conflicts (which
can occur when using custom lxcpaths) a suffix “-n”, where n is an integer starting at 0, will be appended to the
cgroup name.

By default, a privileged container CN will be assigned to a cgroup called CN under the cgroup of the task which started
the container, for instance /usr/1000.user/1.session/CN. The container root will be given group ownership of the
directory (but not all files) so that it is allowed to create new child cgroups.

As of Ubuntu 14.04, LXC uses the cgroup manager (cgmanager) to administer cgroups. The cgroup manager receives
D-Bus requests over the Unix socket /sys/fs/cgroup/cgmanager/sock. To facilitate safe nested containers, the line

1xc.mount.auto = cgroup

can be added to the container configuration causing the /sys/fs/cgroup/cgmanager directory to be bind-
mounted into the container. The container in turn should start the cgroup management proxy (done by
default if the cgmanager package is installed in the container) which will move the /sys/fs/cgroup/cgmanager
directory to /sys/fs/cgroup/cgmanager.lower, then start listening for requests to proxy on its own socket
/sys/fs/cgroup/cgmanager/sock. The host cgmanager will ensure that nested containers cannot escape their
assigned cgroups or make requests for which they are not authorized.

Cloning

For rapid provisioning, you may wish to customize a canonical container according to your needs and then make
multiple copies of it. This can be done with the 1xc-clone program.

Clones are either snapshots or copies of another container. A copy is a new container copied from the original, and
takes as much space on the host as the original. A snapshot exploits the underlying backing store’s snapshotting
ability to make a copy-on-write container referencing the first. Snapshots can be created from btrfs, LVM, zfs, and
directory backed containers. Each backing store has its own peculiarities - for instance, LVM containers which are not
thinpool-provisioned cannot support snapshots of snapshots; zfs containers with snapshots cannot be removed until all
snapshots are released; LVM containers must be more carefully planned as the underlying filesystem may not support
growing; btrfs does not suffer any of these shortcomings, but suffers from reduced fsync performance causing dpkg
and apt to be slower.

Snapshots of directory-packed containers are created using the overlay filesystem. For instance, a privileged directory-
backed container C1 will have its root filesystem under /var/lib/1xc/C1/rootfs. A snapshot clone of C1 called C2 will
be started with C1’s rootfs mounted readonly under /var/lib/1xc/C2/delta0. Importantly, in this case C1 should not
be allowed to run or be removed while C2 is running. It is advised instead to consider C1 a canonical base container,
and to only use its snapshots.

Given an existing container called C1, a copy can be created using;:
sudo lxc-clone -o C1 -n C2

A snapshot can be created using:

sudo lxc-clone -s -0 C1 -n C2

See the Ixc-clone manpage for more information.

224

Snapshots

To more easily support the use of snapshot clones for iterative container development, LXC supports snapshots. When
working on a container C1, before making a potentially dangerous or hard-to-revert change, you can create a snapshot

sudo lxc-snapshot -n C1

which is a snapshot-clone called ‘snap0Q’ under /var/lib/Ixcsnaps or SHOME/ local/share/lxcsnaps. The next snapshot
will be called ‘snapl’, etc. Existing snapshots can be listed using 1xc-snapshot -L -n C1, and a snapshot can be restored
- erasing the current C1 container - using 1xc-snapshot -r snapl -n Cl. After the restore command, the snapl snapshot
continues to exist, and the previous C1 is erased and replaced with the snapl snapshot.

Snapshots are supported for btrfs, lvm, zfs, and overlayfs containers. If Ixc-snapshot is called on a directory-backed
container, an error will be logged and the snapshot will be created as a copy-clone. The reason for this is that if the
user creates an overlayfs snapshot of a directory-backed container and then makes changes to the directory-backed
container, then the original container changes will be partially reflected in the snapshot. If snapshots of a directory
backed container C1 are desired, then an overlayfs clone of C1 should be created, C1 should not be touched again,
and the overlayfs clone can be edited and snapshotted at will, as such

lxc-clone -s -0 C1 -n C2

lxc-start -n C2 -d # make some changes
lxc-stop -n C2

1xc-snapshot -n C2

lxc-start -n C2 # etc

Ephemeral Containers

While snapshots are useful for longer-term incremental development of images, ephemeral containers utilize snapshots
for quick, single-use throwaway containers. Given a base container C1, you can start an ephemeral container using

lxc-start-ephemeral -o C1

The container begins as a snapshot of C1. Instructions for logging into the container will be printed to the console.
After shutdown, the ephemeral container will be destroyed. See the Ixc-start-ephemeral manual page for more options.

Lifecycle management hooks
Beginning with Ubuntu 12.10, it is possible to define hooks to be executed at specific points in a container’s lifetime:

e Pre-start hooks are run in the host’s namespace before the container ttys, consoles, or mounts are up. If any
mounts are done in this hook, they should be cleaned up in the post-stop hook.

e Pre-mount hooks are run in the container’s namespaces, but before the root filesystem has been mounted. Mounts
done in this hook will be automatically cleaned up when the container shuts down.

e Mount hooks are run after the container filesystems have been mounted, but before the container has called
pivot root to change its root filesystem.

o Start hooks are run immediately before executing the container’s init. Since these are executed after pivoting
into the container’s filesystem, the command to be executed must be copied into the container’s filesystem.

o Post-stop hooks are executed after the container has been shut down.

If any hook returns an error, the container’s run will be aborted. Any post-stop hook will still be executed. Any
output generated by the script will be logged at the debug priority.

Please see the 1xc.container.conf(5) manual page for the configuration file format with which to specify hooks. Some
sample hooks are shipped with the Ixc package to serve as an example of how to write and use such hooks.

Consoles

Containers have a configurable number of consoles. One always exists on the container’s /dev/console. This is shown
on the terminal from which you ran 1xc-start, unless the -d option is specified. The output on /dev/console can
be redirected to a file using the -c¢ console-file option to 1xc-start. The number of extra consoles is specified by the
Ixc.tty variable, and is usually set to 4. Those consoles are shown on /dev/ttyN (for 1 <= N <= 4). To log into
console 3 from the host, use:

sudo lxc-console -n container -t 3

or if the -t N option is not specified, an unused console will be automatically chosen. To exit the console, use the escape
sequence Ctrl-a g. Note that the escape sequence does not work in the console resulting from 1xc-start without the
-d option.

225

Each container console is actually a Unix98 pty in the host’s (not the guest’s) pty mount, bind-mounted over the
guest’s /dev/ttyN and /dev/console. Therefore, if the guest unmounts those or otherwise tries to access the actual
character device 4:N, it will not be serving getty to the LXC consoles. (With the default settings, the container will
not be able to access that character device and getty will therefore fail.) This can easily happen when a boot script
blindly mounts a new /dev.

Troubleshooting

Logging

If something goes wrong when starting a container, the first step should be to get full logging from LXC:
sudo lxc-start -n C1 -1 trace -o debug.out

This will cause Ixc to log at the most verbose level, trace, and to output log information to a file called ‘debug.out’.
If the file debug.out already exists, the new log information will be appended.

Monitoring container status

Two commands are available to monitor container state changes. 1xc-monitor monitors one or more containers for any
state changes. It takes a container name as usual with the -n option, but in this case the container name can be a
posix regular expression to allow monitoring desirable sets of containers. lxc-monitor continues running as it prints
container changes. lxc-wait waits for a specific state change and then exits. For instance,

sudo lxc-monitor -n cont[0-5]*
would print all state changes to any containers matching the listed regular expression, whereas
sudo lxc-wait -n contl -s 'STOPPED|FROZEN'

will wait until container contl enters state STOPPED or state FROZEN and then exit.

Attach
As of Ubuntu 14.04, it is possible to attach to a container’s namespaces. The simplest case is to simply do
sudo lxc-attach -n Cl1

which will start a shell attached to C1’s namespaces, or, effectively inside the container. The attach functionality is
very flexible, allowing attaching to a subset of the container’s namespaces and security context. See the manual page
for more information.

Container init verbosity

If LXC completes the container startup, but the container init fails to complete (for instance, no login prompt is
shown), it can be useful to request additional verbosity from the init process. For an upstart container, this might be:

sudo lxc-start -n C1 /sbin/init loglevel=debug
You can also start an entirely different program in place of init, for instance

sudo lxc-start -n Cl /bin/bash
sudo lxc-start -n Cl /bin/sleep 100
sudo lxc-start -n Cl /bin/cat /proc/1l/status

LXC API

Most of the LXC functionality can now be accessed through an API exported by liblxc for which bindings are available
in several languages, including Python, lua, ruby, and go.

Below is an example using the python bindings (which are available in the python3-lxc package) which creates and
starts a container, then waits until it has been shut down:

sudo python3

Python 3.2.3 (default, Aug 28 2012, 08:26:03)

[GCC 4.7.1 20120814 (prerelease)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> import 1xc

~_main_ :1: Warning: The python-1lxc API isn't yet stable and may change at any point in the future.
>>> c=1xc.Container("C1")

>>> c.create("ubuntu")

226

True

>>> c.start()

True

>>> c.wait("STOPPED")
True

Security

A namespace maps ids to resources. By not providing a container any id with which to reference a resource, the resource
can be protected. This is the basis of some of the security afforded to container users. For instance, IPC namespaces
are completely isolated. Other namespaces, however, have various leaks which allow privilege to be inappropriately
exerted from a container into another container or to the host.

By default, LXC containers are started under a Apparmor policy to restrict some actions. The details of AppArmor
integration with Ixc are in section Apparmor. Unprivileged containers go further by mapping root in the container
to an unprivileged host UID. This prevents access to /proc and /sys files representing host resources, as well as any
other files owned by root on the host.

Exploitable system calls

It is a core container feature that containers share a kernel with the host. Therefore if the kernel contains any
exploitable system calls the container can exploit these as well. Once the container controls the kernel it can fully
control any resource known to the host.

In general to run a full distribution container a large number of system calls will be needed. However for application
containers it may be possible to reduce the number of available system calls to only a few. Even for system containers
running a full distribution security gains may be had, for instance by removing the 32-bit compatibility system calls in
a 64-bit container. See the Ixc.container.conf manual page for details of how to configure a container to use seccomp.
By default, no seccomp policy is loaded.

Resources

e The DeveloperWorks article LXC: Linux container tools was an early introduction to the use of containers.
e The Secure Containers Cookbook demonstrated the use of security modules to make containers more secure.
e The upstream LXC project is hosted at linuxcontainers.org.

LXD (pronounced lex-dee) is the lightervisor, or lightweight container hypervisor. LXC (lex-see) is a program which
creates and administers “containers” on a local system. It also provides an API to allow higher level managers, such
as LXD, to administer containers. In a sense, one could compare LXC to QEMU, while comparing LXD to libvirt.

The LXC API deals with a ‘container’. The LXD API deals with ‘remotes’, which serve images and containers. This
extends the LXC functionality over the network, and allows concise management of tasks like container migration and
container image publishing.

LXD uses LXC under the covers for some container management tasks. However, it keeps its own container config-
uration information and has its own conventions, so that it is best not to use classic LXC commands by hand with
LXD containers. This document will focus on how to configure and administer LXD on Ubuntu systems.

Online Resources

There is excellent documentation for getting started with LXD. Stephane Graber also has an excellent blog series on
LXD 2.0. Finally, there is great documentation on how to drive LXD using Juju.

This document will offer an Ubuntu Server-specific view of LXD, focusing on administration.

Installation
LXD is pre-installed on Ubuntu Server cloud images. On other systems, the 1xd package can be installed using:
sudo snap install 1xd

This will install the self-contained LXD snap package.

Kernel preparation

In general, Ubuntu should have all the desired features enabled by default. One exception to this is that in order
to enable swap accounting the boot argument swapaccount=1 must be set. This can be done by appending it to the
GRUB_CMDLINE_LINUX DEFAULT=variable in /etc/default/grub, then running ‘update-grub’ as root and rebooting.

227

https://developer.ibm.com/tutorials/l-lxc-containers/
http://www.ibm.com/developerworks/linux/library/l-lxc-security/index.html
http://linuxcontainers.org
https://ubuntu.com/lxd
https://documentation.ubuntu.com/lxd/en/latest/getting_started/
https://www.stgraber.org/2016/03/11/lxd-2-0-blog-post-series-012/
https://docs.jujucharms.com/devel/en/clouds-lxd

Configuration

In order to use LXD, some basic settings need to be configured first. This is done by running 1xd init, which will
allow you to choose:

e Directory or ZFS container backend. If you choose ZFS, you can choose which block devices to use, or the size
of a file to use as backing store.

o Availability over the network.
e A ‘trust password’ used by remote clients to vouch for their client certificate.

You must run ‘Ixd init’ as root. ‘Ixc’ commands can be run as any user who is a member of group Ixd. If user joe is
not a member of group ‘Ixd’, you may run:

adduser joe 1xd

as root to change it. The new membership will take effect on the next login, or after running newgrp 1xd from an
existing login.

See How to initialize LXD in the LXD documentation for more information on the configuration settings. Also, refer
to the definitive configuration provided with the source code for the server, container, profile, and device configuration.

Creating your first container

This section will describe the simplest container tasks.

Creating a container

Every new container is created based on either an image, an existing container, or a container snapshot. At install
time, LXD is configured with the following image servers:

e ubuntu: this serves official Ubuntu server cloud image releases.
e ubuntu-daily: this serves official Ubuntu server cloud images of the daily development releases.

e images: this is a default-installed alias for images.linuxcontainers.org. This is serves classical Ixc images built
using the same images which the LXC ‘download’ template uses. This includes various distributions and minimal
custom-made Ubuntu images. This is not the recommended server for Ubuntu images.

The command to create and start a container is
1xc launch remote:image containername

Images are identified by their hash, but are also aliased. The ubuntu remote knows many aliases such as 18.04 and
bionic. A list of all images available from the Ubuntu Server can be seen using:

1xc image list ubuntu:
To see more information about a particular image, including all the aliases it is known by, you can use:
lxc image info ubuntu:bionic

You can generally refer to an Ubuntu image using the release name (bionic) or the release number (18.04). In addition,
1ts is an alias for the latest supported LTS release. To choose a different architecture, you can specify the desired
architecture:

lxc image info ubuntu:lts/arm64
Now, let’s start our first container:
1xc launch ubuntu:bionic bl

This will download the official current Bionic cloud image for your current architecture, then create a container named
bl using that image, and finally start it. Once the command returns, you can see it using:

1xc list
1xc info bl

and open a shell in it using:
1xc exec bl -- bash
A convenient alias for the command above is:

1xc shell bl

228

http://open-zfs.org
https://documentation.ubuntu.com/lxd/en/latest/howto/initialize/
http://images.linuxcontainers.org

The try-it page mentioned above gives a full synopsis of the commands you can use to administer containers.

Now that the bionic image has been downloaded, it will be kept in sync until no new containers have been created
based on it for (by default) 10 days. After that, it will be deleted.

LXD Server Configuration

By default, LXD is socket activated and configured to listen only on a local UNIX socket. While LXD may not be
running when you first look at the process listing, any LXC command will start it up. For instance:

1xc list

This will create your client certificate and contact the LXD server for a list of containers. To make the server accessible
over the network you can set the http port using:

Ixc config set core.https address :8443
This will tell LXD to listen to port 8443 on all addresses.

Authentication

By default, LXD will allow all members of group 1xd to talk to it over the UNIX socket. Communication over the
network is authorized using server and client certificates.

Before client c1 wishes to use remote rl1, r1 must be registered using:
1xc remote add rl rl.example.com:8443

The fingerprint of r1’s certificate will be shown, to allow the user at cl to reject a false certificate. The server in turn
will verify that c1 may be trusted in one of two ways. The first is to register it in advance from any already-registered
client, using:

1xc config trust add rl certfile.crt

Now when the client adds rl as a known remote, it will not need to provide a password as it is already trusted by the
server.

The other step is to configure a ‘trust password’ with rl, either at initial configuration using 1xd init, or after the
fact using:

1xc config set core.trust password PASSWORD

The password can then be provided when the client registers r1 as a known remote.

Backing store

LXD supports several backing stores. The recommended and the default backing store is zfs. If you already have a
ZF'S pool configured, you can tell LXD to use it during the 1xd init procedure, otherwise a file-backed zpool will be
created automatically. With ZFS, launching a new container is fast because the filesystem starts as a copy on write
clone of the images’ filesystem. Note that unless the container is privileged (see below) LXD will need to change
ownership of all files before the container can start, however this is fast and change very little of the actual filesystem
data.

The other supported backing stores are described in detail in the Storage configuration section of the LXD documen-
tation.

Container configuration

Containers are configured according to a set of profiles, described in the next section, and a set of container-specific
configuration. Profiles are applied first, so that container specific configuration can override profile configuration.

Container configuration includes properties like the architecture, limits on resources such as CPU and RAM, security
details including apparmor restriction overrides, and devices to apply to the container.

Devices can be of several types, including UNIX character, UNIX block, network interface, or disk. In order to insert
a host mount into a container, a ‘disk’ device type would be used. For instance, to mount /opt in container cl at /opt,
you could use:

lxc config device add cl opt disk source=/opt path=opt
See:

1xc help config

229

https://documentation.ubuntu.com/lxd/en/latest/explanation/storage/

for more information about editing container configurations. You may also use:
1xc config edit cl

to edit the whole of c1’s configuration. Comments at the top of the configuration will show examples of correct syntax
to help administrators hit the ground running. If the edited configuration is not valid when the editor is exited, then
the editor will be restarted.

Profiles

Profiles are named collections of configurations which may be applied to more than one container. For instance, all
containers created with 1xc launch, by default, include the default profile, which provides a network interface etho.

To mask a device which would be inherited from a profile but which should not be in the final container, define a
device by the same name but of type ‘none’:

lxc config device add cl ethl none

Nesting

Containers all share the same host kernel. This means that there is always an inherent trade-off between features
exposed to the container and host security from malicious containers. Containers by default are therefore restricted
from features needed to nest child containers. In order to run Ixc or Ixd containers under a Ixd container, the
security.nesting feature must be set to true:

lxc config set containerl security.nesting true
Once this is done, containerl will be able to start sub-containers.

In order to run unprivileged (the default in LXD) containers nested under an unprivileged container, you will need to
ensure a wide enough UID mapping. Please see the ‘UID mapping’ section below.

Limits
LXD supports flexible constraints on the resources which containers can consume. The limits come in the following
categories:

e CPU: limit cpu available to the container in several ways.

 Disk: configure the priority of I/O requests under load

e« RAM: configure memory and swap availability

o Network: configure the network priority under load

e Processes: limit the number of concurrent processes in the container.

For a full list of limits known to LXD, see the configuration documentation.

UID mappings and Privileged containers

By default, LXD creates unprivileged containers. This means that root in the container is a non-root UID on the host.
It is privileged against the resources owned by the container, but unprivileged with respect to the host, making root
in a container roughly equivalent to an unprivileged user on the host. (The main exception is the increased attack
surface exposed through the system call interface)

Briefly, in an unprivileged container, 65536 UIDs are ‘shifted’ into the container. For instance, UID 0 in the container
may be 100000 on the host, UID 1 in the container is 100001, etc, up to 165535. The starting value for UIDs and
GIDs, respectively, is determined by the ‘root’ entry the /etc/subuid and /etc/subgid files. (See the subuid(5) man

page.)
It is possible to request a container to run without a UID mapping by setting the security.privileged flag to true:
1xc config set cl security.privileged true

Note however that in this case the root user in the container is the root user on the host.

230

https://documentation.ubuntu.com/lxd/en/latest/reference/instance_options/
http://manpages.ubuntu.com/manpages/xenial/en/man5/subuid.5.html

Apparmor

LXD confines containers by default with an apparmor profile which protects containers from each other and the host
from containers. For instance this will prevent root in one container from signaling root in another container, even
though they have the same uid mapping. It also prevents writing to dangerous, un-namespaced files such as many
sysctls and /proc/sysrq-trigger.

If the apparmor policy for a container needs to be modified for a container c1, specific apparmor policy lines can be
added in the raw.apparmor configuration key.

Seccomp

All containers are confined by a default seccomp policy. This policy prevents some dangerous actions such as forced
umounts, kernel module loading and unloading, kexec, and the open_by handle at system call. The seccomp configu-
ration cannot be modified, however a completely different seccomp policy — or none — can be requested using raw.lxc
(see below).

Raw LXC configuration

LXD configures containers for the best balance of host safety and container usability. Whenever possible it is highly
recommended to use the defaults, and use the LXD configuration keys to request LXD to modify as needed. Some-
times, however, it may be necessary to talk to the underlying lxc driver itself. This can be done by specifying
LXC configuration items in the ‘raw.lxc’ LXD configuration key. These must be valid items as documented in the
Ixc.container.conf(5) manual page.

Snapshots

Containers can be renamed and live-migrated using the 1xc move command:
1xc move cl final-beta

They can also be snapshotted:

1xc snapshot cl YYYY-MM-DD

Later changes to cl can then be reverted by restoring the snapshot:

lxc restore ul YYYY-MM-DD

New containers can also be created by copying a container or snapshot:

1xc copy ul/YYYY-MM-DD testcontainer

Publishing images
When a container or container snapshot is ready for consumption by others, it can be published as a new image using;
lxc publish ul/YYYY-MM-DD --alias foo-2.0

The published image will be private by default, meaning that LXD will not allow clients without a trusted certificate
to see them. If the image is safe for public viewing (i.e. contains no private information), then the ‘public’ flag can be
set, either at publish time using

lxc publish ul/YYYY-MM-DD --alias foo-2.0 public=true
or after the fact using
1xc image edit foo0-2.0

and changing the value of the public field.

Image export and import
Image can be exported as, and imported from, tarballs:

1xc image export foo-2.0 foo-2.0.tar.gz
Ixc image import foo-2.0.tar.gz --alias fo0-2.0 --public

231

http://manpages.ubuntu.com/manpages/focal/en/man5/lxc.container.conf.5.html
http://manpages.ubuntu.com/manpages/focal/en/man5/lxc.container.conf.5.html

Troubleshooting

To view debug information about LXD itself, on a systemd based host use
journalctl -u 1xd

Container logfiles for container ¢l may be seen using:

1xc info cl --show-log

The configuration file which was used may be found under /var/log/1xd/c1l/1xc.conf while apparmor profiles can be
found in /var/lib/1xd/security/apparmor/profiles/cl and seccomp profiles in /var/lib/1xd/security/seccomp/cl.

Containers are widely used across multiple server workloads (databases and web servers, for instance), and under-
standing how to properly set up your server to run them is becoming more important for systems administrators. In
this explanatory page, we are going to discuss some of the most important factors a system administrator needs to
consider when setting up the environment to run Docker containers.

Understanding the options available to run Docker containers is key to optimising the use of computational resources
in a given scenario/workload, which might have specific requirements. Some aspects that are important for system
administrators are: storage, networking and logging. We are going to discuss each of these in the subsequent
sections, presenting how to configure them and interact with the Docker command line interface (CLI).

Storage

The first thing we need to keep in mind is that containers are ephemeral, and, unless configured otherwise, so are their
data. Docker images are composed of one or more layers which are read-only, and once you run a container based on
an image a new writable layer is created on top of the topmost image layer; the container can manage any type of
data there. The content changes in the writable container layer are not persisted anywhere, and once the container is
gone all the changes disappear. This behavior presents some challenges to us: How can the data be persisted? How
can it be shared among containers? How can it be shared between the host and the containers?

There are some important concepts in the Docker world that are the answer for some of those problems: they are
volumes, bind mounts and tmpfs. Another question is how all those layers that form Docker images and containers
will be stored, and for that we are going to talk about storage drivers (more on that later).

When we want to persist data we have two options:

e Volumes are the preferred way to persist data generated and used by Docker containers if your workload will
generate a high volume of data, such as a database.
o Bind mounts are another option if you need to access files from the host, for example system files.

If what you want is to store some sensitive data in memory, like credentials, and do not want to persist it in either
the host or the container layer, we can use tmpfs mounts.

Volumes

The recommended way to persist data to and from Docker containers is by using volumes. Docker itself manages them,
they are not OS-dependent and they can provide some interesting features for system administrators:

o Easier to back up and migrate when compared to bind mounts;

e Managed by the Docker CLI or API;

o Safely shared among containers;

o Volume drivers allow one to store data in remote hosts or in public cloud providers (also encrypting the data).

Moreover, volumes are a better choice than persisting data in the container layer, because volumes do not increase
the size of the container, which can affect the life-cycle management performance.

Volumes can be created before or at the container creation time. There are two CLI options you can use to mount a
volume in the container during its creation (docker run or docker create):

e --mount: it accepts multiple key-value pairs (<key>=<value>). This is the preferred option to use.
— type: for volumes it will always be volume;
— source or src: the name of the volume, if the volume is anonymous (no name) this can be omitted;
— destination, dst or target: the path inside the container where the volume will be mounted;
— readonly or ro (optional): whether the volume should be mounted as read-only inside the container;
— volume-opt (optional): a comma separated list of options in the format you would pass to the mount
command.
e -vor --volume: it accepts 3 parameters separated by colon (:):
— First, the name of the volume. For the default local driver, the name should use only: letters in upper and
lower case, numbers, ., and -;

232

— Second, the path inside the container where the volume will be mounted;
— Third (optional), a comma-separated list of options in the format you would pass to the mount command,
such as rw.

Here are a few examples of how to manage a volume using the Docker CLI:

create a volume

$ docker volume create my-vol
my-vol

1list volumes

$ docker volume 1ls

DRIVER VOLUME NAME

local my-vol

inspect volume

$ docker volume inspect my-vol
[

{
"CreatedAt": "2023-10-25T00:53:24Z",
"Driver": "local",
"Labels": null,
"Mountpoint": "/var/lib/docker/volumes/my-vol/ data",
"Name": "my-vol",
"Options": null,
"Scope": "local"
}

1

remove a volume

$ docker volume rm my-vol
my-vol

Running a container and mounting a volume:

$ docker run —name web-server -d \

--mount source=my-vol,target=/app \

ubuntu/apache2
0709c1b632801fddd767deddda®d273289ba423e9228cc1d77b2194989e0a882

After that, you can inspect your container to make sure the volume is mounted correctly:

$ docker inspect web-server --format '{{ json .Mounts }}' | jq .
[
{
"Type": "volume",
"Name": "my-vol",
"Source": "/var/lib/docker/volumes/my-vol/ data",
"Destination": "/app",
"Driver": "local",
"Mode": "z",
"RW": true,
"Propagation": ""
)

]

By default, all your volumes will be stored in /var/lib/docker/volumes.

Bind mounts

Bind mounts are another option for persisting data, however, they have some limitations compared to volumes. Bind
mounts are tightly associated with the directory structure and with the OS, but performance-wise they are similar to
volumes in Linux systems.

In a scenario where a container needs to have access to any host system’s file or directory, bind mounts are probably
the best solution. Some monitoring tools make use of bind mounts when executed as Docker containers.

Bind mounts can be managed via the Docker CLI, and as with volumes there are two options you can use:

e --mount: it accepts multiple key-value pairs (<key>=<value>). This is the preferred option to use.
— type: for bind mounts it will always be bind;

233

— source or src: path of the file or directory on the host;

— destination, dst or target: container’s directory to be mounted;

— readonly or ro (optional): the bind mount is mounted in the container as read-only;

— volume-opt (optional): it accepts any mount command option;

— bind-propagation (optional): it changes the bind propagation. It can be rprivate, private, rshared, shared,
rslave, slave.

e -vor --volume: it accepts 3 parameters separated by colon (:):

— First, path of the file or directory on the host;

— Second, path of the container where the volume will be mounted;

— Third (optional), a comma separated of option in the format you would pass to mount command, such as
rw.

An example of how you can create a Docker container and bind mount a host directory:

$ docker run -d \
--name web-server \
--mount type=bind,source="$(pwd)",target=/app \
ubuntu/apache2
615378e34d6c6811702e16d047a5a80f18adbd9d8al14b11050ae3c3353bf8d2a

After that, you can inspect your container to check for the bind mount:

$ docker inspect web-server --format '{{ json .Mounts }}' | jq .
[
{
"Type": "bind",
"Source": "/root",
"Destination": "/app",
"Mode": "",
"RW": true,
"Propagation": "rprivate"
}
1
Tmpfs

Tmpfs mounts allow users to store data temporarily in RAM memory, not in the host’s storage (via bind mount or
volume) or in the container’s writable layer (with the help of storage drivers). When the container stops, the tmpfs
mount will be removed and the data will not be persisted in any storage.

This is ideal for accessing credentials or security-sensitive information. The downside is that a tmpfs mount cannot
be shared with multiple containers.

Tmpfs mounts can be managed via the Docker CLI with the following two options:

e --mount: it accepts multiple key-value pairs (<key>=<value>). This is the preferred option to use.
— type: for volumes it will always be tmpfs;
— destination, dst or target: container’s directory to be mounted;
— tmpfs-size and tmpfs-mode options (optional). For a full list see the Docker documentation.
e --tmpfs: it accepts no configurable options, just mount the tmpfs for a standalone container.

An example of how you can create a Docker container and mount a tmpfs:

$ docker run --name web-server -d \

--mount type=tmpfs,target=/app \

ubuntu/apache2
03483cc28166Tc5c56317e4ee71904941ec5942071e7c936524f74d732b6a24c

After that, you can inspect your container to check for the tmpfs mount:

$ docker inspect web-server --format '{{ json .Mounts }}' | jq .
[

"Type": "tmpfs",
"Source": ""
"Destination": "/app",
"Mode": "",
"RW": true,
"Propagation":

234

https://docs.docker.com/storage/tmpfs/#specify-tmpfs-options

Storage drivers

Storage drivers are used to store image layers and to store data in the writable layer of a container. In general, storage
drivers are implemented trying to optimise the use of space, but write speed might be lower than native filesystem
performance depending on the driver in use. To better understand the options and make informed decisions, take a
look at the Docker documentation on how layers, images and containers work.

The default storage driver is the overlay2 which is backed by OverlayFS. This driver is recommended by upstream for
use in production systems. The following storage drivers are available and are supported in Ubuntu (as at the time of
writing):

e OverlayFS: it is a modern union filesystem. The Linux kernel driver is called OverlayFS and the Docker storage
driver is called overlay2. This is the recommended driver.

e ZFS: it is a next generation filesystem that supports many advanced storage technologies such as volume
management, snapshots, checksumming, compression and deduplication, replication and more. The Docker
storage driver is called zfs.

o Btrfs: it is a copy-on-write filesystem included in the Linux kernel mainline. The Docker storage driver is called
btrfs.

e Device Mapper: it is a kernel-based framework that underpins many advanced volume management technolo-
gies on Linux. The Docker storage driver is called devicemapper.

e VFS: it is not a union filesystem, instead, each layer is a directory on disk, and there is no copy-on-write support.
To create a new layer, a “deep copy” is done of the previous layer. This driver does not perform well compared
to the others, however, it is robust, stable and works in any environment. The Docker storage driver is called
vfs.

If you want to use a different storage driver based on your specific requirements, you can add it to /etc/docker/daemon. json
like in the following example:

{

"storage-driver": "vfs"

}

The storage drivers accept some options via storage-opts, check the storage driver documentation for more information.
Keep in mind that this is a JSON file and all lines should end with a comma (,) except the last one.

Before changing the configuration above and restarting the daemon, make sure that the specified filesystem (zfs, btrfs,
device mapper) is mounted in /var/lib/docker. Otherwise, if you configure the Docker daemon to use a storage
driver different from the filesystem backing /var/lib/docker a failure will happen. The Docker daemon expects that
/var/lib/docker is correctly set up when it starts.

Networking

Networking in the context of containers refers to the ability of containers to communicate with each other and with
non-Docker workloads. The Docker networking subsystem was implemented in a pluggable way, and we have different
network drivers available to be used in different scenarios:

e Bridge: This is the default network driver. This is widely used when containers need to communicate among
themselves in the same host.

e Overlay: It is used to make containers managed by different docker daemons (different hosts) communicate
among themselves.

e Host: It is used when the networking isolation between the container and the host is not desired, the container
will use the host’s networking capabilities directly.

e IPvlan: It is used to provide full control over the both IPv4 and IPv6 addressing.

e Macvlan: It is used to allow the assignment of Mac addresses to containers, making them appear as a physical
device in the network.

e None: It is used to make the container completely isolated from the host.

This is how you can create a user-defined network using the Docker CLI:

create network

$ docker network create --driver bridge my-net
D84efacalld6f643394de31ad8789391e3ddf29d46faecf0661849f5ead239f7
1list networks

$ docker network 1ls

NETWORK ID NAME DRIVER SCOPE

235

https://docs.docker.com/storage/storagedriver/#images-and-layers
https://docs.docker.com/storage/storagedriver/

1f55a8891c4a bridge bridge Tlocal

9ca9%4be2clald host host local
d84efacalldé my-net bridge local
5d300e6a07bl none null local

inspect the network we created
$ docker network inspect my-net
[

"Name": "my-net",
"Id": "d84efacalld6f643394de31ad8789391e3ddf29d46faecf0661849f5ead239f7",
"Created": "2023-10-25T22:18:52.9725693382",
"Scope": "local",
"Driver": "bridge",
"EnableIPv6": false,
"IPAM": {
"Driver": "default",
"Options": {},
"Config": [
{
"Subnet": "172.18.0.0/16",
"Gateway": "172.18.0.1"

I

"Internal": false,

"Attachable": false,

"Ingress": false,

"ConfigFrom": {
"Network": ""

+

"ConfigOnly": false,

"Containers": {},

"Options": {},

"Labels": {}

]

Containers can connect to a defined network when they are created (via docker run) or can be connected to it at any
time of its lifecycle:

$ docker run -d --name cl --network my-net ubuntu/apache2
C7aa78f45ce3474a276ca3e64023177d5984b3df921aadf97e221da8a29a891e
$ docker inspect cl --format '{{ json .NetworkSettings }}' | jq .
{

"Bridge": "",

"SandboxID": "eelcc10093fdfdf5d4a30c056cef47abbfa564e770272ele5f681525fdd85555",

"HairpinMode": false,

"LinkLocalIPv6Address": "",

"LinkLocalIPv6PrefixLen": 0O,

"Ports": {

"80/tcp": null

I

"SandboxKey": "/var/run/docker/netns/eelccl0093fd",

"SecondaryIPAddresses": null,

"SecondaryIPv6Addresses": null,

"EndpointID": "",

"Gateway": ""

"GlobalIPv6Address": "",

"GlobalIPv6PrefixLen": 0,

"IPAddress": "",

"IPPrefixLen": 0O,

"IPv6Gateway": "",

"MacAddress": "",

"Networks": {

236

}

"my-net": {
"IPAMConfig": null,
"Links": null,
"Aliases": [
"c7aa78f45ce3"
1,
"NetworkID": "d84efacalld6f643394de31ad8789391e3ddf29d46faecf0661849f5ead239f7",
"EndpointID": "1lcb76d44a484d302137bb4b042c8142db8e931e0c63f44175alaa75ae8af9ch5",
"Gateway": "172.18.0.1",
"IPAddress": "172.18.0.2",
"IPPrefixLen": 16,
"IPv6Gateway": "",
"GlobalIPv6Address": "",
"GlobalIPv6PrefixLen": 0O,
"MacAddress": "02:42:ac:12:00:02",
"DriverOpts": null

}

make a running container connect to the network

$

docker run -d --name c2 ubuntu/nginx

Fea22fbb6e3685eae28815f3ad8c8a655340ebcd6adcl3f3aad0b45d71a20935

$
$
{

docker network connect my-net c2
docker inspect c2 --format '{{ json .NetworkSettings }}' | jq .

"Bridge": "",
"SandboxID": "82a7eabefd679dffcc3e4392e0e5dabla8ccef33dd78eb5381¢c9792a4c01f366",
"HairpinMode": false,
"LinkLocalIPv6Address": "",
"LinkLocalIPv6PrefixLen": 0,
"Ports": {
"80/tcp": null
}
"SandboxKey": "/var/run/docker/netns/82a7eabefd67",
"SecondaryIPAddresses": null,
"SecondaryIPv6Addresses": null,
"EndpointID": "490c15cf3bcb149dd8649e3ac96f71laddd13f660b4ec826dc39e266184b3f65b",
"Gateway": "172.17.0.1",
"GlobalIPv6Address": "",
"GlobalIPv6PrefixLen": 0,
"IPAddress": "172.17.0.3",
"IPPrefixLen": 16,
"IPv6Gateway": "",
"MacAddress": "02:42:ac:11:00:03",
"Networks": {
"bridge": {
"IPAMConfig": null,
"Links": null,
"Aliases": null,
"NetworkID": "1f55a8891c4a523a288aca8881dae0061f9586d5d91c69b3a74elef3adlbfcf4”,
"EndpointID": "490c1l5cf3bcb149dd8649e3ac96f71addd13f660b4ec826dc39e266184b3f65b",
"Gateway": "172.17.0.1",
"IPAddress": "172.17.0.3",
"IPPrefixLen": 16,
"IPv6Gateway": "",
"GlobalIPv6Address": "",
"GlobalIPv6PrefixLen": 0,
"MacAddress": "02:42:ac:11:00:03",
"DriverOpts": null
1,
"my-net": {
"IPAMConfig": {},
"Links": null,

237

"Aliases": [
"fea22fbb6e36"
1.
"NetworkID": "d84efacalld6f643394de31ad8789391e3ddf29d46faecf0661849f5ead239f7",
"EndpointID": "17856b7f6902db39ff6ab418f127d75d8da597fdb8af0a6798f35a94beOcb805",
"Gateway": "172.18.0.1",
"IPAddress": "172.18.0.3",
"IPPrefixLen": 16,
"IPvbGateway": "",
"GlobalIPv6Address": "",
"GlobalIPv6PrefixLen": O,
"MacAddress": "02:42:ac:12:00:03",
"DriverOpts": {}
}

}

The default network created by the Docker daemon is called bridge using the bridge network driver. A system
administrator can configure this network by editing /etc/docker/daemon.json:

{
"bip": "192.168.1.1/24",
"fixed-cidr": "192.168.1.0/25",
"fixed-cidr-v6": "2001:db8::/64",
"mtu": 1500,
"default-gateway": "192.168.1.254",
"default-gateway-v6": "2001:db8:abcd::89",
"dns": ["10.20.1.2","10.20.1.3"]

}

After deciding how you are going to manage the network and selecting the most appropriate driver, there are some
specific deployment details that a system administrator has to bear in mind when running containers.

Exposing ports of any system is always a concern, since it increases the surface for malicious attacks. For containers,
we also need to be careful, analysing whether we really need to publish ports to the host. For instance, if the goal is to
allow containers to access a specific port from another container, there is no need to publish any port to the host. This
can be solved by connecting all the containers to the same network. You should publish ports of a container to the
host only if you want to make it available to non-Docker workloads. When a container is created no port is published
to the host, the option --publish (or -p) should be passed to docker run or docker create listing which port will be
exposed and how.

The --publish option of Docker CLI accepts the following options:

o First, the host port that will be used to publish the container’s port. It can also contain the IP address of the
host. For example, 0.0.0.0:8080.

e Second, the container’s port to be published. For example, 860.

o Third (optional), the type of port that will be published which can be TCP or UDP. For example, 80/tcp or
80/udp.

An example of how to publish port 80 of a container to port 8080 of the host:

$ docker run -d --name web-server --publish 8080:80 ubuntu/nginx
f4512a21990db7d2c9b065c6158e2315997a56a764b36a846a19b1b96celf3910

$ docker inspect web-server --format '{{ json .NetworkSettings.Ports }}' | jq .
{
"80/tcp": [
{

"HostIp": "0.0.0.0",
"HostPort": "8080"
+

{

"HostIp": "::",
"HostPort": "8080"

}

238

The HostIp values are 0.0.0.0 (IPv4) and :: (IPv6), and the service running in the container is accessible to everyone
in the network (reaching the host), if you want to publish the port from the container and let the service be available
just to the host you can use --publish 127.0.0.1:8080:80 instead. The published port can be TCP or UDP and one
can specify that passing --publish 8080:80/tcp or --publish 8080:80/udp.

The system administrator might also want to manually set the IP address or the hostname of the container. To achieve
this, one can use the --ip (IPv4), --ip6 (IPv6), and --hostname options of the docker network connect command to
specify the desired values.

Another important aspect of networking with containers is the DNS service. By default containers will use the DNS
setting of the host, defined in /etc/resolv.conf. Therefore, if a container is created and connected to the default
bridge network it will get a copy of host’s /etc/resolv.conf. If the container is connected to a user-defined network,
then it will use Docker’s embedded DNS server. The embedded DNS server forwards external DNS lookups to the
DNS servers configured on the host. In case the system administrator wants to configure the DNS service, the docker
run and docker create commands have options to allow that, such as --dns (IP address of a DNS server) and --dns-
opt (key-value pair representing a DNS option and its value). For more information, check the manpages of those
commands.

Logging

Monitoring what is happening in the system is a crucial part of systems administration, and with Docker containers
it is no different. Docker provides the logging subsystem (which is pluggable) and there are many drivers that can
forward container logs to a file, an external host, a database, or another logging back-end. The logs are basically
everything written to STDOUT and STDERR. When building a Docker image, the relevant data should be forwarded to
those I/O stream devices.

The following storage drivers are available (at the time of writing):

o json-file: it is the default logging driver. It writes logs in a file in JSON format.

e local: write logs to an internal storage that is optimised for performance and disk use.

e journald: send logs to systemd journal.

o syslog: send logs to a syslog server.

e logentries: send container logs to the Logentries server.

o gelf: write logs in a Graylog Extended Format which is understood by many tools, such as Graylog, Logstash,
and Fluentd.

o awslogs: send container logs to Amazon CloudWatch Logs.

o etwlogs: forward container logs as ETW events. ETW stands for Event Tracing in Windows, and is the common
framework for tracing applications in Windows. Not supported in Ubuntu systems.

e fluentd: send container logs to the Fluentd collector as structured log data.

¢ gcplogs: send container logs to Google Cloud Logging Logging.

e splunk: sends container logs to HTTP Event Collector in Splunk Enterprise and Splunk Cloud.

The default logging driver is json-file, and the system administrator can change it by editing the /etc/docker/daemon.json:

{

"log-driver": "journald"

}
Another option is specifying the logging driver during container creation time:

$ docker run -d --name web-server --log-driver=journald ubuntu/nginx
1c68b667132d8b834f0d9d6320721e07de5f22168cfc8a024d6e388daf486dfa
$ docker inspect web-server --format '{{ json .HostConfig.LogConfig }}' | jq .
{

"Type": "journald",

"Config": {}
}
$ docker logs web-server
/docker-entrypoint.sh: /docker-entrypoint.d/ is not empty, will attempt to perform configuration
/docker-entrypoint.sh: Looking for shell scripts in /docker-entrypoint.d/
/docker-entrypoint.sh: Launching /docker-entrypoint.d/20-envsubst-on-templates.sh
/docker-entrypoint.sh: Configuration complete; ready for start up

Depending on the driver you might also want to pass some options. You can do that via the CLI, passing --log-opt
or in the daemon config file adding the key log-opts. For more information check the logging driver documentation.

Docker CLI also provides the docker logs and docker service logs commands which allows one to check for the logs
produced by a given container or service (set of containers) in the host. However, those two commands are functional

239

https://logentries.com/
https://www.graylog.org/
https://www.elastic.co/products/logstash
https://www.fluentd.org
https://aws.amazon.com/cloudwatch/details/#log-monitoring
https://www.fluentd.org
https://cloud.google.com/logging/docs/
https://dev.splunk.com/enterprise/docs/devtools/httpeventcollector/

only if the logging driver for the containers is json-file, local or journald. They are useful for debugging in general,
but there is the downside of increasing the storage needed in the host.

The remote logging drivers are useful to store data in an external service/host, and they also avoid spending more
disk space in the host to store log files. Nonetheless, sometimes, for debugging purposes, it is important to have log
files locally. Considering that, Docker has a feature called “dual logging”, which is enabled by default, and even if
the system administrator configures a logging driver different from json-file, local and journald, the logs will be
available locally to be accessed via the Docker CLI. If this is not the desired behavior, the feature can be disabled in
the /etc/docker/daemon. json file:

{
"log-driver": "syslog",
"log-opts": {
“cache-disabled”: “true”,
"syslog-address": "udp://1.2.3.4:1111"
)
}

The option cache-disabled is used to disable the “dual logging” feature. If you try to run docker logs with that
configuration you will get the following error:

$ docker logs web-server
Error response from daemon: configured logging driver does not support reading

In this guide we show how to install and configure isc-kea in Ubuntu 23.04
or greater. Kea is the DHCP server developed by ISC to replace isc-dhcp. It is newer and designed for more modern
network environments.

For isc-dhcp-server instructions, refer to this guide instead.

Install isc-kea

At a terminal prompt, enter the following command to install isc-kea:
sudo apt install kea

This will also install a few binary packages, including

o kea-dhcp4-server: The IPv4 DHCP server (the one we will configure in this guide).

e kea-dhcp6-server: The IPv6 DHCP server.

e kea-ctrl-agent: A REST API service for Kea.

e kea-dhcp-ddns-server: A Dynamic DNS service to update DNS based on DHCP lease events.

Since the kea-ctrl-agent service has some administrative rights to the Kea
services, we need to ensure regular users are not allowed to use the API
without permissions. Ubuntu does it by requiring user authentication to access
the kea-ctrl-agent API service (LP: #2007312 has more details on this).

Therefore, the installation process described above will get a debconf “high”
priority prompt with 3 options:

e no action (default);
o configure with a random password; or
o configure with a given password.

If there is no password, the kea-ctrl-agent will not start.

The password is expected to be in /etc/kea/kea-api-password, with ownership

root: kea and permissions 0640. To change it, run dpkg-reconfigure kea-ctrl-agent
(which will present the same 3 options from above again), or just edit the file
manually.

Configure kea-dhcp4
The kea-dhcp4 service can be configured by editing /etc/kea/kea-dhcp4.conf.

Most commonly, what you want to do is let Kea assign an IP address from a
pre-configured IP address pool. This can be done with settings as follows:

{
"Dhcp4": {

240

https://www.isc.org/kea/
https://bugs.launchpad.net/ubuntu/+source/isc-kea/+bug/2007312

"interfaces-config": {
"interfaces": ["eth4"]

}I
"control-socket": {

"socket-type": "unix",

"socket-name": "/run/kea/kea4-ctrl-socket"
}

"lease-database": {
"type": "memfile",
"Lfc-interval": 3600

}

"valid-lifetime": 600,

"max-valid-lifetime": 7200,

"subnet4": [
{
"id": 1,
"subnet": "192.168.1.0/24",
"pools": [
{
"pool": "192.168.1.150 - 192.168.1.200"
)
1,
"option-data": [
{
"name": "routers",
"data": "192.168.1.254"
}
{
"name": "domain-name-servers",
"data": "192.168.1.1, 192.168.1.2"
+
{
"name": "domain-name",
"data": "mydomain.example"
}
]
}

This will result in the DHCP server listening on interface “eth4”, giving clients an IP address from the range
192.168.1.150 - 192.168.1.200. It will lease an IP address for 600 seconds if the client doesn’t ask for a specific
time frame. Otherwise the maximum (allowed) lease will be 7200 seconds. The server will also “advise” the client to
use 192.168.1.254 as the default-gateway and 192.168.1.1 and 192.168.1.2 as its DNS servers.

After changing the config file you can reload the server configuration through kea-shell with the following command
(considering you have the kea-ctrl-agent running as described above):

kea-shell --host 127.0.0.1 --port 8000 --auth-user kea-api --auth-password $(cat /etc/kea/kea-api-password) -
-service dhcp4 config-reload

Then, press ctrl-d. The server should respond with:

[{ "result": 0, "text": "Configuration successful." } 1
meaning your configuration was received by the server.

The kea-dhcp4-server service logs should contain an entry similar to:

DHCP4_DYNAMIC RECONFIGURATION SUCCESS dynamic server reconfiguration succeeded with file: /etc/kea/kea-
dhcp4.conf

signaling that the server was successfully reconfigured.
You can read kea-dhcp4-server service logs with journalctl:

journalctl -u kea-dhcp4-server

241

Alternatively, instead of reloading the DHCP4 server configuration through
kea-shell, you can restart the kea-dhcp4-service with:

systemctl restart kea-dhcp4-server

Further reading

e ISC Kea Documentation

Note:
Although Ubuntu still supports isc-dhcp-server, this software is no longer supported by its vendor. It has
been replaced by Kea.

In this guide we show how to install and configure isc-dhcp-server, which installs the dynamic host configuration
protocol daemon, dhcpd. For isc-kea instructions, refer to this guide instead.

Install isc-dhcp-server
At a terminal prompt, enter the following command to install isc-dhcp-server:

sudo apt install isc-dhcp-server

Note:
You can find diagnostic messages from dhcpd in syslog.

Configure isc-dhcp-server

You will probably need to change the default configuration by editing /etc/dhcp/dhcpd.conf to suit your needs and
particular configuration.

Most commonly, what you want to do is assign an IP address randomly. This can be done with /etc/dhcp/dhcpd. conf
settings as follows:

minimal sample /etc/dhcp/dhcpd.conf
default-lease-time 600;
max-lease-time 7200;

subnet 192.168.1.0 netmask 255.255.255.0 {

range 192.168.1.150 192.168.1.200;

option routers 192.168.1.254;

option domain-name-servers 192.168.1.1, 192.168.1.2;
option domain-name "mydomain.example";

}

This will result in the DHCP server giving clients an IP address from the range 192.168.1.150 - 192.168.1.200. It will
lease an IP address for 600 seconds if the client doesn’t ask for a specific time frame. Otherwise the maximum (allowed)
lease will be 7200 seconds. The server will also “advise” the client to use 192.168.1.254 as the default-gateway and
192.168.1.1 and 192.168.1.2 as its DNS servers.

You also may need to edit /etc/default/isc-dhcp-server to specify the interfaces dhcpd should listen to.
INTERFACESv4="eth4"
After changing the config files you need to restart the dhcpd service:

sudo systemctl restart isc-dhcp-server.service

Further reading
e The isc-dhcp-server Ubuntu Wiki page has more information.
e For more /etc/dhcp/dhcpd. conf options see the dhcpd.conf man page.
e ISC dhcp-server

Ubuntu uses timedatectl and timesyncd for synchronising time, and they are installed by default as part of systemd.
You can optionally use chrony to serve the Network Time Protocol.

In this guide, we will show you how to configure these services.

242

https://kb.isc.org/docs/kea-administrator-reference-manual
https://www.isc.org/blogs/isc-dhcp-eol/
https://www.isc.org/kea/
https://help.ubuntu.com/community/isc-dhcp-server
https://manpages.ubuntu.com/manpages/focal/en/man5/dhcpd.conf.5.html
https://www.isc.org/software/dhcp

Note:
If chrony is installed, timedatectl steps back to let chrony handle timekeeping. This ensures that no two
time-syncing services will be in conflict.

Check status of timedatectl

The current status of time and time configuration via timedatectl and timesyncd can be checked with the timedatectl
status command, which will produce output like this:

Local time: Wed 2023-06-14 12:05:11 BST
Universal time: Wed 2023-06-14 11:05:11 UTC
RTC time: Wed 2023-06-14 11:05:11
Time zone: Europe/Isle of Man (BST, +0100)
System clock synchronized: yes
NTP service: active
RTC in local TZ: no

If chrony is running, it will automatically switch to:
[...]

systemd-timesyncd.service active: no
Configure timedatectl

By using timedatectl, an admin can control the timezone, how the system clock should relate to the hwclock and
whether permanent synchronisation should be enabled. See man timedatectl for more details.

Check status of timesyncd

timesyncd itself is a normal service, so you can check its status in more detail using:
systemctl status systemd-timesyncd

The output produced will look something like this:

systemd-timesyncd.service - Network Time Synchronization
Loaded: loaded (/lib/systemd/system/systemd-timesyncd.service; enabled; vendor preset: enabled)
Active: active (running) since Fri 2018-02-23 08:55:46 UTC; 10s ago
Docs: man:systemd-timesyncd.service(8)
Main PID: 3744 (systemd-timesyn)
Status: "Synchronized to time server 91.189.89.198:123 (ntp.ubuntu.com)."
Tasks: 2 (limit: 4915)
CGroup: /system.slice/systemd-timesyncd.service
| -3744 /1lib/systemd/systemd-timesyncd

Feb 23 08:55:46 bionic-test systemd[1]: Starting Network Time Synchronization...
Feb 23 08:55:46 bionic-test systemd[1]: Started Network Time Synchronization.
Feb 23 08:55:46 bionic-test systemd-timesyncd[3744]: Synchronized to time server 91.189.89.198:123 (ntp.ubuntu.com).

Configure timesyncd

The server from which to fetch time for timedatectl and timesyncd can be specified in /etc/systemd/timesyncd.conf.
Additional config files can be stored in /etc/systemd/timesyncd.conf.d/. The entries for NTP= and FallbackNTP= are
space-separated lists. See man timesyncd.conf for more details.

Next steps
If you would now like to serve the Network Time Protocol via crony, this guide will walk you through how to install
and configure your setup.
References
e Freedesktop.org info on timedatectl
e Freedesktop.org info on systemd-timesyncd service

e See the Ubuntu Time wiki page for more information.

243

https://www.freedesktop.org/software/systemd/man/timedatectl.html
https://www.freedesktop.org/software/systemd/man/systemd-timesyncd.service.html
https://help.ubuntu.com/community/UbuntuTime

timesyncd and timedatectl will generally do the right thing in keeping your time in sync. However, if you also want
to serve NTP information then you need an NTP server.

Between chrony, the now-deprecated ntpd, and open-ntp, there are plenty of options. The solution we recommend is
chrony.

The NTP daemon chronyd calculates the drift and offset of your system clock and continuously adjusts it, so there
are no large corrections that could lead to inconsistent logs, for instance. The cost is a little processing power and
memory, but for a modern server this is usually negligible.

Install chronyd
To install chrony, run the following command from a terminal prompt:
sudo apt install chrony
This will provide two binaries:
e chronyd - the actual daemon to sync and serve via the Network Time Protocol

e chronyc - command-line interface for the chrony daemon

Configure chronyd
Firstly, edit /etc/chrony/chrony.conf to add/remove server lines. By default these servers are configured:

Use servers from the NTP Pool Project. Approved by Ubuntu Technical Board
on 2011-02-08 (LP: #104525). See http://www.pool.ntp.org/join.html for

more information.

pool 0.ubuntu.pool.ntp.org iburst

pool 1.ubuntu.pool.ntp.org iburst

pool 2.ubuntu.pool.ntp.org iburst

pool 3.ubuntu.pool.ntp.org iburst

See man chrony.conf for more details on the configuration options available. After changing any part of the config file
you need to restart chrony, as follows:

sudo systemctl restart chrony.service

Of the pool, 2.ubuntu.pool.ntp.org and ntp.ubuntu.com also support IPv6, if needed. If you need to force IPv6, there
is also ipv6.ntp.ubuntu.com which is not configured by default.

Enable serving the Network Time Protocol

You can install chrony (above) and configure special Hardware (below) for a local synchronisation
and as-installed that is the default to stay on the secure and conservative side. But if you want to serve NTP you
need adapt your configuration.

To enable serving NTP you'll need to at least set the allow rule. This controls which clients/networks you want chrony
to serve NTP to.

An example would be:
allow 1.2.3.4

See the section “NTP server” in the man page for more details on how you can control and restrict access to your
NTP server.

View chrony status

You can use chronyc to see query the status of the chrony daemon. For example, to get an overview of the currently
available and selected time sources, run chronyc sources, which provides output like this:

MS Name/IP address Stratum Poll Reach LastRx Last sample

~+ gamma.rueckgr.at

~- 2b.ncomputers.org

~+ www.kashra.com

~+ stratum2-4.NTP.TechFak.U>
~- zepto.mcl.gg

~- mirrorhost.pw

377 135 -1048us[-1048us] +/- 29ms
377 204 -1141us[-1124us] +/- 50ms
377 139 +3483us[+3483us] +/- 18ms
377 143 -2090us[-2073us] +/- 19ms
377 9 -774us[-774us] +/- 29ms
377 78 -660us[-660us] +/- 53ms

N N NDNDNDN
~N N4 00 00 0O o

244

http://manpages.ubuntu.com/manpages/jammy/man5/chrony.conf.5.html

~- atto.mcl.gg 377 8 -823us[-823us] +/- 50ms
~- static.140.107.46.78.cli> 377 9 -1503us[-1503us] +/- 45ms
~- 4.53.160.75 377 137 -1lms[-11ms] +/- 117ms

~- 37.44.185.42

- bagnikita.com

~- europa.ellipse.net

~- tethys.hot-chilli.net

~- 66-232-97-8.static.hvvc.>
~+ 85.199.214.102

~* 46-243-26-34.tangos.nl

~- pugot.canonical.com

~- alphyn.canonical.com

~- golem.canonical.com

- chilipepper.canonical.com

377 10 -3274us[-3274us] +/- 70ms
377 74 +3131lus[+3131us] +/- 71ms
377 204 -790us[-773us] +/- 97ms
377 141 -797us[-797us] +/- 59ms
377 206 +1669us[+1686us] +/- 133ms
377 205 +175us[+192us] +/- 12ms
377 141 -123us[-106us] +/- 10ms
377 21 -95us[-95us] +/- 57ms
377 23 -1569us[-1569us] +/- 79ms
377 92 -1018us[-1018us] +/- 31ms
377 21 -1106us[-1106us] +/- 27ms

N NNNRFRFEFEFNNNNWNNN
00 N O 00 00 00 N 00 00 N N 00 00

You can also make use of the chronyc sourcestats command, which produces output like this:

210 Number of sources = 20

Name/IP Address NP NR Span Frequency Freq Skew Offset Std Dev
gamma.rueckgr.at 25 15 32m -0.007 0.142 -878us 106us
2b.ncomputers.org 26 16 35m -0.132 0.283 -1169us 256us
www . kashra. com 25 15 32m -0.092 0.259 +3426us 195us
stratum2-4.NTP.TechFak.U> 25 14 32m -0.018 0.130 -2056us 96us
zepto.mcl.gg 13 11 21m +0.148 0.196 -683us 66us
mirrorhost.pw 6 5 645 +0.117 0.445 -591us 19us
atto.mcl.gg 21 13 25m -0.069 0.199 -904us 103us
static.140.107.46.78.cli> 25 18 34m -0.005 0.094 -1526us 78us
4.53.160.75 25 10 32m +0.412 0.110 -11lms 84us
37.44.185.42 24 12 30m -0.983 0.173 -3718us 122us
bagnikita.com 17 7 3lm -0.132 0.217 +3527us 139us
europa.ellipse.net 26 15 35m +0.038 0.553 -473us 424us
tethys.hot-chilli.net 25 11 32m -0.094 0.110 -864us 88us
66-232-97-8.static.hvvc.> 20 11 35m -0.116 0.165 +1561us 109us
85.199.214.102 26 11 35m -0.054 0.390 +129us 343us
46-243-26-34.tangos.nl 25 16 32m +0.129 0.297 -307us 198us
pugot.canonical.com 25 14 34m -0.271 0.176 -143us 135us
alphyn.canonical.com 17 11 1100 -0.087 0.360 -1749us 114us
golem.canonical.com 23 12 30m +0.057 0.370 -988us 229us
chilipepper.canonical.com 25 18 34m -0.084 0.224 -1116us 169us

Certain chronyc commands are privileged and cannot be run via the network without explicitly allowing them. See
the Command and monitoring access section in man chrony.conf for more details. A local admin can use sudo
since this will grant access to the local admin socket /var/run/chrony/chronyd.sock.

Pulse-Per-Second (PPS) support

Chrony supports various PPS types natively. It can use kernel PPS API as well as Precision Time Protocol (PTP)
hardware clocks. Most general GPS receivers can be leveraged via GPSD. The latter (and potentially more) can be
accessed via SHM or via a socket (recommended). All of the above can be used to augment chrony with additional
high quality time sources for better accuracy, jitter, drift, and longer- or shorter-term accuracy. Usually, each kind of
clock type is good at one of those, but non-perfect at the others. For more details on configuration see some of the
external PPS/GPSD resources listed below.

Note:
As of the release of 20.04, there was a bug which - until fixed - you might want to [add this
content](https://bugs.launchpad.net/ubuntu/+source/gpsd/+bug/1872175/comments/21) to your

/etc/apparmor.d /local /usr.sbin.gpsd’.

Example configuration for GPSD to feed chrony
For the installation and setup you will first need to run the following command in your terminal window:
sudo apt install gpsd chrony

However, since you will want to test/debug your setup (especially the GPS reception), you should also install:

245

sudo apt install pps-tools gpsd-clients

GPS devices usually communicate via serial interfaces. The most common type these days are USB GPS devices,
which have a serial converter behind USB. If you want to use one of these devices for PPS then please be aware that
the majority do not signal PPS via USB. Check the GPSD hardware list for details. The examples below were run
with a Navisys GR701-W.

When plugging in such a device (or at boot time) dmesg should report a serial connection of some sort, as in this
example:

52.442199] usb 1-1.
52.546639] usb 1-1.
52.546654] usb 1-1.

[new full-speed USB device number 3 using xhci hcd

[New USB device found, idVendor=067b, idProduct=2303, bcdDevice= 4.00
[New USB device strings: Mfr=1, Product=2, SerialNumber=0
[52.546665] usb 1-1. Product: USB-Serial Controller D

[52.546675] usb 1-1. Manufacturer: Prolific Technology Inc.

[52.602103] usbcore: registered new interface driver usbserial generic

[

[

[

[

[

N

52.602244] usbserial: USB Serial support registered for generic
52.609471] usbcore: registered new interface driver pl2303
52.609503] usbserial: USB Serial support registered for pl2303
52.609564] pl2303 1-1.1:1.0: pl2303 converter detected
52.618366] usb 1-1.1: pl2303 converter now attached to ttyUSBO

We see in this example that the device appeared as ttyUSBO. So that chrony later accepts being fed time information
by this device, we have to set it up in /etc/chrony/chrony.conf (please replace USBO with whatever applies to your
setup):

refclock SHM 0 refid GPS precision le-1 offset 0.9999 delay 0.2
refclock SOCK /var/run/chrony.ttyUSB0O.sock refid PPS

Next, we need to restart chrony to make the socket available and have it waiting.

sudo systemctl restart chrony

We then need to tell gpsd which device to manage. Therefore, in /etc/default/gpsd we set:
DEVICES="/dev/ttyUSBO"

It should be noted that since the default use-case of gpsd is, well, for gps position tracking, it will normally not consume
any CPU since it is just waiting on a socket for clients. Furthermore, the client will tell gpsd what it requests, and
gpsd will only provide what is asked for.

For the use case of gpsd as a PPS-providing-daemon, you want to set the option to:
o Immediately start (even without a client connected). This can be set in GPSD_OPTIONS of /etc/default/gpsd:
— GPSD_OPTIONS="-n"
o Emable the service itself and not wait for a client to reach the socket in the future:
— sudo systemctl enable /lib/systemd/system/gpsd.service
Restarting gpsd will now initialize the PPS from GPS and in dmesg you will see:

pps_ldisc: PPS line discipline registered
pps ppsO: new PPS source usbserial®
pps ppsO: source "/dev/ttyUSBO" added

If you have multiple PPS sources, the tool ppsfind may be useful to help identify which PPS belongs to which GPS.
In our example, the command sudo ppsfind /dev/ttyUSBO would return the following:

pps0: name=usbserial® path=/dev/ttyUSBO

Now we have completed the basic setup. To proceed, we now need our GPS to get a lock. Tools like cgps or gpsmon
need to report a 3D “fix” in order to provide accurate data. Let’s run the command cgps, which in our case returns:

| Status: 3D FIX (7 secs)

You would then want to use ppstest in order to check that you are really receiving PPS data. So, let us run the
command sudo ppstest /dev/pps0, which will produce an output like this:

trying PPS source "/dev/ppsO"
found PPS source "/dev/pps0"
ok, found 1 source(s), now start fetching data...

246

https://gpsd.gitlab.io/gpsd/hardware.html

source 0 - assert 1588140739.099526246, sequence: 69 - clear 1588140739.999663721, sequence: 70
source 0 - assert 1588140740.099661485, sequence: 70 - clear 1588140739.999663721, sequence: 70
source 0 - assert 1588140740.099661485, sequence: 70 - clear 1588140740.999786664, sequence: 71

source 0 - assert 1588140741.099792447, sequence: 71 - clear 1588140740.999786664, sequence: 71

Ok, gpsd is now running, the GPS reception has found a fix, and it has fed this into chrony. Let’s check on that from
the point of view of chrony.

Initially, before gpsd has started or before it has a lock, these sources will be new and “untrusted” - they will be
marked with a “?” as shown in the example below. If your devices remain in the “?” state (even after some time)
then gpsd is not feeding any data to chrony and you will need to debug why.

chronyc> sources
210 Number of sources = 10

MS Name/IP address Stratum Poll Reach LastRx Last sample
#? GPS 0 4 0 - +0ns [+0ns] +/- Ons
#? PPS 0 4 0 - +0ns [+0ns] +/- Ons

Over time, chrony will classify all of the unknown sources as “good” or “bad”.
In the example below, the raw GPS had too much deviation (+ 200ms) but the PPS is good (£ 63us).

chronyc> sources
210 Number of sources = 10

MS Name/IP address Stratum Poll Reach LastRx Last sample
#x GPS 0 4 177 24 -876ms[-876ms] +/- 200ms
#- PPS 0 4 177 21 +916us[+916us] +/- 63us

~- chilipepper.canonical.com 2 6 37 53 +33us[+33us] +/- 33ms
Finally, after a while it used the hardware PPS input (as it was better):

chronyc> sources
210 Number of sources = 10

MS Name/IP address Stratum Poll Reach LastRx Last sample

#x GPS 0 4 377 20 -884ms[-884ms] +/- 200ms
#* PPS 0 4 377 18 +6677ns[+52us] +/- 58us
~- alphyn.canonical.com 2 6 377 20 -1303us[-1258us] +/- 1l4ms

The PPS might also be OK — but used in a combined way with the selected server, for example. See man chronyc for
more details about how these combinations can look:

chronyc> sources
210 Number of sources = 11

MS Name/IP address Stratum Poll Reach LastRx Last sample

#? GPS 0 4 0 - +0ns| +0ns] +/- Ons
#+ PPS 0 4 377 22 +154us[+154us] +/- 8561us
~* chilipepper.canonical.com 2 6 377 50 -353us[-300us] +/- 44ms

If you’re wondering if your SHM-based GPS data is any good, you can check on that as well. chrony will not only tell
you if the data is classified as good or bad — using sourcestats you can also check the details:

chronyc> sourcestats
210 Number of sources = 10

Name/IP Address NP NR Span Frequency Freq Skew Offset Std Dev
GPS 20 9 302 +1.993 11.501 -868ms 1208us
PPS 6 3 78 +0.324 5.009 +3365ns 41us
golem.canonical.com 15 10 783 +0.859 0.509 -750us 108us

You can also track the raw data that gpsd or other ntpd-compliant reference clocks are sending via shared memory by
using ntpshmmon. Let us run the command sudo ntpshmmon -o, which should provide the following output:

ntpshmmon: version 3.20

Name Offset Clock Real L Prc
sample NTP1 0.000223854 1588265805.000223854 1588265805.000000000 0 -10
sample NTPO 0.125691783 1588265805.125999851 1588265805.000308068 0 -20

247

sample NTP1 0.000349341 1588265806.000349341 1588265806.000000000 0 -10
sample NTPO 0.130326636 1588265806.130634945 1588265806.000308309 0 -20
sample NTP1 0.000485216 1588265807.000485216 1588265807.000000000 0 -10

NTS Support
In Chrony 4.0 (which first appeared in Ubuntu 21.04 Hirsute) support for Network Time Security “NTS” was added.

NTS server

To set up your server with NTS you’ll need certificates so that the server can authenticate itself and, based on that,
allow the encryption and verification of NTP traffic.

In addition to the allow statement that any chrony (while working as an NTP server) needs there are two mandatory
config entries that will be needed. Example certificates for those entries would look like:

ntsservercert /etc/chrony/fullchain.pem
ntsserverkey /etc/chrony/privkey.pem

It is important to note that for isolation reasons chrony, by default, runs as user and group chrony. Therefore you
need to grant access to the certificates for that user, by running the following command.:.

sudo chown chrony: chrony /etc/chrony/*.pem
Then restart chrony with systemctl restart chrony and it will be ready to provide NTS-based time services.

A running chrony server measures various statistics. One of them counts the number of NTS connections that were
established (or dropped) — we can check this by running sudo chronyc -N serverstats, which shows us the statistics:

NTP packets received 1 213
NTP packets dropped 1 0
Command packets received : 117
Command packets dropped : 0

Client log records dropped : 0
NTS-KE connections accepted: 2
NTS-KE connections dropped : 0
Authenticated NTP packets : 197

There is also a per-client statistic which can be enabled by the -p option of the clients command.
sudo chronyc -N clients -k
This provides output in the following form:

Hostname NTP Drop Int IntL Last NTS-KE Drop Int Last

10.172.196.173 197 0 10 - 595 2 0 5 48h

For more complex scenarios there are many more advanced options for configuring NTS. These are documented in the
chrony man page.

Note: About certificate placement

Chrony, by default, is isolated via AppArmor and uses a number of protect* features of systemd. Due

to that, there are not many paths chrony can access for the certificates. But /etc/chrony/* is allowed as

read-only and that is enough.

Check /etc/apparmor.d/usr.sbin.chronyd if you want other paths or allow custom paths in /etc/apparmor.d/local/usr.sbir

NTS client

The client needs to specify server as usual (pool directives do not work with NTS). Afterwards, the server address
options can be listed and it is there that nts can be added. For example:

server <server-fqdn-or-IP> iburst nts

One can check the authdata of the connections established by the client using sudo chronyc -N authdata, which will
provide the following information:

Name/IP address Mode KeyID Type KLen Last Atmp NAK Cook CLen

<server-fqdn-or-ip> NTS 1 15 256 48h 0 0 8 100

248

https://www.networktimesecurity.org/
https://manpages.ubuntu.com/manpages/impish/man5/chrony.conf.5.html
https://manpages.ubuntu.com/manpages/impish/man5/chrony.conf.5.html

Again, there are more advanced options documented in the man page. Common use cases are specifying an explicit
trusted certificate.

Bad Clocks and secure time syncing - “A Chicken and Egg” problem

There is one problem with systems that have very bad clocks. NTS is based on TLS, and TLS needs
a reasonably correct clock. Due to that, an NTS-based sync might fail. On hardware affected by this
problem, one can consider using the nocerttimecheck option which allows the user to set the number of
times that the time can be synced without checking validation and expiration.

References
e Chrony FAQ
e ntp.org: home of the Network Time Protocol project
e pool.ntp.org: project of virtual cluster of timeservers
e Freedesktop.org info on timedatectl
o Freedesktop.org info on systemd-timesyncd service
e Feeding chrony from GPSD
e See the Ubuntu Time wiki page for more information.

Since DPDK is just a library, it doesn’t do a lot on its own so it depends on emerging projects making use of it. One
consumer of the library that is already part of Ubuntu is Open vSwitch with DPDK (OvS-DPDK) support in the
package openvswitch-switch-dpdk.

Here is a brief example of how to install and configure a basic Open vSwitch using DPDK for later use via libvirt/qemu-
kvm.

sudo apt-get install openvswitch-switch-dpdk
sudo update-alternatives --set ovs-vswitchd /usr/lib/openvswitch-switch-dpdk/ovs-vswitchd-dpdk

ovs-vsctl set Open vSwitch . "other config:dpdk-init=true"
run on core 0 only
ovs-vsctl set Open vSwitch . "other config:dpdk-lcore-mask=0x1"

Allocate 2G huge pages (not Numa node aware)

ovs-vsctl set Open vSwitch . "other config:dpdk-alloc-mem=2048"

1limit to one whitelisted device

ovs-vsctl set Open vSwitch . "other config:dpdk-extra=--pci-whitelist=0000:04:00.0"
sudo service openvswitch-switch restart

Remember:
You need to assign devices to DPDK-compatible drivers before restarting — see the DPDK section on
unassigning the default kernel drivers.

Please note that the section dpdk-alloc-mem=2048 in the above example is the most basic non-uniform memory access
(NUMA) setup for a single socket system. If you have multiple sockets you may want to define how the memory should
be split among them. More details about these options are outlined in Open vSwitch setup.

Attach DPDK ports to Open vSwitch

The Open vSwitch you started above supports all the same port types as Open vSwitch usually does, plus DPDK port
types. The following example shows how to create a bridge and — instead of a normal external port — add an external
DPDK port to it. When doing so you can specify the associated device.

ovs-vsctl add-br ovsdpdkbr® -- set bridge ovsdpdkbr® datapath type=netdev
ovs-vsctl add-port ovsdpdkbr® dpdk® -- set Interface dpdk® type=dpdk "options:dpdk-devargs=${OVSDEV PCIID}"

You can tune this further by setting options:

ovs-vsctl set Interface dpdk® "options:n rxq=2"

Open vSwitch DPDK to KVM guests

If you are not building some sort of software-defined networking (SDN) switch or NFV on top of DPDK it is very likely
that you want to forward traffic to KVM guests. The good news is; with the new qemu/libvirt/dpdk/openvswitch
versions in Ubuntu this is no longer about manually appending a command line string. This section demonstrates a
basic setup to connect a KVM guest to an Open vSwitch DPDK instance.

249

https://manpages.ubuntu.com/manpages/impish/man5/chrony.conf.5.html
https://chrony.tuxfamily.org/faq.html
http://www.ntp.org/
http://www.pool.ntp.org/
https://www.freedesktop.org/software/systemd/man/timedatectl.html
https://www.freedesktop.org/software/systemd/man/systemd-timesyncd.service.html
https://gpsd.gitlab.io/gpsd/gpsd-time-service-howto.html#_feeding_chrony_from_gpsd
https://help.ubuntu.com/community/UbuntuTime
https://ubuntu.com/server/docs/network-dpdk
https://ubuntu.com/server/docs/network-dpdk/#heading--unassign-default-kernel-drivers
http://docs.openvswitch.org/en/latest/intro/install/dpdk/#setup-ovs

The recommended way to get to a KVM guest is using vhost user client. This will cause OvS-DPDK to connect
to a socket created by QEMU. In this way, we can avoid old issues like “guest failures on OvS restart”. Here is an
example of how to add such a port to the bridge you created above.

ovs-vsctl add-port ovsdpdkbr® vhost-user-1 -- set Interface vhost-user-1 type=dpdkvhostuserclient "options:vhost-
server-path=/var/run/vhostuserclient/vhost-user-client-1"

This will connect to the specified path that has to be created by a guest listening for it.

To let libvirt/kvm consume this socket and create a guest VirtIO network device for it, add the following snippet to
your guest definition as the network definition.

<interface type='vhostuser'>

<source type='unix'
path='/var/run/vhostuserclient/vhost-user-client-1'
mode='server'/>

<model type='virtio'/>

</interface>

Tuning Open vSwitch-DPDK
DPDK has plenty of options — in combination with Open vSwitch-DPDK the two most commonly used are:

ovs-vsctl set Open vSwitch . other config:n-dpdk-rxqs=2
ovs-vsctl set Open vSwitch . other config:pmd-cpu-mask=0x6

The first line selects how many Rx Queues are to be used for each DPDK interface, while the second controls how
many poll mode driver (PMD) threads to run (and where to run them). The example above will use two Rx Queues,
and run PMD threads on CPU 1 and 2.

See also:
Check the links to “EAL Command-line Options” and “Open vSwitch DPDK installation” at the end of
this document for more information.

As usual with tunings, you need to know your system and workload really well - so please verify any tunings with
workloads matching your real use case.

Support and troubleshooting

DPDK is a fast-evolving project. In any search for support and/or further guides, we highly recommended first
checking to see if they apply to the current version.

You can check if your issues is known on:

e DPDK Mailing Lists

e For OpenVswitch-DPDK OpenStack Mailing Lists

e Known issues in DPDK Launchpad Area

e Join the IRC channels #DPDK or #openvswitch on freenode.

Issues are often due to missing small details in the general setup. Later on, these missing details cause problems which
can be hard to track down to their root cause.

A common case seems to be the “could not open network device dpdk0 (No such device)” issue. This occurs rather
late when setting up a port in Open vSwitch with DPDK, but the root cause (most of the time) is very early in the
setup and initialisation. Here is an example of how proper initialiasation of a device looks - this can be found in the
syslog/journal when starting Open vSwitch with DPDK enabled.

ovs-ctl[3560]: EAL: PCI device 0000:04:00.1 on NUMA socket 0
ovs-ctl[3560]: EAL: probe driver: 8086:1528 rte ixgbe pmd
ovs-ctl[3560]: EAL: PCI memory mapped at 0x7f2140000000
ovs-ctl[3560]: EAL: PCI memory mapped at 0x7f2140200000

If this is missing, either by ignored cards, failed initialisation or other reasons, later on there will be no DPDK device
to refer to. Unfortunately, the logging is spread across syslog/journal and the openvswitch log. To enable some
cross-checking, here is an example of what can be found in these logs, relative to the entered command.

#Note: This log was taken with dpdk 2.2 and openvswitch 2.5 but still looks quite similar (a bit extended) these days
Captions:

CMD: that you enter

SYSLOG: (Inlcuding EAL and 0VS Messages)

0VS-LOG: (Openvswitch messages)

250

http://dpdk.org/ml
http://openvswitch.org/mlists
https://bugs.launchpad.net/ubuntu/+source/dpdk

#PREPARATION
Bind an interface to DPDK UIO drivers, make Hugepages available, enable DPDK on 0VS

CMD: sudo service openvswitch-switch restart

SYSLOG:

2016-01-22T08:58:31.372Z| 00003 |daemon_unix(monitor) |INFO|pid 3329 died, killed (Terminated), exiting
2016-01-22T08:58:33.3772|00002|vlog|INFO|opened log file /var/log/openvswitch/ovs-vswitchd.log
2016-01-22T08:58:33.381Z|00003|ovs_numa|INFO|Discovered 12 CPU cores on NUMA node 0
2016-01-22T08:58:33.381Z|00004 |ovs numa|INFO|Discovered 1 NUMA nodes and 12 CPU cores
2016-01-22T08:58:33.381Z| 00005 | reconnect|INFO|unix:/var/run/openvswitch/db.sock: connecting...
2016-01-22T08:58:33.383Z|00006 | reconnect | INFO|unix:/var/run/openvswitch/db.sock: connected
2016-01-22T08:58:33.386Z|00007 |bridge|INFO|ovs-vswitchd (Open vSwitch) 2.5.0

0VS-LOG:

systemd[1]: Stopping Open vSwitch...

systemd[1]: Stopped Open vSwitch.

systemd[1]: Stopping Open vSwitch Internal Unit...
ovs-ctl[3541]: * Killing ovs-vswitchd (3329)
ovs-ctl[3541]: * Killing ovsdb-server (3318)
systemd[1]: Stopped Open vSwitch Internal Unit.
systemd[1]: Starting Open vSwitch Internal Unit...
ovs-ctl[3560]: * Starting ovsdb-server

ovs-vsctl: ovs|00001|vsctl|INFO|Called as ovs-vsctl --no-wait -- init -- set Open vSwitch . db-version=7.12.1
ovs-vsctl: ovs|00001|vsctl|INFO|Called as ovs-vsctl --no-wait set Open vSwitch . ovs-version=2.5.0 "external-
ids:system-id=\"e7c5ba80-bb14-45c1-b8eb-628f3ad03903\"" "system-type=\"Ubuntu\"" "system-version=\"16.04-
xenial\""

ovs-ctl[3560]: * Configuring Open vSwitch system IDs
ovs-ctl[3560]: 2016-01-22T08:58:31Z|00001|dpdk|INFO|No -vhost sock dir provided - defaulting to /var/run/openvswitch
ovs-vswitchd: ovs|00001|dpdk|INFO|No -vhost sock dir provided - defaulting to /var/run/openvswitch

ovs-ctl[3560]: EAL: Detected lcore 0 as core 0 on socket 0
ovs-ctl[3560]: EAL: Detected lcore 1 as core 1 on socket 0
ovs-ctl[3560]: EAL: Detected lcore 2 as core 2 on socket 0
ovs-ctl[3560]: EAL: Detected lcore 3 as core 3 on socket 0
ovs-ctl[3560]: EAL: Detected lcore 4 as core 4 on socket 0
ovs-ctl[3560]: EAL: Detected lcore 5 as core 5 on socket 0
ovs-ctl[3560]: EAL: Detected lcore 6 as core 0 on socket 0
ovs-ctl[3560]: EAL: Detected lcore 7 as core 1 on socket 0
ovs-ctl[3560]: EAL: Detected lcore 8 as core 2 on socket 0
ovs-ctl[3560]: EAL: Detected lcore 9 as core 3 on socket 0

ovs-ctl[3560]: EAL: Detected lcore 10 as core 4 on socket 0

ovs-ctl[3560]: EAL: Detected lcore 11 as core 5 on socket 0

ovs-ctl[3560]: EAL: Support maximum 128 logical core(s) by configuration.
ovs-ctl[3560]: EAL: Detected 12 lcore(s)

ovs-ctl[3560]: EAL: VFIO modules not all loaded, skip VFIO support...
ovs-ctl[3560]: EAL: Setting up physically contiguous memory. ..
ovs-ctl[3560]: EAL: Ask a virtual area of 0x100000000 bytes

ovs-ctl[3560]: EAL: Virtual area found at 0x7f2040000000 (size = 0x100000000)
ovs-ctl[3560]: EAL: Requesting 4 pages of size 1024MB from socket 0
ovs-ctl[3560]: EAL: TSC frequency is ~2397202 KHz

ovs-vswitchd[3592]: EAL: TSC frequency is ~2397202 KHz

ovs-vswitchd[3592]: EAL: Master lcore 0 is ready (tid=fc6cbb00;cpuset=[0])
ovs-vswitchd[3592]: EAL: PCI device 0000:04:00.0 on NUMA socket 0
ovs-vswitchd[3592]: EAL: probe driver: 8086:1528 rte ixgbe pmd
ovs-vswitchd[3592]: EAL: Not managed by a supported kernel driver, skipped
ovs-vswitchd[3592]: EAL: PCI device 0000:04:00.1 on NUMA socket 0
ovs-vswitchd[3592]: EAL: probe driver: 8086:1528 rte_ixgbe_pmd
ovs-vswitchd[3592]: EAL: PCI memory mapped at 0x7f2140000000
ovs-vswitchd[3592]: EAL: PCI memory mapped at 0x7f2140200000
ovs-ctl[3560]: EAL: Master lcore 0 is ready (tid=fc6cbb00;cpuset=[0])
ovs-ctl[3560]: EAL: PCI device 0000:04:00.0 on NUMA socket 0
ovs-ctl[3560]: EAL: probe driver: 8086:1528 rte ixgbe pmd

251

ovs-ctl[3560]: EAL: Not managed by a supported kernel driver, skipped

ovs-ctl[3560]: EAL: PCI device 0000:04:00.1 on NUMA socket 0O

ovs-ctl[3560]: EAL: probe driver: 8086:1528 rte ixgbe pmd

ovs-ctl[3560]: EAL: PCI memory mapped at 0x7f2140000000

ovs-ctl[3560]: EAL: PCI memory mapped at 0x7f2140200000

ovs-vswitchd[3592]: PMD: eth ixgbe dev init(): MAC: 4, PHY: 3

ovs-vswitchd[3592]: PMD: eth ixgbe dev _init(): port 0 vendorID=0x8086 deviceID=0x1528

ovs-ctl[3560]: PMD: eth ixgbe dev_init(): MAC: 4, PHY: 3

ovs-ctl[3560]: PMD: eth ixgbe dev init(): port 0 vendorID=0x8086 deviceID=0x1528

ovs-ctl[3560]: Zone 0: name:<RG MP log history>, phys:0x83fffdecO, len:0x2080, virt:0x7f213fffdecd, socket id:0, flags:(
ovs-ctl[3560]: Zone 1: name:<MP log history>, phys:0x83fd73d40, len:0x28a0c0O, virt:0x7f213fd73d40, socket id:0, flags:0
ovs-ctl[3560]: Zone 2: name:<rte_eth dev data>, phys:0x83fd43380, len:0x2f700, virt:0x7f213fd43380, socket id:0, flags:
ovs-ctl[3560]: * Starting ovs-vswitchd

ovs-ctl[3560]: * Enabling remote OVSDB managers

systemd[1]: Started Open vSwitch Internal Unit.

systemd[1]: Starting Open vSwitch...

systemd[1]: Started Open vSwitch.

CMD: sudo ovs-vsctl add-br ovsdpdkbr® -- set bridge ovsdpdkbr® datapath type=netdev

SYSLOG:

2016-01-22T08:58:56.344Z| 00008 |memory | INFO|37256 kB peak resident set size after 24.5 seconds
2016-01-22T08:58:56.346Z|00009 |ofproto dpif|INFO|netdev@ovs-netdev: Datapath supports recirculation
2016-01-22T08:58:56.346Z|00010|ofproto_dpif|INFO|netdev@ovs-netdev: MPLS label stack length probed as 3
2016-01-22T08:58:56.346Z|00011|ofproto_dpif|INFO|netdev@ovs-netdev: Datapath supports unique flow ids
2016-01-22T08:58:56.346Z|00012|ofproto dpif|INFO|netdev@ovs-netdev: Datapath does not support ct state
2016-01-22T08:58:56.346Z| 00013 |ofproto_dpif|INFO|netdev@ovs-netdev: Datapath does not support ct zone
2016-01-22T08:58:56.346Z|00014 |ofproto dpif|INFO|netdev@ovs-netdev: Datapath does not support ct mark
2016-01-22T08:58:56.346Z2|00015|ofproto dpif|INFO|netdev@ovs-netdev: Datapath does not support ct label
2016-01-22T08:58:56.360Z|00016 |bridge| INFO|bridge ovsdpdkbr@: added interface ovsdpdkbr® on port 65534
2016-01-22T08:58:56.361Z|00017 |bridge | INFO|bridge ovsdpdkbr0: using datapath ID 00005a4aledOal4d
2016-01-22T08:58:56.361Z| 00018 | connmgr | INFO|ovsdpdkbrO: added service controller "punix:/var/run/openvswitch/ovsdpdkbr

0VS-LOG:

ovs-vsctl: ovs|00001|vsctl|INFO|Called as ovs-vsctl add-br ovsdpdkbr@ -- set bridge ovsdpdkbr0 datapath type=netdev
systemd-udevd[3607]: Could not generate persistent MAC address for ovs-netdev: No such file or directory

kernel: [50165.886554] device ovs-netdev entered promiscuous mode

kernel: [50165.901261] device ovsdpdkbr@® entered promiscuous mode

CMD: sudo ovs-vsctl add-port ovsdpdkbr@ dpdkd -- set Interface dpdkO type=dpdk

SYSLOG:

2016-01-22T08:59:06.369Z|00019 |memory | INFO|peak resident set size grew 155% in last 10.0 seconds, from 37256 kB to 95008 k
2016-01-22T08:59:06.369Z| 00020 |memory | INFO|handlers:4 ports:1 revalidators:2 rules:5
2016-01-22T08:59:30.989Z|00021|dpdk | INFO|Port 0: 8c:dc:d4:b3:6d:e9

2016-01-22T08:59:31.520Z| 00022 |dpdk | INFO|Port 0: 8c:dc:d4:b3:6d:e9
2016-01-22T08:59:31.5217|00023 |dpif netdev|INFO|Created 1 pmd threads on numa node 0
2016-01-22T08:59:31.5227| 00001 |dpif netdev(pmd1l6) |INFO|Core @ processing port 'dpdk0'
2016-01-22T08:59:31.5227|00024 |bridge | INFO|bridge ovsdpdkbr0: added interface dpdk® on port 1
2016-01-22T08:59:31.5227| 00025 |bridge|INFO|bridge ovsdpdkbr@: using datapath ID 00008cdcd4b36de9
2016-01-22T08:59:31.523Z7| 00002 |dpif netdev(pmd1l6) |INFO|Core O processing port 'dpdkO'

0VS-LOG:

ovs-vsctl: ovs|00001|vsctl|INFO|Called as ovs-vsctl add-port ovsdpdkbr@ dpdk0d -- set Interface dpdk® type=dpdk
ovs-vswitchd[3595]: PMD: ixgbe dev_tx_queue_setup(): sw_ring=0x7f211a79ebcO hw_ring=0x7f211a7a6c00 dma_addr=0x8la7a6c0(
ovs-vswitchd[3595]: PMD: ixgbe set tx function(): Using simple tx code path

ovs-vswitchd[3595]: PMD: ixgbe set tx function(): Vector tx enabled.

ovs-vswitchd[3595]: PMD: ixgbe dev rx queue setup(): sw _ring=0x7f211a78a6¢0 sw_sc ring=0x7f211a786580 hw ring=0x7f211a’
ovs-vswitchd[3595]: PMD: ixgbe set rx function(): Vector rx enabled, please make sure RX burst size no less than 4 (port=0
ovs-vswitchd[3595]: PMD: ixgbe dev_tx_queue setup(): sw _ring=0x7f211la79ebcO hw ring=0x7f211a7a6c00 dma_addr=0x8la7a6c0(

252

CMD: sudo ovs-vsctl add-port ovsdpdkbr® vhost-user-1 -- set Interface vhost-user-1 type=dpdkvhostuser

0VS-LOG:

2016-01-22T09:00:35.145Z| 00026 |dpdk | INFO|Socket /var/run/openvswitch/vhost-user-1 created for vhost-
user port vhost-user-1

2016-01-22T09:00:35.145Z| 00003 |dpif netdev(pmd1l6) | INFO|Core 0 processing port 'dpdk0'
2016-01-22T09:00:35.145Z|00004 |dpif netdev(pmd1l6) | INFO|Core @ processing port 'vhost-user-1'
2016-01-22T09:00:35.145Z|00027 |bridge| INFO|bridge ovsdpdkbr@: added interface vhost-user-1 on port 2

SYSLOG:

ovs-vsctl: ovs|00001|vsctl|INFO|Called as ovs-vsctl add-port ovsdpdkbr® vhost-user-1 -- set Interface vhost-
user-1 type=dpdkvhostuser

ovs-vswitchd[3595]: VHOST CONFIG: socket created, fd:46

ovs-vswitchd[3595]: VHOST CONFIG: bind to /var/run/openvswitch/vhost-user-1

Eventually we can see the poll thread in top

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
3595 root 10 -10 4975344 103936 9916 S 100.0 0.3 33:13.56 ovs-vswitchd
Resources

e DPDK documentation

o Release Notes matching the version packages in Ubuntu 16.04
e Linux DPDK user getting started

e EAL command-line options

« DPDK API documentation

e Open Vswitch DPDK installation

o Wikipedia’s definition of DPDK

A Samba server needs to join the Active Directory (AD) domain before it can serve files and printers to Active Directory
users. This is different from Network User Authentication with SSSD, where we integrate the AD users and groups
into the local Ubuntu system as if they were local.

For Samba to authenticate these users via Server Message Block (SMB) authentication protocols, we need both for
the remote users to be “seen”, and for Samba itself to be aware of the domain. In this scenario, Samba is called a
Member Server or Domain Member.

See also:

Samba itself has the necessary tooling to join an Active Directory domain. It requires a sequence of manual
steps and configuration file editing, which is thoroughly documented on the Samba wiki. It’s useful to read
that documentation to get an idea of the steps necessary, and the decisions you will need to make.

Use realmd to join the Active Directory domain

For this guide, though, we are going to use the realmd package and instruct it to use the Samba tooling for joining
the AD domain. This package will make certain decisions for us which will work for most cases, but more complex
setups involving multiple or very large domains might require additional tweaking.

Install realmd
First, let’s install the necessary packages:

sudo apt install realmd samba

In order to have the joined machine registered in the AD DNS, it needs to have an FQDN set. You might have that
already, if running the hostname -f command returns a full hostname with domain. If it doesn’t, then set the hostname
as follows:

sudo hostnamectl hostname <yourfqdn>

For this guide, we will be using j1.internal.example.fake, and the AD domain will be internal.example.fake.

253

http://dpdk.org/doc
http://dpdk.org/doc/guides/rel_notes/release_2_2.html
http://dpdk.org/doc/guides/linux_gsg/index.html
http://dpdk.org/doc/guides/testpmd_app_ug/run_app.html
http://dpdk.org/doc/api/
https://github.com/openvswitch/ovs/blob/branch-2.5/INSTALL.DPDK.md
https://en.wikipedia.org/wiki/Data_Plane_Development_Kit
https://wiki.samba.org/index.php/Setting_up_Samba_as_a_Domain_Member

Verify the AD server

Next, we need to verify that the AD server is both reachable and known by running the following command:
sudo realm discover internal.example.fake

This should provide an output like this, given our setup:

internal.example. fake
type: kerberos
realm-name: INTERNAL.EXAMPLE.FAKE
domain-name: internal.example.fake
configured: no
server-software: active-directory
client-software: sssd
required-package: sssd-tools
required-package: sssd
required-package: libnss-sss
required-package: libpam-sss
required-package: adcli
required-package: samba-common-bin

realm is suggesting a set of packages for the discovered domain, but we will override that and select the Samba tooling
for this join, because we want Samba to become a Member Server.

Join the AD domain

Let’s join the domain in verbose mode so we can see all the steps:

sudo realm join -v --membership-software=samba --client-software=winbind internal.example.fake
This should produce the following output for us:

* Resolving: 1ldap. tcp.internal.example.fake
* Performing LDAP DSE lookup on: 10.0.16.5
* Successfully discovered: internal.example.fake
Password for Administrator:
* Unconditionally checking packages
* Resolving required packages
* Installing necessary packages: libnss-winbind samba-common-bin libpam-winbind winbind
* LANG=C LOGNAME=root /usr/bin/net --configfile /var/cache/realmd/realmd-smb-conf.A53N01 -U Administrator -
-use-kerberos=required ads join internal.example.fake
Password for [INTEXAMPLE\Administrator]:
Using short domain name -- INTEXAMPLE
Joined 'J1' to dns domain 'internal.example.fake'
* LANG=C LOGNAME=root /usr/bin/net --configfile /var/cache/realmd/realmd-smb-conf.A53N01 -U Administrator ads keytab cre
Password for [INTEXAMPLE\Administrator]:
* Jusr/sbin/update-rc.d winbind enable
* Jusr/sbin/service winbind restart
* Successfully enrolled machine in realm

Note:

This command also installed the libpam-winbind package, which allows AD users to authenticate to
other services on this system via PAM, like SSH or console logins. For example, if your SSH
server allows password authentication (PasswordAuthentication yes in /etc/ssh/sshd_config), then the
domain users will be allowed to login remotely on this system via SSH.

If you don’t expect or need AD users to log into this system (unless it’s via Samba or Windows), then it’s
safe and probably best to remove the libpam-winbind package.

Until bug #1980246 is fixed, one extra step is needed:
o Configure /etc/nsswitch.conf by adding the word winbind to the passwd and group lines as shown below:

passwd: files systemd winbind
group: files systemd winbind

Now you will be able to query users from the AD domain. Winbind adds the short domain name as a prefix to
domain users and groups:

$ getent passwd INTEXAMPLE\\Administrator

254

https://bugs.launchpad.net/ubuntu/+source/realmd/+bug/1980246

INTEXAMPLE\administrator:*:2000500:2000513::/home/administrator@INTEXAMPLE: /bin/bash

You can find out the short domain name in the realm output shown earlier, or inspect the workgroup parameter
of /etc/samba/smb.conf.

Common installation options

When domain users and groups are brought to the Linux world, a bit of translation needs to happen, and sometimes
new values need to be created. For example, there is no concept of a “login shell” for AD users, but it exists in Linux.

The following are some common /etc/samba/smb.conf options you are likely to want to tweak in your installation. The
smb.conf(5) man page explains the % variable substitutions and other details:

e home directory
template homedir = /home/%U@%D
(Another popular choice is /home/%D/%U)

¢ login shell
template shell = /bin/bash

e winbind separator = \
This is the \ character between the short domain name and the user or group name that we saw in the getent
passwd output above.

e winbind use default domain
If this is set to yes, then the domain name will not be part of the users and groups. Setting this to yes makes the
system more friendly towards Linux users, as they won’t have to remember to include the domain name every
time a user or group is referenced. However, if multiple domains are involved, such as in an AD forest or other
form of domain trust relationship, then leave this setting at no (default).

To have the home directory created automatically the first time a user logs in to the system, and if you haven’t removed
libpam-winbind, then enable the pam mkhomedir module via this command:

sudo pam-auth-update --enable mkhomedir

Note that this won’t apply to logins via Samba: this only creates the home directory for system logins like those via
ssh or the console.

Export shares

Shares can be exported as usual. Since this is now a Member Server, there is no need to deal with user and group
management. All of this is integrated with the Active Directory server we joined.

For example, let’s create a simple [storage] share. Add this to the /etc/samba/smb.conf file:

[storage]
path = /storage
comment = Storage share
writable = yes
guest ok = no

Then create the /storage directory. Let’s also make it 1777 so all users can use it, and then ask samba to reload its
configuration:

sudo mkdir -m 1777 /storage
sudo smbcontrol smbd reload-config

With this, users from the AD domain will be able to access this share. For example, if there is a user ubuntu the
following command would access the share from another system, using the domain credentials:

$ smbclient //jl.internal.example.fake/storage -U INTEXAMPLE\\ubuntu
Enter INTEXAMPLE\ubuntu's password:

Try "help" to get a list of possible commands.

smb: \>

And smbstatus on the member server will show the connected user:

$ sudo smbstatus

Samba version 4.15.5-Ubuntu
PID Username Group Machine Protocol Version Encryption Signing

255

https://manpages.ubuntu.com/manpages/jammy/man5/smb.conf.5.html

3631 INTEXAMPLE\ubuntu INTEXAMPLE\domain users 10.0.16.1 (ipv4:10.0.16.1:39534) SMB3 11 -
partial(AES-128-CMAC)

Service pid Machine Connected at Encryption Signing

storage 3631 10.0.16.1 Wed Jun 29 17:42:54 2022 UTC - -

No locked files

You can also restrict access to the share as usual. Just keep in mind the syntax for the domain users. For example,
to restrict access to the [storage] share we just created to only members of the LTS Releases domain group, add the
valid users parameter like below:

[storage]
path = /storage
comment = Storage share
writable = yes
guest ok = no
valid users = "@INTEXAMPLE\LTS Releases"

Choose an idmap backend

realm made some choices for us when we joined the domain. A very important one is the idmap backend, and it might
need changing for more complex setups.

User and group identifiers on the AD side are not directly usable as identifiers on the Linux site. A mapping needs to
be performed.

Winbind supports several idmap backends, and each one has its own man page. The three main ones are:

e idmap ad
e idmap_ autorid
e idmap rid

Choosing the correct backend for each deployment type needs careful planing. Upstream has some guidelines at
Choosing an idmap backend, and each man page has more details and recommendations.

The realm tool selects (by default) the rid backend. This backend uses an algorithm to calculate the Unix user and
group IDs from the respective RID value on the AD side. You might need to review the idmap config settings in
/etc/samba/smb.conf and make sure they can accommodate the number of users and groups that exist in the domain,
and that the range does not overlap with users from other sources.

For example, these settings:

idmap config * : range = 10000-999999

idmap config intexample : backend = rid

idmap config intexample : range = 2000000-2999999
idmap config * : backend = tdb

Will reserve the 2,000,000 through 2,999,999 range for user and group ID allocations on the Linux side for the
intexample domain. The default backend (*, which acts as a “globbing” catch-all rule) is used for the BUILTIN user
and groups, and other domains (if they exist). It’s important that these ranges do not overlap.

The Administrator user we inspected before with getent passwd can give us a glimpse of how these ranges are used
(output format changed for clarity):

$ id INTEXAMPLE\\Administrator
uid=2000500 (INTEXAMPLE\administrator)
gid=2000513 (INTEXAMPLE\domain users)
groups=2000513 (INTEXAMPLE\domain users),
2000500 (INTEXAMPLE\administrator),
2000572 (INTEXAMPLE\denied rodc password replication group),
2000519 (INTEXAMPLE\enterprise admins),
2000518 (INTEXAMPLE\schema admins),
2000520 (INTEXAMPLE\group policy creator owners),
2000512 (INTEXAMPLE\domain admins),
10001 (BUILTIN\users),

256

https://manpages.ubuntu.com/manpages/jammy/man8/idmap_ad.8.html
https://manpages.ubuntu.com/manpages/jammy/man8/idmap_autorid.8.html
https://manpages.ubuntu.com/manpages/jammy/man8/idmap_rid.8.html
https://wiki.samba.org/index.php/Setting_up_Samba_as_a_Domain_Member#Choosing_an_idmap_backend

10000 (BUILTIN\administrators)

Further reading
e The Samba Wiki

One of the most common ways to network Ubuntu and Windows computers is to configure Samba as a file server. It
can be set up to share files with Windows clients, as we’ll see in this section.

The server will be configured to share files with any client on the network without prompting for a password. If your
environment requires stricter Access Controls see Share Access Control.

Install Samba

The first step is to install the samba package. From a terminal prompt enter:
sudo apt install samba

That’s all there is to it; you are now ready to configure Samba to share files.

Configure Samba as a file server

The main Samba configuration file is located in /etc/samba/smb.conf. The default configuration file contains a signifi-
cant number of comments, which document various configuration directives.

Note:
Not all available options are included in the default configuration file. See the smb.conf man page or the
Samba HOWTO Collection for more details.

First, edit the workgroup parameter in the [global/ section of /etc/samba/smb.conf and change it to better match your
environment:

workgroup = EXAMPLE
Create a new section at the bottom of the file, or uncomment one of the examples, for the directory you want to share:

[share]
comment = Ubuntu File Server Share
path = /srv/samba/share
browsable = yes
guest ok = yes
read only = no
create mask = 0755

¢ comment
A short description of the share. Adjust to fit your needs.

e path
The path to the directory you want to share.

Note:

This example uses /srv/samba/sharename because, according to the Filesystem Hierarchy Standard
(FHS), /srv is where site-specific data should be served. Technically, Samba shares can be placed
anywhere on the filesystem as long as the permissions are correct, but adhering to standards is recom-
mended.

o browsable
Enables Windows clients to browse the shared directory using Windows Explorer.

e guest ok
Allows clients to connect to the share without supplying a password.

o read only: determines if the share is read only or if write privileges are granted. Write privileges are allowed
only when the value is no, as is seen in this example. If the value is yes, then access to the share is read only.

e create mask
Determines the permissions that new files will have when created.

257

https://wiki.samba.org
https://www.samba.org/samba/docs/current/man-html/smb.conf.5.html
https://www.samba.org/samba/docs/old/Samba3-HOWTO/
http://www.pathname.com/fhs/pub/fhs-2.3.html#SRVDATAFORSERVICESPROVIDEDBYSYSTEM

Create the directory

Now that Samba is configured, the directory needs to be created and the permissions changed. From a terminal, run
the following commands:

sudo mkdir -p /srv/samba/share
sudo chown nobody:nogroup /srv/samba/share/

The -p switch tells mkdir to create the entire directory tree if it doesn’t already exist.

Enable the new configuration
Finally, restart the Samba services to enable the new configuration by running the following command:
sudo systemctl restart smbd.service nmbd.service

Warning;:
Once again, the above configuration gives full access to any client on the local network. For a more secure
configuration see Share Access Control.

From a Windows client you should now be able to browse to the Ubuntu file server and see the shared directory. If
your client doesn’t show your share automatically, try to access your server by its IP address, e.g. \\192.168.1.1, in
a Windows Explorer window. To check that everything is working try creating a directory from Windows.

To create additional shares simply create new [sharename] sections in /etc/samba/smb.conf, and restart Samba. Just
make sure that the directory you want to share actually exists and the permissions are correct.

The file share named [share] and the path /srv/samba/share used in this example can be adjusted to fit your environ-
ment. It is a good idea to name a share after a directory on the file system. Another example would be a share name
of [ga] with a path of /srv/samba/qa.

Further reading
e For in-depth Samba configurations see the Samba HOWTO Collection
e The guide is also available in printed format.
¢ O'Reilly’s Using Samba is another good reference.
e The Ubuntu Wiki Samba page.

Another common way to network Ubuntu and Windows computers is to configure Samba as a print server. This will
allow it to share printers installed on an Ubuntu server, whether locally or over the network.

Just as we did in using Samba as a file server, this section will configure Samba to allow any client on the local network
to use the installed printers without prompting for a username and password.

If your environment requires stricter Access Controls see Share Access Control.

Install and configure CUPS

Before installing and configuring Samba as a print server, it is best to already have a working CUPS installation. See
our guide on CUPS for details.

Install Samba

To install the samba package, run the following command in your terminal:

sudo apt install samba

Configure Samba

After installing samba, edit /etc/samba/smb.conf. Change the workgroup attribute to what is appropriate for your
network:

workgroup = EXAMPLE
In the [printers] section, change the guest ok option to ‘yes’:

browsable = yes
guest ok = yes

After editing smb.conf, restart Samba:

258

https://www.samba.org/samba/docs/old/Samba3-HOWTO/
http://www.amazon.com/exec/obidos/tg/detail/-/0131882228
http://www.oreilly.com/catalog/9780596007690/
https://help.ubuntu.com/community/Samba
https://ubuntu.com/server/docs/samba-file-server
https://ubuntu.com/server/docs/samba-share-access-control
https://ubuntu.com/server/docs/service-cups

sudo systemctl restart smbd.service nmbd.service

The default Samba configuration will automatically share any printers installed. Now all you need to do is install the
printer locally on your Windows clients.

Further reading
e For in-depth Samba configurations see the Samba HOWTO Collection.
e The guide is also available in printed format.
e O’Reilly’s Using Samba is another good reference.
e Also, see the CUPS Website for more information on configuring CUPS.
e The Ubuntu Wiki Samba page.

There are several options available to control access for each individual shared directory. Using the [share/ example,
this section will cover some common options.

Groups

Groups define a collection of users who have a common level of access to particular network resources. This provides
granularity in controlling access to such resources. For example, let’s consider a group called “qa” is defined to contain
the users Freda, Danika, and Rob, and then a group called “support” is created containing the users Danika, Jeremy,
and Vincent. Any network resources configured to allow access by the “qa” group will be available to Freda, Danika,
and Rob, but not Jeremy or Vincent. Danika can access resources available to both groups since she belongs to both
the “qa” and “support” groups. All other users only have access to resources explicitly allowed to the group they are
part of.

When mentioning groups in the Samba configuration file, /etc/samba/smb.conf, the recognized syntax is to preface the
group name with an “@Q” symbol. For example, if you wished to use a group named sysadmin in a certain section of
the /etc/samba/smb.conf, you would do so by entering the group name as @sysadmin. If a group name has a space in
it, use double quotes, like "@LTS Releases".

Read and write permissions

Read and write permissions define the explicit rights a computer or user has to a particular share. Such permissions
may be defined by editing the /etc/samba/smb.conf file and specifying the explicit permissions inside a share.

For example, if you have defined a Samba share called share and wish to give read-only permissions to the group of
users known as “qa”, but wanted to allow writing to the share by the group called “sysadmin” and the user named
“vincent”, then you could edit the /etc/samba/smb.conf file and add the following entries under the [share] entry:

read list = @qa
write list = @sysadmin, vincent

Another possible Samba permission is to declare administrative permissions to a particular shared resource. Users
having administrative permissions may read, write, or modify any information contained in the resource the user has
been given explicit administrative permissions to.

For example, if you wanted to give the user Melissa administrative permissions to the share example, you would edit
the /etc/samba/smb. conf file, and add the following line under the [share] entry:

admin users = melissa
After editing /etc/samba/smb.conf, reload Samba for the changes to take effect by running the following command:

sudo smbcontrol smbd reload-config

Filesystem permissions

Now that Samba has been configured to limit which groups have access to the shared directory, the filesystem permis-
sions need to be checked.

Traditional Linux file permissions do not map well to Windows NT Access Control Lists (ACLs). Fortunately POSIX
ACLs are available on Ubuntu servers, which provides more fine-grained control. For example, to enable ACLs on
/srv in an EXTS3 filesystem, edit /etc/fstab and add the acl option:

UUID=66bcdd2e-8861-4fb0-b7e4-e61c569fel7d /srv ext3 noatime, relatime,acl 0 1

Then remount the partition:

259

http://samba.org/samba/docs/man/Samba-HOWTO-Collection/
http://www.amazon.com/exec/obidos/tg/detail/-/0131882228
http://www.oreilly.com/catalog/9780596007690/
http://www.cups.org/
https://help.ubuntu.com/community/Samba

sudo mount -v -0 remount /srv

Note:
This example assumes /srv is on a separate partition. If /srv, or wherever you have configured your share
path, is part of the / partition then a reboot may be required.

To match the Samba configuration above, the “sysadmin” group will be given read, write, and execute permissions
to /srv/samba/share, the “qa” group will be given read and execute permissions, and the files will be owned by the
username “Melissa”. Enter the following in a terminal:

sudo chown -R melissa /srv/samba/share/
sudo chgrp -R sysadmin /srv/samba/share/
sudo setfacl -R -m g:qa:rx /srv/samba/share/

Note:
The setfacl command above gives ezecute permissions to all files in the /srv/samba/share directory, which
you may or may not want.

Now from a Windows client you should notice the new file permissions are implemented. See the acl and setfacl man
pages for more information on POSIX ACLs.

Further reading
e For in-depth Samba configurations see the Samba HOWTO Collection.
e The guide is also available in printed format.

e O’Reilly’s Using Samba is also a good reference.

Chapter 18 of the Samba HOWTO Collection is devoted to security.
e For more information on Samba and ACLs see the Samba ACLs page.
e The Ubuntu Wiki Samba page.

Ubuntu comes with the AppArmor security module, which provides mandatory access controls. The default AppArmor
profile for Samba may need to be adapted to your configuration. More details on using AppArmor can be found in
this guide.

There are default AppArmor profiles for /usr/sbin/smbd and /usr/sbin/nmbd, the Samba daemon binaries, as part of
the apparmor-profiles package.

Install apparmor-profiles
To install the package, enter the following command from a terminal prompt:

sudo apt install apparmor-profiles apparmor-utils

Note:
This package contains profiles for several other binaries.

AppArmor profile modes

By default, the profiles for smbd and nmbd are set to ‘complain’ mode. In this mode, Samba can work without modifying
the profile, and only logs errors or violations. There is no need to add exceptions for the shares, as the smbd service
unit takes care of doing that automatically via a helper script.

This is what an ALLOWED message looks like. It means that, were the profile not in complain mode, this action would
have been denied instead (formatted into multiple lines here for better visibility):

Jun 30 14:41:09 ubuntu kernel: [621.478989] audit:

type=1400 audit(1656600069.123:418):

apparmor="ALLOWED" operation="exec" profile="smbd"

name="/usr/1ib/x86 64-1linux-gnu/samba/samba-bgqd" pid=4122 comm="smbd"
requested mask="x" denied mask="x" fsuid=0 ouid=0
target="smbd//null-/usr/1lib/x86 64-1linux-gnu/samba/samba-bgqd"

The alternative to ‘complain’ mode is ‘enforce’ mode, where any operations that violate policy are blocked. To place
the profile into enforce mode and reload it, run:

sudo aa-enforce /usr/sbin/smbd
sudo apparmor_parser -r -W -T /etc/apparmor.d/usr.sbin.smbd

260

https://manpages.ubuntu.com/manpages/trusty/man5/acl.5.html
https://manpages.ubuntu.com/manpages/trusty/man1/setfacl.1.html
https://www.samba.org/samba/docs/old/Samba3-HOWTO/
http://www.amazon.com/exec/obidos/tg/detail/-/0131882228
http://www.oreilly.com/catalog/9780596007690/
https://www.samba.org/samba/docs/old/Samba3-HOWTO/securing-samba.html
https://www.samba.org/samba/docs/old/Samba3-HOWTO/AccessControls.html
https://help.ubuntu.com/community/Samba
https://ubuntu.com/server/docs/security-apparmor
https://ubuntu.com/server/docs/security-apparmor

It’s advisable to monitor /var/log/syslog for audit entries that contain AppArmor DENIED messages, or
/var/log/audit/audit.log if you are running the auditd daemon. Actions blocked by AppArmor may surface
as odd or unrelated errors in the application.

Further reading:

e For more information on how to use AppArmor, including details of the profile modes, the Debian AppArmor
guide may be helpful.

Note:
This section is flagged as legacy because nowadays, Samba can be deployed in full Active Directory domain
controller mode, and the old-style NT4 Primary Domain Controller is deprecated.

A Samba server can be configured to appear as a Windows NT4-style domain controller. A major advantage of this
configuration is the ability to centralise user and machine credentials. Samba can also use multiple backends to store
the user information.

Primary domain controller

In this section, we’ll install and configure Samba as a Primary Domain Controller (PDC) using the default smbpasswd
backend.

Install Samba

First, we’ll install Samba, and libpam-winbind (to sync the user accounts), by entering the following in a terminal
prompt:

sudo apt install samba libpam-winbind

Configure Samba

Next, we’ll configure Samba by editing /etc/samba/smb.conf. The security mode should be set to user, and the
workgroup should relate to your organization:

workgroup = EXAMPLE

security = user

In the commented “Domains” section, add or uncomment the following (the last line has been split to fit the format
of this document):

domain logons = yes

logon path = \\%N\%U\profile

logon drive = H:

logon home = \\%N\%U

logon script = logon.cmd

add machine script = sudo /usr/sbin/useradd -N -g machines -c Machine -d
/var/lib/samba -s /bin/false %u

Note:
If you wish to not use Roaming Profiles leave the logon home and logon path options commented out.

e domain logons
Provides the netlogon service, causing Samba to act as a domain controller.

e logon path
Places the user’s Windows profile into their home directory. It is also possible to configure a [profiles] share
placing all profiles under a single directory.

e logon drive
Specifies the home directory local path.

e logon home
Specifies the home directory location.

e logon script
Determines the script to be run locally once a user has logged in. The script needs to be placed in the [netlogon/
share.

261

https://wiki.debian.org/AppArmor/HowToUse
https://wiki.debian.org/AppArmor/HowToUse

e add machine script
A script that will automatically create the Machine Trust Account needed for a workstation to join the domain.

In this example the machines group will need to be created using the addgroup utility (see Security - Users: Adding
and Deleting Users for details).

Mapping shares
Uncomment the /homes/ share to allow the logon home to be mapped:

[homes]
comment = Home Directories
browseable = no
read only = no
create mask = 0700
directory mask = 0700
valid users = %S

When configured as a domain controller, a [netlogon] share needs to be configured. To enable the share, uncomment:

[netlogon]
comment = Network Logon Service
path = /srv/samba/netlogon
guest ok = yes
read only = yes
share modes = no

Note:
The original netlogon share path is /home/samba/netlogon, but according to the Filesystem Hierarchy
Standard (FHS), /srv is the correct location for site-specific data provided by the system.

Now create the netlogon directory, and an empty (for now) logon.cmd script file:

sudo mkdir -p /srv/samba/netlogon
sudo touch /srv/samba/netlogon/logon.cmd

You can enter any normal Windows logon script commands in logon.cmd to customise the client’s environment.
Restart Samba to enable the new domain controller, using the following command:

sudo systemctl restart smbd.service nmbd.service

Final setup tasks
Lastly, there are a few additional commands needed to set up the appropriate rights.

Since root is disabled by default, a system group needs to be mapped to the Windows Domain Admins group in order
to join a workstation to the domain. Using the net utility, from a terminal enter:

sudo net groupmap add ntgroup="Domain Admins" unixgroup=sysadmin rid=512 type=d

You should change sysadmin to whichever group you prefer. Also, the user joining the domain needs to be a member
of the sysadmin group, as well as a member of the system admin group. The admin group allows sudo use.

If the user does not have Samba credentials yet, you can add them with the smbpasswd utility. Change the sysadmin
username appropriately:

sudo smbpasswd -a sysadmin

Also, rights need to be explicitly provided to the Domain Admins group to allow the add machine script (and other
admin functions) to work. This is achieved by executing:

net rpc rights grant -U sysadmin "EXAMPLE\Domain Admins" SeMachineAccountPrivilege \
SePrintOperatorPrivilege SeAddUsersPrivilege SeDiskOperatorPrivilege \
SeRemoteShutdownPrivilege

You should now be able to join Windows clients to the Domain in the same manner as joining them to an NT4 domain
running on a Windows server.

262

http://www.pathname.com/fhs/pub/fhs-2.3.html#SRVDATAFORSERVICESPROVIDEDBYSYSTEM

Backup domain controller

With a Primary Domain Controller (PDC) on the network it is best to have a Backup Domain Controller (BDC) as
well. This will allow clients to authenticate in case the PDC becomes unavailable.

When configuring Samba as a BDC you need a way to sync account information with the PDC. There are multiple
ways of accomplishing this; secure copy protocol (SCP), rsync, or by using LDAP as the passdb backend.

Using LDAP is the most robust way to sync account information, because both domain controllers can use the same
information in real time. However, setting up an LDAP server may be overly complicated for a small number of user
and computer accounts. See Samba - OpenLDAP Backend for details.

First, install samba and libpam-winbind. From a terminal enter:
sudo apt install samba libpam-winbind
Now, edit /etc/samba/smb.conf and uncomment the following in the [global/:

workgroup = EXAMPLE

security = user

In the commented Domains uncomment or add:

domain logons = yes
domain master = no

Make sure a user has rights to read the files in /var/lib/samba. For example, to allow users in the admin group to
SCP the files, enter:

sudo chgrp -R admin /var/lib/samba

Next, sync the user accounts, using SCP to copy the /var/lib/samba directory from the PDC:

sudo scp -r username@pdc:/var/lib/samba /var/lib

You can replace username with a valid username and pdc with the hostname or IP address of your actual PDC.
Finally, restart sambas:

sudo systemctl restart smbd.service nmbd.service

You can test that your Backup Domain Controller is working by first stopping the Samba daemon on the PDC — then
try to log in to a Windows client joined to the domain.

Another thing to keep in mind is if you have configured the logon home option as a directory on the PDC, and the PDC
becomes unavailable, access to the user’s Home drive will also be unavailable. For this reason it is best to configure
the logon home to reside on a separate file server from the PDC and BDC.

Further reading
e For in depth Samba configurations see the Samba HOWTO Collection.
o The guide is also available in printed format.
e O’Reilly’s Using Samba is also a good reference.
e Chapter 4 of the Samba HOWTO Collection explains setting up a Primary Domain Controller.
e Chapter 5 of the Samba HOWTO Collection explains setting up a Backup Domain Controller.
e The Ubuntu Wiki Samba page.

Note:

This section is flagged as legacy because nowadays, Samba 4 is best integrated with its own LDAP server
in Active Directory mode. Integrating Samba with LDAP as described here covers the NT4 mode, which
has been deprecated for many years.

This section covers the integration of Samba with LDAP. The Samba server’s role will be that of a “standalone” server
and the LDAP directory will provide the authentication layer in addition to containing the user, group, and machine
account information that Samba requires in order to function (in any of its 3 possible roles). The pre-requisite is an
OpenLDAP server configured with a directory that can accept authentication requests. See Install LDAP and LDAP
with Transport Layer Security for details on fulfilling this requirement. Once those steps are completed, you will need
to decide what specifically you want Samba to do for you and then configure it accordingly.

263

https://www.samba.org/samba/docs/old/Samba3-HOWTO/
http://www.amazon.com/exec/obidos/tg/detail/-/0131882228
http://www.oreilly.com/catalog/9780596007690/
https://www.samba.org/samba/docs/old/Samba3-HOWTO/samba-pdc.html
https://www.samba.org/samba/docs/old/Samba3-HOWTO/samba-bdc.html
https://help.ubuntu.com/community/Samba

This guide will assume that the LDAP and Samba services are running on the same server and therefore use SASL
EXTERNAL authentication whenever changing something under cn=config. If that is not your scenario, you will have
to run those LDAP commands on the LDAP server.

Install the software
There are two packages needed when integrating Samba with LDAP: samba and smbldap-tools.

Strictly speaking, the smbldap-tools package isn’t needed, but unless you have some other way to manage the various
Samba entities (users, groups, computers) in an LDAP context then you should install it.

Install these packages now:

sudo apt install samba smbldap-tools

Configure LDAP

We will now configure the LDAP server so that it can accommodate Samba data. We will perform three tasks in this
section:

e Import a schema
¢ Index some entries

e Add objects

Samba schema

In order for OpenLDAP to be used as a backend for Samba, the DIT will need to use attributes that can properly
describe Samba data. Such attributes can be obtained by introducing a Samba LDAP schema. Let’s do this now.

The schema is found in the now-installed samba package and is already in the LDIF format. We can import it with
one simple command:

sudo ldapadd -Q -Y EXTERNAL -H ldapi:/// -f /usr/share/doc/samba/examples/LDAP/samba.ldif
To query and view this new schema:

sudo ldapsearch -Q -LLL -Y EXTERNAL -H ldapi:/// -b cn=schema,cn=config 'cn=*samba*'

Samba indices

Now that slapd knows about the Samba attributes, we can set up some indices based on them. Indexing entries is a
way to improve performance when a client performs a filtered search on the DIT.

Create the file samba_indices.ldif with the following contents:

dn: olcDatabase={1}mdb,cn=config
changetype: modify

replace: olcDbIndex

olcDbIndex: objectClass eq
olcDbIndex: uidNumber,gidNumber eq
olcDbIndex: loginShell eq
olcDbIndex: uid,cn eq,sub
olcDbIndex: memberUid eq,sub
olcDbIndex: member,uniqueMember eq
olcDbIndex: sambaSID eq
olcDbIndex: sambaPrimaryGroupSID eq
olcDbIndex: sambaGroupType eq
olcDbIndex: sambaSIDList eq
olcDbIndex: sambaDomainName eq
olcDbIndex: default sub,eq

Using the ldapmodify utility load the new indices:
sudo ldapmodify -Q -Y EXTERNAL -H ldapi:/// -f samba indices.ldif
If all went well you should see the new indices when using ldapsearch:

sudo ldapsearch -Q -LLL -Y EXTERNAL -H \
ldapi:/// -b cn=config olcDatabase={1}mdb olcDbIndex

264

Adding Samba LDAP objects

Next, configure the smbldap-tools package to match your environment. The package comes with a configuration helper
script called smbldap-config. Before running it, though, you should decide on two important configuration settings in
/etc/samba/smb.conf:

e netbios name
How this server will be known. The default value is derived from the server’s hostname, but truncated at 15
characters.

e workgroup
The workgroup name for this server, or, if you later decide to make it a domain controller, this will be the
domain.

It’s important to make these choices now because smbldap-config will use them to generate the config that will be later
stored in the LDAP directory. If you run smbldap-config now and later change these values in /etc/samba/smb.conf
there will be an inconsistency.

Once you are happy with netbios name and workgroup, proceed to generate the smbldap-tools configuration by running
the configuration script which will ask you some questions:

sudo smbldap-config
Some of the more important ones:

e workgroup name
Has to match what you will configure in /etc/samba/smb.conf later on.

e ldap suffix
Has to match the LDAP suffix you chose when you configured the LDAP server.

e other ldap suffixes
They are all relative to ldap suffix above. For example, for ldap user suffix you should use ou=People, and
for computer/machines, use ou=Computers.

e ldap master bind dn and bind password
Use the Root DN credentials.

The smbldap-populate script will then add the LDAP objects required for Samba. It will ask you for a password for
the “domain root” user, which is also the “root” user stored in LDAP:

sudo smbldap-populate -g 10000 -u 10000 -r 10000

The -g, -u and -r parameters tell smbldap-tools where to start the numeric uid and gid allocation for the LDAP users.
You should pick a range start that does not overlap with your local /etc/passwd users.

You can create a LDIF file containing the new Samba objects by executing sudo smbldap-populate -e samba.ldif.
This allows you to look over the changes making sure everything is correct. If it is, rerun the script without the '-e"
switch. Alternatively, you can take the LDIF file and import its data as per usual.

Your LDAP directory now has the necessary information to authenticate Samba users.

Samba configuration

To configure Samba to use LDAP, edit its configuration file /etc/samba/smb.conf commenting out the default passdb
backend parameter and adding some LDAP-related ones. Make sure to use the same values you used when running
smbldap-populate:

passdb backend = tdbsam
workgroup = EXAMPLE

LDAP Settings

passdb backend = ldapsam:ldap://ldap0@l.example.com
ldap suffix = dc=example,dc=com

ldap user suffix = ou=People

ldap group suffix = ou=Groups

ldap machine suffix = ou=Computers

ldap idmap suffix = ou=Idmap

ldap admin dn = cn=admin,dc=example,dc=com

ldap ssl = start tls

ldap passwd sync = yes

265

Change the values to match your environment.

Note:
The smb.conf as shipped by the package is quite long and has many configuration examples. An easy way
to visualise it without any comments is to run testparm -s.

Now inform Samba about the Root DN user’s password (the one set during the installation of the slapd package):
sudo smbpasswd -W

As a final step to have your LDAP users be able to connect to Samba and authenticate, we need these users to also
show up in the system as “Unix” users. Use SSSD for that as detailed in Network User Authentication with SSSD.

Install sssd-1dap:
sudo apt install sssd-ldap
Configure /etc/sssd/sssd.conf:

[sssd]
config file version = 2
domains = example.com

[domain/example.com]

id provider = ldap

auth _provider = ldap

ldap uri = ldap://1dap0l.example.com
cache credentials = True

ldap search base = dc=example,dc=com

Adjust permissions and start the service:

sudo chmod 0600 /etc/sssd/sssd.conf
sudo chown root:root /etc/sssd/sssd.conf
sudo systemctl start sssd

Restart the Samba services:
sudo systemctl restart smbd.service nmbd.service
To quickly test the setup, see if getent can list the Samba groups:

$ getent group Replicators
Replicators:*:552:

Note:
The names are case sensitive!

If you have existing LDAP users that you want to include in your new LDAP-backed Samba they will, of course, also
need to be given some of the extra Samba specific attributes. The smbpasswd utility can do this for you:

sudo smbpasswd -a username

You will be prompted to enter a password. It will be considered as the new password for that user. Making it the
same as before is reasonable. Note that this command cannot be used to create a new user from scratch in LDAP
(unless you are using ldapsam:trusted and ldapsam:editposix, which are not covered in this guide).

To manage user, group, and machine accounts use the utilities provided by the smbldap-tools package. Here are some
examples:

o To add a new user with a home directory:
sudo smbldap-useradd -a -P -m username

The -a option adds the Samba attributes, and the -P option calls the smbldap-passwd utility after the user is
created allowing you to enter a password for the user. Finally, -m creates a local home directory. Test with the
getent command:

getent passwd username
¢ To remove a user:
sudo smbldap-userdel username

In the above command, use the -r option to remove the user’s home directory.

266

e To add a group:
sudo smbldap-groupadd -a groupname
As for smbldap-useradd, the -a adds the Samba attributes.
e To make an existing user a member of a group:
sudo smbldap-groupmod -m username groupname
The -m option can add more than one user at a time by listing them in comma-separated format.
o To remove a user from a group:
sudo smbldap-groupmod -x username groupname
e To add a Samba machine account:
sudo smbldap-useradd -t 0@ -w username

Replace username with the name of the workstation. The -t 0 option creates the machine account without a
delay, while the -w option specifies the user as a machine account.

Resources
e Upstream documentation collection
e Upstream samba wiki

Note:
This guide does not cover setting up Postfix Virtual Domains. For information on Virtual Domains and
other advanced configurations see References.

Install Postfix

To install Postfix run the following command:
sudo apt install postfix

It is OK to accept defaults initially by pressing return for each question. Some of the configuration options will be
investigated in greater detail in the configuration stage.

Deprecation warning:
The mail-stack-delivery metapackage has been deprecated in Focal. The package still exists for compati-
bility reasons, but won’t setup a working email system.

Configure Postfix
There are four things you should decide before configuring:

e The <Domain> for which you’'ll accept email (we’ll use mail.example.com in our example)
o The network and class range of your mail server (we’ll use 192.168.0.0/24)

o The username (we're using steve)

o Type of mailbox format (mbox is the default, but we’ll use the alternative, Maildir)

To configure postfix, run the following command:
sudo dpkg-reconfigure postfix
The user interface will be displayed. On each screen, select the following values:

o Internet Site

e mail.example.com

e steve

e mail.example.com, localhost.localdomain, localhost

e No

e 127.0.0.0/8 \[::ffff:127.0.0.0\1/104 \[::1\]/128 192.168.0.0/24
e 0

o +

e all

To set the mailbox format, you can either edit the configuration file directly, or use the postconf command. In either
case, the configuration parameters will be stored in /etc/postfix/main.cf file. Later if you wish to re-configure a
particular parameter, you can either run the command or change it manually in the file.

267

https://www.samba.org/samba/docs/
https://wiki.samba.org/index.php/Main_Page
https://www.postfix.org/

Configure mailbox format
To configure the mailbox format for Maildir:
sudo postconf -e 'home mailbox = Maildir/'

This will place new mail in /home/<username>/Maildir so you will need to configure your Mail Delivery Agent (MDA)
to use the same path.

SMTP authentication
SMTP-AUTH allows a client to identify itself through the Simple Authentication and Security Layer (SASL) authen-

tication mechanism, using Transport Layer Security (TLS) to encrypt the authentication process. Once it has been
authenticated, the SMTP server will allow the client to relay mail.

Configure SMTP authentication
To configure Postfix for SMTP-AUTH using SASL (Dovecot SASL), run these commands at a terminal prompt:

sudo postconf -e 'smtpd sasl type = dovecot'

sudo postconf -e 'smtpd sasl path = private/auth'

sudo postconf -e 'smtpd_sasl local _domain ='

sudo postconf -e 'smtpd sasl security options = noanonymous,noplaintext’
sudo postconf -e 'smtpd sasl tls security options = noanonymous'

sudo postconf -e 'broken sasl auth clients = yes'

sudo postconf -e 'smtpd sasl auth enable = yes'

sudo postconf -e 'smtpd recipient restrictions = \

permit sasl authenticated,permit mynetworks,reject unauth destination'

Note:
The smtpd sasl path config parameter is a path relative to the Postfix queue directory.

There are several SASL mechanism properties worth evaluating to improve the security of your deployment. The
options “noanonymous,noplaintext” prevent the use of mechanisms that permit anonymous authentication or that
transmit credentials unencrypted.

Configure TLS

Next, generate or obtain a digital certificate for TLS. MUAs connecting to your mail server via TLS will need to
recognise the certificate used for TLS. This can either be done using a certificate from Let’s Encrypt, from a commercial
CA or with a self-signed certificate that users manually install/accept.

For MTA-to-MTA, TLS certificates are never validated without prior agreement from the affected organisations. For
MTA-to-MTA TLS, there is no reason not to use a self-signed certificate unless local policy requires it. See our guide
on security certificates for details about generating digital certificates and setting up your own Certificate Authority

(CA).
Once you have a certificate, configure Postfix to provide TLS encryption for both incoming and outgoing mail:

sudo postconf -e 'smtp tls security level = may'

sudo postconf -e 'smtpd tls security level = may'

sudo postconf -e 'smtp tls note starttls offer = yes'

sudo postconf -e 'smtpd tls key file = /etc/ssl/private/server.key'
sudo postconf -e 'smtpd tls cert file = /etc/ssl/certs/server.crt'
sudo postconf -e 'smtpd tls loglevel = 1'

sudo postconf -e 'smtpd tls received header = yes'

sudo postconf -e 'myhostname = mail.example.com'

If you are using your own Certificate Authority to sign the certificate, enter:
sudo postconf -e 'smtpd tls CAfile = /etc/ssl/certs/cacert.pem'

Again, for more details about certificates see our security certificates guide.

Outcome of initial configuration

After running all the above commands, Postfix will be configured for SMTP-AUTH with a self-signed certificate for
TLS encryption.

Now, the file /etc/postfix/main.cf should look like this:

268

See /usr/share/postfix/main.cf.dist for a commented, more complete
version

smtpd _banner = $myhostname ESMTP $mail name (Ubuntu)
biff = no

appending .domain is the MUA's job.
append _dot mydomain = no

Uncomment the next line to generate "delayed mail" warnings
#delay warning time = 4h

myhostname = serverl.example.com

alias_maps = hash:/etc/aliases

alias_database = hash:/etc/aliases

myorigin = /etc/mailname

mydestination = serverl.example.com, localhost.example.com, localhost
relayhost =

mynetworks = 127.0.0.0/8

mailbox_command = procmail -a "$EXTENSION"
mailbox size limit = 0

recipient delimiter = +

inet _interfaces = all

smtpd sasl local domain =

smtpd sasl auth enable = yes
smtpd_sasl_security options = noanonymous
broken sasl auth clients = yes

smtpd recipient restrictions =

permit sasl authenticated,permit mynetworks,reject unauth destination
smtpd _tls auth only = no
smtp_tls_security level = may

smtpd tls security level = may

smtp tls note starttls offer = yes
smtpd tls key file = /etc/ssl/private/smtpd.key
smtpd_tls_cert_file = /etc/ssl/certs/smtpd.crt
smtpd_tls CAfile = /etc/ssl/certs/cacert.pem
smtpd tls loglevel =1

smtpd tls received header = yes

smtpd tls session cache timeout = 3600s

tls _random source = dev:/dev/urandom

The Postfix initial configuration is now complete. Run the following command to restart the Postfix daemon:

sudo systemctl restart postfix.service

SASL

Postfix supports SMTP-AUTH as defined in RFC2554. It is based on SASL. However it is still necessary to set up
SASL authentication before you can use SMTP-AUTH.

When using IPv6, the mynetworks parameter may need to be modified to allow IPv6 addresses, for example:

mynetworks = 127.0.0.0/8, [::1]/128

Configure SASL

Postfix supports two SASL implementations: Cyrus SASL and Dovecot SASL.
To enable Dovecot SASL the dovecot-core package will need to be installed:

sudo apt install dovecot-core

Next, edit /etc/dovecot/conf.d/10-master.conf and change the following:

service auth {
auth socket path points to this userdb socket by default. It's typically
used by dovecot-lda, doveadm, possibly imap process, etc. Its default

269

http://www.ietf.org/rfc/rfc2554.txt
http://www.ietf.org/rfc/rfc2222.txt

permissions make it readable only by root, but you may need to relax these
permissions. Users that have access to this socket are able to get a list
of all usernames and get results of everyone's userdb lookups.
unix_listener auth-userdb {

#mode = 0600

#user

#group =
}

Postfix smtp-auth

unix_ listener /var/spool/postfix/private/auth {
mode = 0660
user = postfix
group = postfix

}

}

To permit use of SMTP-AUTH by Outlook clients, change the following line in the authentication mechanisms
section of /etc/dovecot/conf.d/10-auth.conf from:

auth_mechanisms = plain

to this:

auth _mechanisms = plain login

Once you have configured Dovecot, restart it with:

sudo systemctl restart dovecot.service

Test your setup

SMTP-AUTH configuration is complete — now it is time to test the setup. To see if SMTP-AUTH and TLS work
properly, run the following command:

telnet mail.example.com 25

After you have established the connection to the Postfix mail server, type:

ehlo mail.example.com

If you see the following in the output, then everything is working perfectly. Type quit to exit.

250-STARTTLS
250-AUTH LOGIN PLAIN
250-AUTH=LOGIN PLAIN
250 8BITMIME

Troubleshooting

When problems arise, there are a few common ways to diagnose the cause.

Escaping chroot

The Ubuntu Postfix package will, by default, install into a chroot environment for security reasons. This can add
greater complexity when troubleshooting problems.

To turn off the chroot usage, locate the following line in the /etc/postfix/master.cf configuration file:
smtp inet n - - - - smtpd

Modify it as follows:

smtp inet n - n - - smtpd

You will then need to restart Postfix to use the new configuration. From a terminal prompt enter:

sudo service postfix restart

270

SMTPS
If you need secure SMTP, edit /etc/postfix/master.cf and uncomment the following line:

smtps inet n - - - - smtpd
-0 smtpd tls wrappermode=yes
-0 smtpd sasl auth enable=yes
-0 smtpd client restrictions=permit sasl authenticated, reject
-0 milter macro_daemon name=0RIGINATING

Log viewing

Postfix sends all log messages to /var/log/mail.log. However, error and warning messages can sometimes get lost in
the normal log output so they are also logged to /var/log/mail.err and /var/log/mail.warn respectively.

To see messages entered into the logs in real time you can use the tail -f command:

tail -f /var/log/mail.err

Increase logging detail

The amount of detail recorded in the logs can be increased via the configuration options. For example, to increase
TLS activity logging set the smtpd tls loglevel option to a value from 1 to 4.

sudo postconf -e 'smtpd tls loglevel = 4'
Reload the service after any configuration change, to activate the new config:

sudo systemctl reload postfix.service

Logging mail delivery

If you are having trouble sending or receiving mail from a specific domain you can add the domain to the de-
bug peer list parameter.

sudo postconf -e 'debug peer list = problem.domain'
sudo systemctl reload postfix.service

Increase daemon verbosity

You can increase the verbosity of any Postfix daemon process by editing the /etc/postfix/master.cf and adding a -v
after the entry. For example, edit the smtp entry:

smtp unix - - - - - smtp -v
Then, reload the service as usual:

sudo systemctl reload postfix.service

Log SASL debug info

To increase the amount of information logged when troubleshooting SASL issues you can set the following options in
/etc/dovecot/conf.d/10-logging.conf

auth debug=yes
auth debug passwords=yes

As with Postfix, if you change a Dovecot configuration the process will need to be reloaded:
sudo systemctl reload dovecot.service

Note:

Some of the options above can drastically increase the amount of information sent to the log files. Remember
to return the log level back to normal after you have corrected the problem — then reload the appropriate
daemon for the new configuration to take effect.

References

Administering a Postfix server can be a very complicated task. At some point you may need to turn to the Ubuntu
community for more experienced help.

e The Postfix website documents all available configuration options.

271

http://www.postfix.org/documentation.html

¢ OReilly’s Postfix: The Definitive Guide is rather dated but provides deep background information about con-
figuration options.

e The Ubuntu Wiki Postfix page has more information from an Ubuntu context.

e There is also a Debian Wiki Postfix page that’s a bit more up to date; they also have a set of Postfix Tutorials
for different Debian versions.

e Info on how to set up mailman3 with postfix.

Install Dovecot
To install a basic Dovecot server with common POP3 and IMAP functions, run the following command:
sudo apt install dovecot-imapd dovecot-pop3d

There are various other Dovecot modules including dovecot-sieve (mail filtering), dovecot-solr (full text search),
dovecot-antispam (spam filter training), dovecot-ldap (user directory).

Configure Dovecot

To configure Dovecot, edit the file /etc/dovecot/dovecot.conf and its included config files in /etc/dovecot/conf.d/.
By default, all installed protocols will be enabled via an include directive in /etc/dovecot/dovecot.conf.

linclude try /usr/share/dovecot/protocols.d/*.protocol

IMAPS and POP3S are more secure because they use SSL encryption to connect. A basic self-signed SSL certificate
is automatically set up by package ssl-cert and used by Dovecot in /etc/dovecot/conf.d/10-ssl.conf.

Mbox format is configured by default, but you can also use Maildir if required. More details can be found in the
comments in /etc/dovecot/conf.d/10-mail.conf. Also see the Dovecot web site to learn about further benefits and
details.

Make sure to also configure your chosen Mail Transport Agent (MTA) to transfer the incoming mail to the selected
type of mailbox.

Restart the Dovecot daemon
Once you have configured Dovecot, restart its daemon in order to test your setup using the following command:
sudo service dovecot restart

Try to log in with the commands telnet localhost pop3 (for POP3) or telnet localhost imap2 (for IMAP). You
should see something like the following:

bhuvan@rainbow:~$ telnet localhost pop3
Trying 127.0.0.1...

Connected to localhost.localdomain.
Escape character is '"]'.

+0K Dovecot ready.

Dovecot SSL configuration

By default, Dovecot is configured to use SSL automatically using the package ssl-cert which provides a self signed
certificate.

You can instead generate your own custom certificate for Dovecot using openssh, for example:

sudo openssl req -new -x509 -days 1000 -nodes -out "/etc/dovecot/dovecot.pem" \
-keyout "/etc/dovecot/private/dovecot.pem"

Next, edit /etc/dovecot/conf.d/10-ssl.conf and amend following lines to specify that Dovecot should use these custom
certificates :

ssl cert = </etc/dovecot/private/dovecot.pem
ssl key = </etc/dovecot/private/dovecot.key

You can get the SSL certificate from a Certificate Issuing Authority or you can create self-signed one. Once you create
the certificate, you will have a key file and a certificate file that you want to make known in the config shown above.

Further reading:
For more details on creating custom certificates, see our guide on security certificates.

272

http://shop.oreilly.com/product/9780596002121.do
https://help.ubuntu.com/community/Postfix
https://wiki.debian.org/Postfix
https://wiki.debian.org/Postfix/Tutorials
https://mailman.readthedocs.io/en/latest/src/mailman/docs/mta.html#postfix
https://doc.dovecot.org/admin_manual/mailbox_formats/

Configure a firewall for an email server

To access your mail server from another computer, you must configure your firewall to allow connections to the server
on the necessary ports.

o« IMAP - 143
o IMAPS - 993
« POP3 - 110
« POP3S - 995

References

e The Dovecot website has more general information about Dovecot.
e The Dovecot manual provides full documentation for Dovecot use.
e The Dovecot Ubuntu Wiki page has more details on configuration.

Install Exim4

To install Exim4, run the following command:

sudo apt install exim4

Configure Exim4
To configure Exim4, run the following command:
sudo dpkg-reconfigure exim4-config

This displays a “wizard” user interface for configuring the software. For example, in Exim4 the configuration files are
split amongst multiple files by default; if you wish to have them in one file you can configure this via the user interface.

All configurable parameters from the user interface are stored in the /etc/exim4/update-exim4.conf.conf file. To
re-configure the software you can either re-run the wizard, or manually edit this file using your preferred editor.

Once you are finished, you can run the following command to generate the master configuration file:
sudo update-exim4.conf
The master configuration file is stored in /var/lib/exim4/config.autogenerated.

Warning;:

You should never manually edit the master configuration file, /var/lib/exim4/config.autogenerated, be-
cause it is updated automatically every time you run update-exim4.conf. Any changes you make to this
file will be lost during future updates.

Start the Exim4 daemon
The following command will start the Exim4 daemon:

sudo service exim4 start

SMTP authentication

Exim4 can be configured to use SMTP-AUTH with Transport Layer Security (TLS) and Simple Authentication and
Security Layer (SASL).

First, enter the following into a terminal prompt to create a certificate for use with TLS:
sudo /usr/share/doc/exim4-base/examples/exim-gencert

Configure Exim4 for TLS by editing the /etc/exim4/conf.d/main/03 exim4-config tlsoptions file and adding the
following:

MAIN_TLS ENABLE = yes

Next, configure Exim4 to use the saslauthd daemon for authentication by editing /etc/exim4/conf.d/auth/30_exim4-
config examples — uncomment the plain_saslauthd server and login saslauthd server sections:

273

http://www.dovecot.org/
https://doc.dovecot.org
https://help.ubuntu.com/community/Dovecot
https://www.exim.org/

plain_saslauthd server:
driver = plaintext
public_name = PLAIN
server_condition = ${if saslauthd{{$auth2}{$auth3}}{1}{0}}
server set id = $auth2
server_prompts = :
.ifndef AUTH SERVER ALLOW NOTLS PASSWORDS
server_advertise condition = ${if eq{$tls _cipher}{}{}{*}}
.endif

login saslauthd server:
driver = plaintext
public_name = LOGIN
server_prompts = "Username:: : Password::"
don't send system passwords over unencrypted connections
server_condition = ${if saslauthd{{$authl}{$auth2}}{1}{0}}
server set id = $authl
.ifndef AUTH SERVER ALLOW NOTLS PASSWORDS
server_advertise condition = ${if eq{$tls cipher}{}{}{*}}
.endif

To enable outside mail clients to connect to the new server, a new user needs to be added into Exim4 by using the
following commands:

sudo /usr/share/doc/exim4-base/examples/exim-adduser
Protect the new password files with the following commands:

sudo chown root:Debian-exim /etc/exim4/passwd
sudo chmod 640 /etc/exim4/passwd

Finally, update the Exim4 configuration and restart the service:

sudo update-exim4.conf
sudo systemctl restart eximéd.service

Configure SASL

To configure saslauthd to provide authentication for Exim4, first install the sas12-bin package by running this com-
mand at a terminal prompt:

sudo apt install sasl2-bin

To configure saslauthd, edit the /etc/default/saslauthd configuration file and set:

START=yes

Next, to make Exim4 use the saslauthd service, the Debian-exim user needs to be part of the sasl group:
sudo adduser Debian-exim sasl

Finally, start the saslauthd service:

sudo service saslauthd start

Exim4 is now configured with SMTP-AUTH using TLS and SASL authentication.

References
e See exim.org for more information.
e Another resource is the Exim4 Ubuntu Wiki page.
o Further resources to set up mailman3 with Exim4.

Bacula is a backup management tool that enables you to backup, restore, and verify data across your network. There
are Bacula clients for Linux, Windows, and Mac OS X — making it a cross-platform and network-wide solution.

Bacula components

Bacula is made up of several components and services that are used to manage backup files and locations:

274

http://www.exim.org/
https://help.ubuntu.com/community/Exim4
https://mailman.readthedocs.io/en/latest/src/mailman/docs/mta.html#exim
http://www.bacula.org/

e Bacula Director: A service that controls all backup, restore, verify, and archive operations.

e Bacula Console: An application that allows communication with the Director. There are three versions of the
Console:

— Text-based command line.
— Gnome-based GTK+ Graphical User Interface (GUI) interface.
— wxWidgets GUI interface.

e Bacula File: Also known as the Bacula Client program. This application is installed on machines to be backed
up, and is responsible for handling data requested by the Director.

e Bacula Storage: The program that performs the storage of data onto, and recovery of data from, the physical
media.

e Bacula Catalog: Responsible for maintaining the file indices and volume databases for all backed-up files. This
enables rapid location and restoration of archived files. The Catalog supports three different databases: MySQL,
PostgreSQL, and SQLite.

¢ Bacula Monitor: Monitors the Director, File daemons, and Storage daemons. Currently the Monitor is only
available as a GTK+ GUI application.

These services and applications can be run on multiple servers and clients, or they can be installed on one machine if
backing up a single disk or volume.

Install Bacula

Note:

If using MySQL or PostgreSQL as your database, you should already have the services available. Bacula
will not install them for you. For more information, take a look at MySQL databases and PostgreSQL
databases.

There are multiple packages containing the different Bacula components. To install bacula, from a terminal prompt
enter:

sudo apt install bacula

By default, installing the bacula package will use a PostgreSQL database for the Catalog. If you want to use SQLite
or MySQL for the Catalog instead, install bacula-director-sqlite3 or bacula-director-mysql respectively.

During the install process you will be asked to supply a password for the database owner of the bacula database.

Configure Bacula

Bacula configuration files are formatted based on resources composed of directives surrounded by curly “{}” braces.
Each Bacula component has an individual file in the /etc/bacula directory.

The various Bacula components must authorise themselves to each other. This is accomplished using the password
directive. For example, the Storage resource password in the /etc/bacula/bacula-dir. conf file must match the Director
resource password in /etc/bacula/bacula-sd.conf.

By default, the backup job named BackupClientl is configured to archive the Bacula Catalog. If you plan on using
the server to back up more than one client you should change the name of this job to something more descriptive. To
change the name, edit /etc/bacula/bacula-dir.conf:

#
Define the main nightly save backup job
By default, this job will back up to disk in
Job {

Name = "BackupServer"

JobDefs = "DefaultJob"

Write Bootstrap = "/var/lib/bacula/Clientl.bsr"
}

Note:
The example above changes the job name to “BackupServer”, matching the machine’s host name. Replace
“BackupServer” with your own hostname, or other descriptive name.

The Console can be used to query the Director about jobs, but to use the Console with a non-root user, the user needs
to be in the Bacula group. To add a user to the Bacula group, run the following command from a terminal:

275

sudo adduser $username bacula

Note:
Replace $username with the actual username. Also, if you are adding the current user to the group you
should log out and back in for the new permissions to take effect.

Localhost backup
This section shows how to back up specific directories on a single host to a local tape drive.
« First, the Storage device needs to be configured. Edit /etc/bacula/bacula-sd.conf and add:

Device {
Name = "Tape Drive"
Device Type = tape
Media Type = DDS-4
Archive Device = /dev/st0
Hardware end of medium = No;
AutomaticMount = yes; # when device opened, read it
AlwaysOpen = Yes;
RemovableMedia = yes;
RandomAccess = no;
Alert Command = "sh -c 'tapeinfo -f %c | grep TapeAlert'"

}

The example is for a DDS-4 tape drive. Adjust the “Media Type” and “Archive Device” to match your hardware.
Alternatively, you could also uncomment one of the other examples in the file.

o After editing /etc/bacula/bacula-sd.conf, the Storage daemon will need to be restarted:
sudo systemctl restart bacula-sd.service
e Now add a Storage resource in /etc/bacula/bacula-dir.conf to use the new Device:

Definition of "Tape Drive" storage device
Storage {
Name = TapeDrive
Do not use "localhost" here
Address = backupserver # N.B. Use a fully qualified name here
SDPort = 9103
Password = "Cv70F6pflt6pBopT4vQOnigDrROV3LT3Cgkiyjc"

Device = "Tape Drive"
Media Type = tape

}

Note:

— The Address directive needs to be the Fully Qualified Domain Name (FQDN) of the server.
— Change backupserver to the actual host name.
— Make sure the Password directive matches the password string in /etc/bacula/bacula-sd.conf.

e Create a new FileSet — this will define which directories to backup — by adding:

LocalhostBacup FileSet.
FileSet {
Name = "LocalhostFiles"
Include {
Options {
signature = MD5
compression=GZIP

b
File = /etc
File = /home

}

This FileSet will backup the /etc and /home directories. The Options resource directives configure the FileSet
to create an MD5 signature for each file backed up, and to compress the files using GZIP.

e Next, create a new Schedule for the backup job:

276

LocalhostBackup Schedule -- Daily.
Schedule {

Name = "LocalhostDaily"

Run = Full daily at 00:01
}

The job will run every day at 00:01 or 12:01 am. There are many other scheduling options available.
o Finally, create the Job:

Localhost backup.
Job {
Name = "LocalhostBackup"
JobDefs = "DefaultJob"
Enabled = yes
Level = Full
FileSet = "LocalhostFiles"
Schedule = "LocalhostDaily"
Storage = TapeDrive
Write Bootstrap = "/var/lib/bacula/LocalhostBackup.bsr"
}

The Job will do a Full backup every day to the tape drive.

o Each tape used will need to have a Label. If the current tape does not have a Label, Bacula will send an email
letting you know. To label a tape using the Console enter the following command from a terminal:

bconsole
e At the Bacula Console prompt enter:
label
e You will then be prompted for the Storage resource:

Automatically selected Catalog: MyCatalog
Using Catalog "MyCatalog"
The defined Storage resources are:
1: File
2: TapeDrive
Select Storage resource (1-2):2

o Enter the new Volume name:

Enter new Volume name: Sunday
Defined Pools:

1: Default

2: Scratch

Replace “Sunday” with the desired label.
e Now, select the Pool:

Select the Pool (1-2): 1
Connecting to Storage daemon TapeDrive at backupserver:9103 ...
Sending label command for Volume "Sunday" Slot 0 ...

Congratulations, you have now configured Bacula to backup the localhost to an attached tape drive.

Further reading
e For more Bacula configuration options, refer to the Bacula documentation.
e The Bacula home page contains the latest Bacula news and developments.
e Also, see the Bacula Ubuntu Wiki page.

rsnapshot is an rsync-based filesystem snapshot utility. It can take incremental backups of local and remote filesystems
for any number of machines. rsnapshot makes extensive use of hard links, so disk space is only used when absolutely
necessary. It leverages the power of rsync to create scheduled, incremental backups.

277

https://www.bacula.org/documentation/documentation/
http://www.bacula.org/
https://help.ubuntu.com/community/Bacula
https://rsnapshot.org/

Install rsnapshot
To install rsnapshot open a terminal shell and run:
sudo apt-get install rsnapshot

If you want to backup a remote filesystem, the rsnapshot server needs to be able to access the target machine over SSH
without password. For more information on how to enable this please see OpenSSH documentation. If the backup
target is a local filesystem there is no need to set up OpenSSH.

Configure rsnapshot
The rsnapshot configuration resides in /etc/rsnapshot.conf. Below you can find some of the options available there.
The root directory where all snapshots will be stored is found at:

snapshot root /var/cache/rsnapshot/

Number of backups to keep

Since rsnapshot uses incremental backups, we can afford to keep older backups for a while before removing them. You
set these up under the BACKUP LEVELS / INTERVALS section. You can tell rsnapshot to retain a specific number of
backups of each kind of interval.

retain daily 6
retain weekly 7
retain monthly 4

In this example we will keep 6 snapshots of our daily strategy, 7 snapshots of our weekly strategy, and 4 snapshots of
our monthly strategy. These data will guide the rotation made by rsnapshot.
Remote machine access

If you are accessing a remote machine over SSH and the port to bind is not the default (port 22), you need to set the
following variable with the port number:

ssh _args -p 22222

What to backup
Now the most important part; you need to decide what you would like to backup.

If you are backing up locally to the same machine, this is as easy as specifying the directories that you want to save
and following it with localhost/ which will be a sub-directory in the snapshot root that you set up earlier.

backup /home/ localhost/
backup /etc/ localhost/
backup /usr/local/ localhost/

If you are backing up a remote machine you just need to tell rsnapshot where the server is and which directories you
would like to back up.

backup root@example.com:/home/ example.com/ +rsync_long args=--bwlimit=16,exclude=core
backup root@example.com:/etc/ example.com/ exclude=mtab,exclude=core

As you can see, you can pass extra rsync parameters (the + appends the parameter to the default list — if you remove
the + sign you override it) and also exclude directories.

You can check the comments in /etc/rsnapshot.conf and the rsnapshot man page for more options.

Test configuration

After modifying the configuration file, it is good practice to check if the syntax is OK:
sudo rsnapshot configtest

You can also test your backup levels with the following command:

sudo rsnapshot -t daily

If you are happy with the output and want to see it in action you can run:

sudo rsnapshot daily

278

http://manpages.ubuntu.com/manpages/focal/man1/rsnapshot.1.html

Scheduling backups

With rsnapshot working correctly with the current configuration, the only thing left to do is schedule it to run at certain
intervals. We will use cron to make this happen since rsnapshot includes a default cron file in /etc/cron.d/rsnapshot.
If you open this file there are some entries commented out as reference.

04 * *x * root /usr/bin/rsnapshot daily
03 *x*x1 root /usr/bin/rsnapshot weekly
02 1* * root /usr/bin/rsnapshot monthly

The settings above added to /etc/cron.d/rsnapshot run:

e The daily snapshot everyday at 4:00 am
o The weekly snapshot every Monday at 3:00 am
¢ The monthly snapshot on the first of every month at 2:00 am

For more information on how to schedule a backup using cron please take a look at the Executing with cron section
in Backups - Shell Scripts.

Further reading

o rsnapshot offical web page
o rsnapshot man page
e TSync man page

In general, a shell script configures which directories to backup, and passes those directories as arguments to the tar
utility, which creates an archive file. The archive file can then be moved or copied to another location. The archive
can also be created on a remote file system such as a Network File System (NFS) mount.

The tar utility creates one archive file out of many files or directories. tar can also filter the files through compression
utilities, thus reducing the size of the archive file.

In this guide, we will walk through how to use a shell script for backing up files, and how to restore files from the
archive we create.

The shell script

The following shell script uses the basic backup shell script from our Reference section. It uses tar to create an
archive file on a remotely mounted NFS file system. The archive filename is determined using additional command
line utilities. For more details about the script, check out the example Reference page.

#!/bin/bash
e i g i
#

Backup to NFS mount script.

#
e e i

What to backup.
backup files="/home /var/spool/mail /etc /root /boot /opt"

Where to backup to.
dest="/mnt/backup"

Create archive filename.
day=$(date +%A)
hostname=$(hostname -s)

archive file="$hostname-$day.tgz"

Print start status message.
echo "Backing up $backup files to $dest/$archive file"
date

echo

Backup the files using tar.
tar czf $dest/$archive file $backup files

Print end status message.

279

https://rsnapshot.org/
http://manpages.ubuntu.com/manpages/focal/man1/rsnapshot.1.html
http://manpages.ubuntu.com/manpages/focal/man1/rsync.1.html

echo
echo "Backup finished"
date

Long listing of files in $dest to check file sizes.
1s -1h $dest

Running the script
Run from a terminal

The simplest way to use the above backup script is to copy and paste the contents into a file (called backup.sh, for
example). The file must be made executable:

chmod u+x backup.sh
Then from a terminal prompt, run the following command:
sudo ./backup.sh

This is a great way to test the script to make sure everything works as expected.

Run with cron

The cron utility can be used to automate use of the script. The cron daemon allows scripts, or commands, to be run
at a specified time and date.

cron is configured through entries in a crontab file. crontab files are separated into fields:
m h dom mon dow command
Where:

e m: The minute the command executes on, between 0 and 59.

e h: The hour the command executes on, between 0 and 23.

e dom: The day of the month the command executes on.

e mon: The month the command executes on, between 1 and 12.

e dow: The day of the week the command executes on, between 0 and 7. Sunday may be specified by using 0 or 7,
both values are valid.

e command: The command to run.

To add or change entries in a crontab file the crontab -e command should be used. Also note the contents of a crontab
file can be viewed using the crontab -1 command.

To run the backup.sh script listed above using cron, enter the following from a terminal prompt:
sudo crontab -e

Note:
Using sudo with the crontab -e command edits the root user’s crontab. This is necessary if you are backing
up directories only the root user has access to.

As an example, if we add the following entry to the crontab file:

m h dom mon dow command
0 0 * * * bash /usr/local/bin/backup.sh

The backup.sh script would be run every day at 12:00 pm.

Note:
The backup.sh script will need to be copied to the /usr/local/bin/ directory in order for this entry to run
properly. The script can reside anywhere on the file system, simply change the script path appropriately.

Restoring from the archive

Once an archive has been created, it is important to test the archive. The archive can be tested by listing the files it
contains, but the best test is to restore a file from the archive.

e To see a listing of the archive contents, run the following command from a terminal:

tar -tzvf /mnt/backup/host-Monday.tgz

280

o To restore a file from the archive back to a different directory, enter:
tar -xzvf /mnt/backup/host-Monday.tgz -C /tmp etc/hosts

The -C option to tar redirects the extracted files to the specified directory. The above example will extract the
/etc/hosts file to /tmp/etc/hosts. tar recreates the directory structure that it contains. Also, notice the leading
“/” is left off the path of the file to restore.

o To restore all files in the archive enter the following:

cd /
sudo tar -xzvf /mnt/backup/host-Monday.tgz

Note:
This will overwrite the files currently on the file system.

Further reading
e For more information on shell scripting see the Advanced Bash-Scripting Guide
e The CronHowto Wiki Page contains details on advanced cron options.
e See the GNU tar Manual for more tar options.
e The Wikipedia Backup Rotation Scheme article contains information on other backup rotation schemes.

e The shell script uses tar to create the archive, but there many other command line utilities that can be used.
For example:

— cpio: used to copy files to and from archives.
— dd: part of the coreutils package. A low level utility that can copy data from one format to another.

— rsnapshot: a file system snapshot utility used to create copies of an entire file system. Also check the Tools
- rsnapshot for some information.

— rsync: a flexible utility used to create incremental copies of files.

Squid is a filtering and caching mechanism for web servers that can optimise bandwidth and performance. For more
information about Squid proxy servers, refer to this guide.

Install Squid

At a terminal prompt, enter the following command to install the Squid server:

sudo apt install squid

Configure Squid

Squid is configured by editing directives in the /etc/squid/squid.conf configuration file. The following examples
illustrate a sample of directives that can be modified to configure the Squid server’s behavior. For more in-depth
configuration details, see the links at the bottom of the page.

Protect the original config file

Before editing the configuration file, you should make a copy of the original and protect it from writing. You will then
have the original settings as a reference, and can reuse it when needed. Run the following commands to make a copy
of the original configuration file and protect it from being written to:

sudo cp /etc/squid/squid.conf /etc/squid/squid.conf.original
sudo chmod a-w /etc/squid/squid.conf.original
Change TCP port

To set your Squid server to listen on TCP port 8888 instead of the default TCP port 3128, change the http_ port
directive as such:

http port 8888

281

http://tldp.org/LDP/abs/html/
https://help.ubuntu.com/community/CronHowto
http://www.gnu.org/software/tar/manual/index.html
http://en.wikipedia.org/wiki/Backup_rotation_scheme
http://www.gnu.org/software/cpio/
http://www.gnu.org/software/coreutils/
http://www.rsnapshot.org/
http://manpages.ubuntu.com/manpages/focal/man1/rsync.1.html

Set the hostname

Change the visible__hostname directive to give the Squid server a specific hostname. This hostname does not need
to be the same as the computer’s hostname. In this example it is set to weezie:

visible hostname weezie

Configure on-disk cache

The default setting is to use on-memory cache. By changing the cache__dir directive you can configure use of an
on-disk cache. The cache dir directive takes the following arguments:

cache dir <Type> <Directory-Name> <Fs-specific-data> [options]
In the config file you can find the default cache dir directive commented out:

Uncomment and adjust the following to add a disk cache directory.
#cache dir ufs /var/spool/squid 100 16 256

You can use the default option but you can also customise your cache directory, by changing the <Type> of this directory.
It can be one of the following options:

e ufs: This is the common Squid storage format.

e aufs: Uses the same storage format as ufs, using POSIX-threads to avoid blocking the main Squid process on
disk-1/0O. This was formerly known in Squid as async-io.

e diskd: Uses the same storage format as ufs, using a separate process to avoid blocking the main Squid process
on disk-I/0.

e rock: This is a database-style storage. All cached entries are stored in a “database” file, using fixed-size slots. A
single entry occupies one or more slots.

If you want to use a different directory type please take a look at their different options.

Access control

Using Squid’s access control, you can configure use of Squid-proxied Internet services to be available only to users
with certain Internet Protocol (IP) addresses. For example, we will illustrate access by users of the 192.168.42.0/24
subnetwork only:

e Add the following to the bottom of the ACL section of your /etc/squid/squid.conf file:
acl fortytwo network src 192.168.42.0/24

e Then, add the following to the top of the http_access section of your /etc/squid/squid.conf file:
http access allow fortytwo network

Using Squid’s access control features, you can configure Squid-proxied Internet services to only be available during
normal business hours. As an example, we’ll illustrate access by employees of a business which is operating between
9:00AM and 5:00PM, Monday through Friday, and which uses the 10.1.42.0/24 subnetwork:

¢ Add the following to the bottom of the ACL section of your /etc/squid/squid.conf file:

acl biz network src 10.1.42.0/24
acl biz hours time M TW T F 9:00-17:00

e Then, add the following to the top of the http access section of your /etc/squid/squid.conf file:

http access allow biz network biz hours

Restart the Squid server

After making any changes to the /etc/squid/squid.conf file, you will need to save the file and restart the squid server
application. You can restart the server using the following command:

sudo systemctl restart squid.service

Note:

If a formerly customised squid3 was used to set up the spool at /var/log/squid3 to be a mountpoint, but
otherwise kept the default configuration, the upgrade will fail. The upgrade tries to rename/move files
as needed, but it can’t do so for an active mountpoint. In that case you will need to adapt either the
mountpoint or the config in /etc/squid/squid.conf so that they match.

The same applies if the include config statement was used to pull in more files from the old path at
/etc/squid3/. In those cases you should move and adapt your configuration accordingly.

282

Further reading
e The Squid Website

e Ubuntu Wiki page on Squid.

Overview

LAMP installations (Linux + Apache + MySQL + PHP/Perl/Python) are a popular setup for Ubuntu servers.
There are a plethora of Open Source applications written using the LAMP application stack. Some popular LAMP

applications include wikis, management software such as phpMyAdmin, and Content Managemen