1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
//! RustType is a pure Rust alternative to libraries like FreeType.
//!
//! The current capabilities of RustType:
//!
//! * Reading TrueType formatted fonts and font collections. This includes
//!   `*.ttf` as well as a subset of `*.otf` font files.
//! * Retrieving glyph shapes and commonly used properties for a font and its
//!   glyphs.
//! * Laying out glyphs horizontally using horizontal and vertical metrics, and
//!   glyph-pair-specific kerning.
//! * Rasterising glyphs with sub-pixel positioning using an accurate analytical
//!   algorithm (not based on sampling).
//! * Managing a font cache on the GPU with the `gpu_cache` module. This keeps
//!   recently used glyph renderings in a dynamic cache in GPU memory to
//!   minimise texture uploads per-frame. It also allows you keep the draw call
//!   count for text very low, as all glyphs are kept in one GPU texture.
//!
//! Notable things that RustType does not support *yet*:
//!
//! * OpenType formatted fonts that are not just TrueType fonts (OpenType is a
//!   superset of TrueType). Notably there is no support yet for cubic Bezier
//!   curves used in glyphs.
//! * Font hinting.
//! * Ligatures of any kind.
//! * Some less common TrueType sub-formats.
//! * Right-to-left and vertical text layout.
//!
//! # Getting Started
//!
//! To hit the ground running with RustType, look at the `simple.rs` example
//! supplied with the crate. It demonstrates loading a font file, rasterising an
//! arbitrary string, and displaying the result as ASCII art. If you prefer to
//! just look at the documentation, the entry point for loading fonts is
//! `FontCollection`, from which you can access individual fonts, then their
//! glyphs.
//!
//! # Glyphs
//!
//! The glyph API uses wrapper structs to augment a glyph with information such
//! as scaling and positioning, making relevant methods that make use of this
//! information available as appropriate. For example, given a `Glyph` `glyph`
//! obtained directly from a `Font`:
//!
//! ```no_run
//! # use rusttype::*;
//! # let glyph: Glyph<'static> = unimplemented!();
//! // One of the few things you can do with an unsized, positionless glyph is get its id.
//! let id = glyph.id();
//! let glyph = glyph.scaled(Scale::uniform(10.0));
//! // Now glyph is a ScaledGlyph, you can do more with it, as well as what you can do with Glyph.
//! // For example, you can access the correctly scaled horizontal metrics for the glyph.
//! let h_metrics = glyph.h_metrics();
//! let glyph = glyph.positioned(point(5.0, 3.0));
//! // Now glyph is a PositionedGlyph, and you can do even more with it, e.g. drawing.
//! glyph.draw(|x, y, v| {}); // In this case the pixel values are not used.
//! ```
//!
//! # Unicode terminology
//!
//! This crate uses terminology for computerised typography as specified by the
//! Unicode standard. If you are not sure of the differences between a code
//! point, a character, and a glyph, you may want to check the [official Unicode
//! glossary](http://unicode.org/glossary/), or alternatively, here's my take on
//! it from a practical perspective:
//!
//! * A character is what you would conventionally call a single symbol,
//!   independent of its appearance or representation in a particular font.
//!   Examples include `a`, `A`, `ä`, `å`, `1`, `*`, `Ω`, etc.
//! * A Unicode code point is the particular number that the Unicode standard
//!   associates with a particular character. Note however that code points also
//!   exist for things not conventionally thought of as characters by
//!   themselves, but can be combined to form characters, such as diacritics
//!   like accents. These "characters" are known in Unicode as "combining
//!   characters". E.g., a diaeresis (`¨`) has the code point U+0308. If this
//!   code point follows the code point U+0055 (the letter `u`), this sequence
//!   represents the character `ü`. Note that there is also a single codepoint
//!   for `ü`, U+00FC. This means that what visually looks like the same string
//!   can have multiple different Unicode representations. Some fonts will have
//!   glyphs (see below) for one sequence of codepoints, but not another that
//!   has the same meaning. To deal with this problem it is recommended to use
//!   Unicode normalisation, as provided by, for example, the
//!   [unicode-normalization](http://crates.io/crates/unicode-normalization)
//!   crate, to convert to code point sequences that work with the font in
//!   question. Typically a font is more likely to support a single code point
//!   vs. a sequence with the same meaning, so the best normalisation to use is
//!   "canonical recomposition", known as NFC in the normalisation crate.
//! * A glyph is a particular font's shape to draw the character for a
//!   particular Unicode code point. This will have its own identifying number
//!   unique to the font, its ID.
#![allow(
    clippy::cognitive_complexity,
    clippy::doc_markdown,
    clippy::cast_lossless,
    clippy::many_single_char_names
)]
#![cfg_attr(not(feature = "std"), no_std)]

extern crate alloc;

mod geometry;
mod rasterizer;

#[cfg(all(feature = "libm-math", not(feature = "std")))]
mod nostd_float;

#[cfg(feature = "gpu_cache")]
pub mod gpu_cache;

pub use crate::geometry::{point, vector, Curve, Line, Point, Rect, Vector};
use approx::relative_eq;
use core::fmt;
use stb_truetype as tt;

#[cfg(not(feature = "has-atomics"))]
use alloc::rc::Rc as Arc;
#[cfg(feature = "has-atomics")]
use alloc::sync::Arc;

#[cfg(all(feature = "libm-math", not(feature = "std")))]
use crate::nostd_float::FloatExt;
#[cfg(not(feature = "std"))]
use alloc::{boxed::Box, vec::Vec};

/// A collection of fonts read straight from a font file's data. The data in the
/// collection is not validated. This structure may or may not own the font
/// data.
///
/// # Lifetime
/// The lifetime reflects the font data lifetime. `FontCollection<'static>`
/// covers most cases ie both dynamically loaded owned data and for referenced
/// compile time font data.
#[derive(Clone, Debug)]
pub struct FontCollection<'a>(SharedBytes<'a>);
/// A single font. This may or may not own the font data.
///
/// # Lifetime
/// The lifetime reflects the font data lifetime. `Font<'static>` covers most
/// cases ie both dynamically loaded owned data and for referenced compile time
/// font data.
///
/// # Example
///
/// ```
/// # use rusttype::{Font, Error};
/// # fn example() -> Result<(), Error> {
/// let font_data: &[u8] = include_bytes!("../dev/fonts/dejavu/DejaVuSansMono.ttf");
/// let font: Font<'static> = Font::from_bytes(font_data)?;
///
/// let owned_font_data: Vec<u8> = font_data.to_vec();
/// let from_owned_font: Font<'static> = Font::from_bytes(owned_font_data)?;
/// # Ok(())
/// # }
/// ```
#[derive(Clone)]
pub struct Font<'a> {
    info: tt::FontInfo<SharedBytes<'a>>,
}

impl fmt::Debug for Font<'_> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "Font")
    }
}

/// `SharedBytes` handles the lifetime of font data used in RustType. The data
/// is either a shared reference to externally owned data, or managed by
/// reference counting. `SharedBytes` can be conveniently used with `From` and
/// `Into`, and dereferences to the contained bytes.
///
/// # Lifetime
/// The lifetime reflects the font data lifetime. `SharedBytes<'static>` covers
/// most cases ie both dynamically loaded owned data and for referenced compile
/// time font data.
#[derive(Clone, Debug)]
pub enum SharedBytes<'a> {
    ByRef(&'a [u8]),
    ByArc(Arc<[u8]>),
}

impl<'a> core::ops::Deref for SharedBytes<'a> {
    type Target = [u8];
    fn deref(&self) -> &[u8] {
        match *self {
            SharedBytes::ByRef(bytes) => bytes,
            SharedBytes::ByArc(ref bytes) => &**bytes,
        }
    }
}
/// ```
/// # use rusttype::SharedBytes;
/// let bytes: &[u8] = &[0u8, 1, 2, 3];
/// let shared: SharedBytes = bytes.into();
/// assert_eq!(&*shared, bytes);
/// ```
impl<'a> From<&'a [u8]> for SharedBytes<'a> {
    fn from(bytes: &'a [u8]) -> SharedBytes<'a> {
        SharedBytes::ByRef(bytes)
    }
}
/// ```
/// # use rusttype::SharedBytes;
/// # use std::sync::Arc;
/// let bytes: Arc<[u8]> = vec![0u8, 1, 2, 3].into();
/// let shared: SharedBytes = Arc::clone(&bytes).into();
/// assert_eq!(&*shared, &*bytes);
/// ```
impl From<Arc<[u8]>> for SharedBytes<'static> {
    fn from(bytes: Arc<[u8]>) -> SharedBytes<'static> {
        SharedBytes::ByArc(bytes)
    }
}
/// ```
/// # use rusttype::SharedBytes;
/// let bytes: Box<[u8]> = vec![0u8, 1, 2, 3].into();
/// let shared: SharedBytes = bytes.into();
/// assert_eq!(&*shared, &[0u8, 1, 2, 3]);
/// ```
impl From<Box<[u8]>> for SharedBytes<'static> {
    fn from(bytes: Box<[u8]>) -> SharedBytes<'static> {
        SharedBytes::ByArc(bytes.into())
    }
}
/// ```
/// # use rusttype::SharedBytes;
/// let bytes = vec![0u8, 1, 2, 3];
/// let shared: SharedBytes = bytes.into();
/// assert_eq!(&*shared, &[0u8, 1, 2, 3]);
/// ```
impl From<Vec<u8>> for SharedBytes<'static> {
    fn from(bytes: Vec<u8>) -> SharedBytes<'static> {
        SharedBytes::ByArc(bytes.into())
    }
}
/// ```
/// # use rusttype::SharedBytes;
/// let bytes = vec![0u8, 1, 2, 3];
/// let shared: SharedBytes = (&bytes).into();
/// assert_eq!(&*shared, &bytes as &[u8]);
/// ```
impl<'a, T: AsRef<[u8]>> From<&'a T> for SharedBytes<'a> {
    fn from(bytes: &'a T) -> SharedBytes<'a> {
        SharedBytes::ByRef(bytes.as_ref())
    }
}

/// Represents a Unicode code point.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct Codepoint(pub u32);
/// Represents a glyph identifier for a particular font. This identifier will
/// not necessarily correspond to the correct glyph in a font other than the
/// one that it was obtained from.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct GlyphId(pub u32);
/// A single glyph of a font. this may either be a thin wrapper referring to the
/// font and the glyph id, or it may be a standalone glyph that owns the data
/// needed by it.
///
/// A `Glyph` does not have an inherent scale or position associated with it. To
/// augment a glyph with a size, give it a scale using `scaled`. You can then
/// position it using `positioned`.
#[derive(Clone)]
pub struct Glyph<'a> {
    inner: GlyphInner<'a>,
}

impl fmt::Debug for Glyph<'_> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Glyph").field("id", &self.id().0).finish()
    }
}

#[derive(Clone)]
enum GlyphInner<'a> {
    Proxy(Font<'a>, u32),
    Shared(Arc<SharedGlyphData>),
}

#[derive(Debug)]
pub struct SharedGlyphData {
    pub id: u32,
    pub extents: Option<Rect<i32>>,
    pub scale_for_1_pixel: f32,
    pub unit_h_metrics: HMetrics,
    pub shape: Option<Vec<tt::Vertex>>,
}
/// The "horizontal metrics" of a glyph. This is useful for calculating the
/// horizontal offset of a glyph from the previous one in a string when laying a
/// string out horizontally.
#[derive(Copy, Clone, Debug, PartialEq, PartialOrd)]
pub struct HMetrics {
    /// The horizontal offset that the origin of the next glyph should be from
    /// the origin of this glyph.
    pub advance_width: f32,
    /// The horizontal offset between the origin of this glyph and the leftmost
    /// edge/point of the glyph.
    pub left_side_bearing: f32,
}
#[derive(Copy, Clone, Debug, PartialEq, PartialOrd)]
/// The "vertical metrics" of a font at a particular scale. This is useful for
/// calculating the amount of vertical space to give a line of text, and for
/// computing the vertical offset between successive lines.
pub struct VMetrics {
    /// The highest point that any glyph in the font extends to above the
    /// baseline. Typically positive.
    pub ascent: f32,
    /// The lowest point that any glyph in the font extends to below the
    /// baseline. Typically negative.
    pub descent: f32,
    /// The gap to leave between the descent of one line and the ascent of the
    /// next. This is of course only a guideline given by the font's designers.
    pub line_gap: f32,
}

impl From<tt::VMetrics> for VMetrics {
    fn from(vm: tt::VMetrics) -> Self {
        Self {
            ascent: vm.ascent as f32,
            descent: vm.descent as f32,
            line_gap: vm.line_gap as f32,
        }
    }
}

impl core::ops::Mul<f32> for VMetrics {
    type Output = VMetrics;

    fn mul(self, rhs: f32) -> Self {
        Self {
            ascent: self.ascent * rhs,
            descent: self.descent * rhs,
            line_gap: self.line_gap * rhs,
        }
    }
}

/// A glyph augmented with scaling information. You can query such a glyph for
/// information that depends on the scale of the glyph.
#[derive(Clone)]
pub struct ScaledGlyph<'a> {
    g: Glyph<'a>,
    api_scale: Scale,
    scale: Vector<f32>,
}

impl fmt::Debug for ScaledGlyph<'_> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("ScaledGlyph")
            .field("id", &self.id().0)
            .field("scale", &self.api_scale)
            .finish()
    }
}

/// A glyph augmented with positioning and scaling information. You can query
/// such a glyph for information that depends on the scale and position of the
/// glyph.
#[derive(Clone)]
pub struct PositionedGlyph<'a> {
    sg: ScaledGlyph<'a>,
    position: Point<f32>,
    bb: Option<Rect<i32>>,
}

impl fmt::Debug for PositionedGlyph<'_> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("PositionedGlyph")
            .field("id", &self.id().0)
            .field("scale", &self.scale())
            .field("position", &self.position)
            .finish()
    }
}

/// Defines the size of a rendered face of a font, in pixels, horizontally and
/// vertically. A vertical scale of `y` pixels means that the distance betwen
/// the ascent and descent lines (see `VMetrics`) of the face will be `y`
/// pixels. If `x` and `y` are equal the scaling is uniform. Non-uniform scaling
/// by a factor *f* in the horizontal direction is achieved by setting `x` equal
/// to *f* times `y`.
#[derive(Copy, Clone, PartialEq, PartialOrd, Debug)]
pub struct Scale {
    /// Horizontal scale, in pixels.
    pub x: f32,
    /// Vertical scale, in pixels.
    pub y: f32,
}

impl Scale {
    /// Uniform scaling, equivalent to `Scale { x: s, y: s }`.
    #[inline]
    pub fn uniform(s: f32) -> Scale {
        Scale { x: s, y: s }
    }
}
/// A trait for types that can be converted into a `GlyphId`, in the context of
/// a specific font.
///
/// Many `rusttype` functions that operate on characters accept values of any
/// type that implements `IntoGlyphId`. Such types include `char`, `Codepoint`,
/// and obviously `GlyphId` itself.
pub trait IntoGlyphId {
    /// Convert `self` into a `GlyphId`, consulting the index map of `font` if
    /// necessary.
    fn into_glyph_id(self, _: &Font<'_>) -> GlyphId;
}
impl IntoGlyphId for char {
    fn into_glyph_id(self, font: &Font<'_>) -> GlyphId {
        GlyphId(font.info.find_glyph_index(self as u32))
    }
}
impl IntoGlyphId for Codepoint {
    fn into_glyph_id(self, font: &Font<'_>) -> GlyphId {
        GlyphId(font.info.find_glyph_index(self.0))
    }
}
impl IntoGlyphId for GlyphId {
    #[inline]
    fn into_glyph_id(self, _font: &Font<'_>) -> GlyphId {
        self
    }
}
impl<'a> FontCollection<'a> {
    /// Constructs a font collection from an array of bytes, typically loaded
    /// from a font file, which may be a single font or a TrueType Collection
    /// holding a number of fonts. This array may be owned (e.g. `Vec<u8>`), or
    /// borrowed (`&[u8]`). As long as `From<T>` is implemented for `Bytes` for
    /// some type `T`, `T` can be used as input.
    ///
    /// This returns an error if `bytes` does not seem to be font data in a
    /// format we recognize.
    pub fn from_bytes<B: Into<SharedBytes<'a>>>(bytes: B) -> Result<FontCollection<'a>, Error> {
        let bytes = bytes.into();
        // We should use tt::is_collection once it lands in stb_truetype-rs:
        // https://github.com/redox-os/stb_truetype-rs/pull/15
        if !tt::is_font(&bytes) && &bytes[0..4] != b"ttcf" {
            return Err(Error::UnrecognizedFormat);
        }

        Ok(FontCollection(bytes))
    }
    /// If this `FontCollection` holds a single font, or a TrueType Collection
    /// containing only one font, return that as a `Font`. The `FontCollection`
    /// is consumed.
    ///
    /// If this `FontCollection` holds multiple fonts, return a
    /// `CollectionContainsMultipleFonts` error.
    ///
    /// If an error occurs, the `FontCollection` is lost, since this function
    /// takes ownership of it, and the error values don't give it back. If that
    /// is a problem, use the `font_at` or `into_fonts` methods instead, which
    /// borrow the `FontCollection` rather than taking ownership of it.
    pub fn into_font(self) -> Result<Font<'a>, Error> {
        let offset = if tt::is_font(&self.0) {
            0
        } else if tt::get_font_offset_for_index(&self.0, 1).is_some() {
            return Err(Error::CollectionContainsMultipleFonts);
        } else {
            // We now know that either a) `self.0` is a collection with only one
            // font, or b) `get_font_offset_for_index` found data it couldn't
            // recognize. Request the first font's offset, distinguishing
            // those two cases.
            match tt::get_font_offset_for_index(&self.0, 0) {
                None => return Err(Error::IllFormed),
                Some(offset) => offset,
            }
        };
        let info = tt::FontInfo::new(self.0, offset as usize).ok_or(Error::IllFormed)?;
        Ok(Font { info })
    }
    /// Gets the font at index `i` in the font collection, if it exists and is
    /// valid. The produced font borrows the font data that is either borrowed
    /// or owned by this font collection.
    pub fn font_at(&self, i: usize) -> Result<Font<'a>, Error> {
        let offset = tt::get_font_offset_for_index(&self.0, i as i32)
            .ok_or(Error::CollectionIndexOutOfBounds)?;
        let info = tt::FontInfo::new(self.0.clone(), offset as usize).ok_or(Error::IllFormed)?;
        Ok(Font { info })
    }
    /// Converts `self` into an `Iterator` yielding each `Font` that exists
    /// within the collection.
    pub fn into_fonts(self) -> IntoFontsIter<'a> {
        IntoFontsIter {
            collection: self,
            next_index: 0,
        }
    }
}
pub struct IntoFontsIter<'a> {
    next_index: usize,
    collection: FontCollection<'a>,
}
impl<'a> Iterator for IntoFontsIter<'a> {
    type Item = Result<Font<'a>, Error>;
    fn next(&mut self) -> Option<Self::Item> {
        let result = self.collection.font_at(self.next_index);
        if let Err(Error::CollectionIndexOutOfBounds) = result {
            return None;
        }
        self.next_index += 1;
        Some(result)
    }
}
impl<'a> Font<'a> {
    /// Constructs a font from an array of bytes, this is a shortcut for
    /// `FontCollection::from_bytes` for collections comprised of a single font.
    pub fn from_bytes<B: Into<SharedBytes<'a>>>(bytes: B) -> Result<Font<'a>, Error> {
        FontCollection::from_bytes(bytes).and_then(|c| c.into_font())
    }

    /// The "vertical metrics" for this font at a given scale. These metrics are
    /// shared by all of the glyphs in the font. See `VMetrics` for more detail.
    pub fn v_metrics(&self, scale: Scale) -> VMetrics {
        let vm = self.info.get_v_metrics();
        let scale = self.info.scale_for_pixel_height(scale.y);
        VMetrics::from(vm) * scale
    }

    /// Get the unscaled VMetrics for this font, shared by all glyphs.
    /// See `VMetrics` for more detail.
    pub fn v_metrics_unscaled(&self) -> VMetrics {
        VMetrics::from(self.info.get_v_metrics())
    }

    /// Returns the units per EM square of this font
    pub fn units_per_em(&self) -> u16 {
        self.info.units_per_em()
    }

    /// The number of glyphs present in this font. Glyph identifiers for this
    /// font will always be in the range `0..self.glyph_count()`
    pub fn glyph_count(&self) -> usize {
        self.info.get_num_glyphs() as usize
    }

    /// Returns the corresponding glyph for a Unicode code point or a glyph id
    /// for this font.
    ///
    /// If `id` is a `GlyphId`, it must be valid for this font; otherwise, this
    /// function panics. `GlyphId`s should always be produced by looking up some
    /// other sort of designator (like a Unicode code point) in a font, and
    /// should only be used to index the font they were produced for.
    ///
    /// Note that code points without corresponding glyphs in this font map to
    /// the ".notdef" glyph, glyph 0.
    pub fn glyph<C: IntoGlyphId>(&self, id: C) -> Glyph<'a> {
        let gid = id.into_glyph_id(self);
        assert!((gid.0 as usize) < self.glyph_count());
        // font clone either a reference clone, or arc clone
        Glyph::new(GlyphInner::Proxy(self.clone(), gid.0))
    }
    /// A convenience function.
    ///
    /// Returns an iterator that produces the glyphs corresponding to the code
    /// points or glyph ids produced by the given iterator `itr`.
    ///
    /// This is equivalent in behaviour to `itr.map(|c| font.glyph(c))`.
    pub fn glyphs_for<I: Iterator>(&self, itr: I) -> GlyphIter<'a, '_, I>
    where
        I::Item: IntoGlyphId,
    {
        GlyphIter { font: self, itr }
    }
    /// Returns an iterator over the names for this font.
    pub fn font_name_strings(&self) -> tt::FontNameIter<'_, SharedBytes<'a>> {
        self.info.get_font_name_strings()
    }
    /// A convenience function for laying out glyphs for a string horizontally.
    /// It does not take control characters like line breaks into account, as
    /// treatment of these is likely to depend on the application.
    ///
    /// Note that this function does not perform Unicode normalisation.
    /// Composite characters (such as ö constructed from two code points, ¨ and
    /// o), will not be normalised to single code points. So if a font does not
    /// contain a glyph for each separate code point, but does contain one for
    /// the normalised single code point (which is common), the desired glyph
    /// will not be produced, despite being present in the font. Deal with this
    /// by performing Unicode normalisation on the input string before passing
    /// it to `layout`. The crate
    /// [unicode-normalization](http://crates.io/crates/unicode-normalization)
    /// is perfect for this purpose.
    ///
    /// Calling this function is equivalent to a longer sequence of operations
    /// involving `glyphs_for`, e.g.
    ///
    /// ```no_run
    /// # use rusttype::*;
    /// # let (scale, start) = (Scale::uniform(0.0), point(0.0, 0.0));
    /// # let font: Font = unimplemented!();
    /// font.layout("Hello World!", scale, start)
    /// # ;
    /// ```
    ///
    /// produces an iterator with behaviour equivalent to the following:
    ///
    /// ```no_run
    /// # use rusttype::*;
    /// # let (scale, start) = (Scale::uniform(0.0), point(0.0, 0.0));
    /// # let font: Font = unimplemented!();
    /// font.glyphs_for("Hello World!".chars())
    ///     .scan((None, 0.0), |&mut (mut last, mut x), g| {
    ///         let g = g.scaled(scale);
    ///         if let Some(last) = last {
    ///             x += font.pair_kerning(scale, last, g.id());
    ///         }
    ///         let w = g.h_metrics().advance_width;
    ///         let next = g.positioned(start + vector(x, 0.0));
    ///         last = Some(next.id());
    ///         x += w;
    ///         Some(next)
    ///     })
    /// # ;
    /// ```
    pub fn layout<'b>(&'b self, s: &'b str, scale: Scale, start: Point<f32>) -> LayoutIter<'a, 'b> {
        LayoutIter {
            font: self,
            chars: s.chars(),
            caret: 0.0,
            scale,
            start,
            last_glyph: None,
        }
    }
    /// Returns additional kerning to apply as well as that given by HMetrics
    /// for a particular pair of glyphs.
    pub fn pair_kerning<A, B>(&self, scale: Scale, first: A, second: B) -> f32
    where
        A: IntoGlyphId,
        B: IntoGlyphId,
    {
        let first_id = first.into_glyph_id(self);
        let second_id = second.into_glyph_id(self);
        let factor = self.info.scale_for_pixel_height(scale.y) * (scale.x / scale.y);
        let kern = self.info.get_glyph_kern_advance(first_id.0, second_id.0);
        factor * kern as f32
    }
}
#[derive(Clone)]
pub struct GlyphIter<'a, 'b, I: Iterator>
where
    I::Item: IntoGlyphId,
{
    font: &'b Font<'a>,
    itr: I,
}
impl<'a, 'b, I: Iterator> Iterator for GlyphIter<'a, 'b, I>
where
    I::Item: IntoGlyphId,
{
    type Item = Glyph<'a>;
    fn next(&mut self) -> Option<Glyph<'a>> {
        self.itr.next().map(|c| self.font.glyph(c))
    }
}
#[derive(Clone)]
pub struct LayoutIter<'a, 'b> {
    font: &'b Font<'a>,
    chars: core::str::Chars<'b>,
    caret: f32,
    scale: Scale,
    start: Point<f32>,
    last_glyph: Option<GlyphId>,
}
impl<'a, 'b> Iterator for LayoutIter<'a, 'b> {
    type Item = PositionedGlyph<'a>;
    fn next(&mut self) -> Option<PositionedGlyph<'a>> {
        self.chars.next().map(|c| {
            let g = self.font.glyph(c).scaled(self.scale);
            if let Some(last) = self.last_glyph {
                self.caret += self.font.pair_kerning(self.scale, last, g.id());
            }
            let g = g.positioned(point(self.start.x + self.caret, self.start.y));
            self.caret += g.sg.h_metrics().advance_width;
            self.last_glyph = Some(g.id());
            g
        })
    }
}
impl<'a> Glyph<'a> {
    fn new(inner: GlyphInner<'a>) -> Glyph<'a> {
        Glyph { inner }
    }
    /// The font to which this glyph belongs. If the glyph is a standalone glyph
    /// that owns its resources, it no longer has a reference to the font which
    /// it was created from (using `standalone()`). In which case, `None` is
    /// returned.
    pub fn font(&self) -> Option<&Font<'a>> {
        match self.inner {
            GlyphInner::Proxy(ref f, _) => Some(f),
            GlyphInner::Shared(_) => None,
        }
    }
    /// The glyph identifier for this glyph.
    pub fn id(&self) -> GlyphId {
        match self.inner {
            GlyphInner::Proxy(_, id) => GlyphId(id),
            GlyphInner::Shared(ref data) => GlyphId(data.id),
        }
    }
    /// Augments this glyph with scaling information, making methods that depend
    /// on the scale of the glyph available.
    pub fn scaled(self, scale: Scale) -> ScaledGlyph<'a> {
        let (scale_x, scale_y) = match self.inner {
            GlyphInner::Proxy(ref font, _) => {
                let scale_y = font.info.scale_for_pixel_height(scale.y);
                let scale_x = scale_y * scale.x / scale.y;
                (scale_x, scale_y)
            }
            GlyphInner::Shared(ref data) => {
                let scale_y = data.scale_for_1_pixel * scale.y;
                let scale_x = scale_y * scale.x / scale.y;
                (scale_x, scale_y)
            }
        };
        ScaledGlyph {
            g: self,
            api_scale: scale,
            scale: vector(scale_x, scale_y),
        }
    }
    /// Turns a `Glyph<'a>` into a `Glyph<'static>`. This produces a glyph that
    /// owns its resources, extracted from the font. This glyph can outlive the
    /// font that it comes from.
    ///
    /// Calling `standalone()` on a standalone glyph shares the resources, and
    /// is equivalent to `clone()`.
    pub fn standalone(&self) -> Glyph<'static> {
        match self.inner {
            GlyphInner::Proxy(ref font, id) => {
                Glyph::new(GlyphInner::Shared(Arc::new(SharedGlyphData {
                    id,
                    scale_for_1_pixel: font.info.scale_for_pixel_height(1.0),
                    unit_h_metrics: {
                        let hm = font.info.get_glyph_h_metrics(id);
                        HMetrics {
                            advance_width: hm.advance_width as f32,
                            left_side_bearing: hm.left_side_bearing as f32,
                        }
                    },
                    extents: font.info.get_glyph_box(id).map(|bb| Rect {
                        min: point(bb.x0 as i32, -(bb.y1 as i32)),
                        max: point(bb.x1 as i32, -(bb.y0 as i32)),
                    }),
                    shape: font.info.get_glyph_shape(id),
                })))
            }
            GlyphInner::Shared(ref data) => Glyph::new(GlyphInner::Shared(data.clone())),
        }
    }
    /// Get the data from this glyph (such as width, extents, vertices, etc.).
    /// Only possible if the glyph is a shared glyph.
    pub fn get_data(&self) -> Option<Arc<SharedGlyphData>> {
        match self.inner {
            GlyphInner::Proxy(..) => None,
            GlyphInner::Shared(ref s) => Some(s.clone()),
        }
    }
}
/// Part of a `Contour`, either a `Line` or a `Curve`.
#[derive(Copy, Clone, Debug)]
pub enum Segment {
    Line(Line),
    Curve(Curve),
}
/// A closed loop consisting of a sequence of `Segment`s.
#[derive(Clone, Debug)]
pub struct Contour {
    pub segments: Vec<Segment>,
}
impl<'a> ScaledGlyph<'a> {
    /// The glyph identifier for this glyph.
    pub fn id(&self) -> GlyphId {
        self.g.id()
    }
    /// The font to which this glyph belongs. If the glyph is a standalone glyph
    /// that owns its resources, it no longer has a reference to the font which
    /// it was created from (using `standalone()`). In which case, `None` is
    /// returned.
    pub fn font(&self) -> Option<&Font<'a>> {
        self.g.font()
    }
    /// A reference to this glyph without the scaling
    pub fn into_unscaled(self) -> Glyph<'a> {
        self.g
    }
    /// Removes the scaling from this glyph
    pub fn unscaled(&self) -> &Glyph<'a> {
        &self.g
    }
    /// Augments this glyph with positioning information, making methods that
    /// depend on the position of the glyph available.
    pub fn positioned(self, p: Point<f32>) -> PositionedGlyph<'a> {
        let bb = self.pixel_bounds_at(p);
        PositionedGlyph {
            sg: self,
            position: p,
            bb,
        }
    }
    pub fn scale(&self) -> Scale {
        self.api_scale
    }
    /// Retrieves the "horizontal metrics" of this glyph. See `HMetrics` for
    /// more detail.
    pub fn h_metrics(&self) -> HMetrics {
        match self.g.inner {
            GlyphInner::Proxy(ref font, id) => {
                let hm = font.info.get_glyph_h_metrics(id);
                HMetrics {
                    advance_width: hm.advance_width as f32 * self.scale.x,
                    left_side_bearing: hm.left_side_bearing as f32 * self.scale.x,
                }
            }
            GlyphInner::Shared(ref data) => HMetrics {
                advance_width: data.unit_h_metrics.advance_width * self.scale.x,
                left_side_bearing: data.unit_h_metrics.left_side_bearing * self.scale.y,
            },
        }
    }
    fn shape_with_offset(&self, offset: Point<f32>) -> Option<Vec<Contour>> {
        use core::mem::replace;
        use stb_truetype::VertexType;
        match self.g.inner {
            GlyphInner::Proxy(ref font, id) => font.info.get_glyph_shape(id),
            GlyphInner::Shared(ref data) => data.shape.clone(),
        }
        .map(|shape| {
            let mut result = Vec::new();
            let mut current = Vec::new();
            let mut last = point(0.0, 0.0);
            for v in shape {
                let end = point(
                    v.x as f32 * self.scale.x + offset.x,
                    v.y as f32 * self.scale.y + offset.y,
                );
                match v.vertex_type() {
                    VertexType::MoveTo if !current.is_empty() => result.push(Contour {
                        segments: replace(&mut current, Vec::new()),
                    }),
                    VertexType::LineTo => current.push(Segment::Line(Line { p: [last, end] })),
                    VertexType::CurveTo => {
                        let control = point(
                            v.cx as f32 * self.scale.x + offset.x,
                            v.cy as f32 * self.scale.y + offset.y,
                        );
                        current.push(Segment::Curve(Curve {
                            p: [last, control, end],
                        }))
                    }
                    _ => (),
                }
                last = end;
            }
            if !current.is_empty() {
                result.push(Contour {
                    segments: replace(&mut current, Vec::new()),
                });
            }
            result
        })
    }
    /// Produces a list of the contours that make up the shape of this glyph.
    /// Each contour consists of a sequence of segments. Each segment is either
    /// a straight `Line` or a `Curve`.
    ///
    /// The winding of the produced contours is clockwise for closed shapes,
    /// anticlockwise for holes.
    pub fn shape(&self) -> Option<Vec<Contour>> {
        self.shape_with_offset(point(0.0, 0.0))
    }
    /// The bounding box of the shape of this glyph, not to be confused with
    /// `pixel_bounding_box`, the conservative pixel-boundary bounding box. The
    /// coordinates are relative to the glyph's origin.
    pub fn exact_bounding_box(&self) -> Option<Rect<f32>> {
        match self.g.inner {
            GlyphInner::Proxy(ref font, id) => font.info.get_glyph_box(id).map(|bb| Rect {
                min: point(bb.x0 as f32 * self.scale.x, -bb.y1 as f32 * self.scale.y),
                max: point(bb.x1 as f32 * self.scale.x, -bb.y0 as f32 * self.scale.y),
            }),
            GlyphInner::Shared(ref data) => data.extents.map(|bb| Rect {
                min: point(
                    bb.min.x as f32 * self.scale.x,
                    bb.min.y as f32 * self.scale.y,
                ),
                max: point(
                    bb.max.x as f32 * self.scale.x,
                    bb.max.y as f32 * self.scale.y,
                ),
            }),
        }
    }
    /// Constructs a glyph that owns its data from this glyph. This is similar
    /// to `Glyph::standalone`. See that function for more details.
    pub fn standalone(&self) -> ScaledGlyph<'static> {
        ScaledGlyph {
            g: self.g.standalone(),
            api_scale: self.api_scale,
            scale: self.scale,
        }
    }

    #[inline]
    fn pixel_bounds_at(&self, p: Point<f32>) -> Option<Rect<i32>> {
        // Use subpixel fraction in floor/ceil rounding to elimate rounding error
        // from identical subpixel positions
        let (x_trunc, x_fract) = (p.x.trunc() as i32, p.x.fract());
        let (y_trunc, y_fract) = (p.y.trunc() as i32, p.y.fract());

        match self.g.inner {
            GlyphInner::Proxy(ref font, id) => font
                .info
                .get_glyph_bitmap_box_subpixel(id, self.scale.x, self.scale.y, x_fract, y_fract)
                .map(|bb| Rect {
                    min: point(x_trunc + bb.x0, y_trunc + bb.y0),
                    max: point(x_trunc + bb.x1, y_trunc + bb.y1),
                }),
            GlyphInner::Shared(ref data) => data.extents.map(|bb| Rect {
                min: point(
                    (bb.min.x as f32 * self.scale.x + x_fract).floor() as i32 + x_trunc,
                    (bb.min.y as f32 * self.scale.y + y_fract).floor() as i32 + y_trunc,
                ),
                max: point(
                    (bb.max.x as f32 * self.scale.x + x_fract).ceil() as i32 + x_trunc,
                    (bb.max.y as f32 * self.scale.y + y_fract).ceil() as i32 + y_trunc,
                ),
            }),
        }
    }
}

impl<'a> PositionedGlyph<'a> {
    /// The glyph identifier for this glyph.
    pub fn id(&self) -> GlyphId {
        self.sg.id()
    }
    /// The font to which this glyph belongs. If the glyph is a standalone glyph
    /// that owns its resources, it no longer has a reference to the font which
    /// it was created from (using `standalone()`). In which case, `None` is
    /// returned.
    pub fn font(&self) -> Option<&Font<'a>> {
        self.sg.font()
    }
    /// A reference to this glyph without positioning
    pub fn unpositioned(&self) -> &ScaledGlyph<'a> {
        &self.sg
    }
    /// Removes the positioning from this glyph
    pub fn into_unpositioned(self) -> ScaledGlyph<'a> {
        self.sg
    }
    /// The conservative pixel-boundary bounding box for this glyph. This is the
    /// smallest rectangle aligned to pixel boundaries that encloses the shape
    /// of this glyph at this position. Note that the origin of the glyph, at
    /// pixel-space coordinates (0, 0), is at the top left of the bounding box.
    pub fn pixel_bounding_box(&self) -> Option<Rect<i32>> {
        self.bb
    }
    /// Similar to `ScaledGlyph::shape()`, but with the position of the glyph
    /// taken into account.
    pub fn shape(&self) -> Option<Vec<Contour>> {
        self.sg.shape_with_offset(self.position)
    }
    pub fn scale(&self) -> Scale {
        self.sg.api_scale
    }
    pub fn position(&self) -> Point<f32> {
        self.position
    }
    /// Rasterises this glyph. For each pixel in the rect given by
    /// `pixel_bounding_box()`, `o` is called:
    ///
    /// ```ignore
    /// o(x, y, v)
    /// ```
    ///
    /// where `x` and `y` are the coordinates of the pixel relative to the `min`
    /// coordinates of the bounding box, and `v` is the analytically calculated
    /// coverage of the pixel by the shape of the glyph. Calls to `o` proceed in
    /// horizontal scanline order, similar to this pseudo-code:
    ///
    /// ```ignore
    /// let bb = glyph.pixel_bounding_box();
    /// for y in 0..bb.height() {
    ///     for x in 0..bb.width() {
    ///         o(x, y, calc_coverage(&glyph, x, y));
    ///     }
    /// }
    /// ```
    pub fn draw<O: FnMut(u32, u32, f32)>(&self, o: O) {
        use stb_truetype::VertexType;
        let shape = match self.sg.g.inner {
            GlyphInner::Proxy(ref font, id) => {
                font.info.get_glyph_shape(id).unwrap_or_else(Vec::new)
            }
            GlyphInner::Shared(ref data) => data.shape.clone().unwrap_or_else(Vec::new),
        };
        let bb = if let Some(bb) = self.bb.as_ref() {
            bb
        } else {
            return;
        };
        let offset = vector(bb.min.x as f32, bb.min.y as f32);
        let mut lines = Vec::new();
        let mut curves = Vec::new();
        let mut last = point(0.0, 0.0);
        for v in shape {
            let end = point(
                v.x as f32 * self.sg.scale.x + self.position.x,
                -v.y as f32 * self.sg.scale.y + self.position.y,
            ) - offset;
            match v.vertex_type() {
                VertexType::LineTo => lines.push(Line { p: [last, end] }),
                VertexType::CurveTo => {
                    let control = point(
                        v.cx as f32 * self.sg.scale.x + self.position.x,
                        -v.cy as f32 * self.sg.scale.y + self.position.y,
                    ) - offset;
                    curves.push(Curve {
                        p: [last, control, end],
                    })
                }
                VertexType::MoveTo => {}
            }
            last = end;
        }
        rasterizer::rasterize(
            &lines,
            &curves,
            (bb.max.x - bb.min.x) as u32,
            (bb.max.y - bb.min.y) as u32,
            o,
        );
    }
    /// Constructs a glyph that owns its data from this glyph. This is similar
    /// to `Glyph::standalone`. See that function for more details.
    pub fn standalone(&self) -> PositionedGlyph<'static> {
        PositionedGlyph {
            sg: self.sg.standalone(),
            bb: self.bb,
            position: self.position,
        }
    }

    /// Resets positioning information and recalculates the pixel bounding box
    pub fn set_position(&mut self, p: Point<f32>) {
        let p_diff = p - self.position;
        if relative_eq!(p_diff.x.fract(), 0.0) && relative_eq!(p_diff.y.fract(), 0.0) {
            if let Some(bb) = self.bb.as_mut() {
                let rounded_diff = vector(p_diff.x.round() as i32, p_diff.y.round() as i32);
                bb.min = bb.min + rounded_diff;
                bb.max = bb.max + rounded_diff;
            }
        } else {
            self.bb = self.sg.pixel_bounds_at(p);
        }
        self.position = p;
    }
}

/// The type for errors returned by rusttype.
#[derive(Debug)]
pub enum Error {
    /// Font data presented to rusttype is not in a format that the library
    /// recognizes.
    UnrecognizedFormat,

    /// Font data presented to rusttype was ill-formed (lacking necessary
    /// tables, for example).
    IllFormed,

    /// The caller tried to access the `i`'th font from a `FontCollection`, but
    /// the collection doesn't contain that many fonts.
    CollectionIndexOutOfBounds,

    /// The caller tried to convert a `FontCollection` into a font via
    /// `into_font`, but the `FontCollection` contains more than one font.
    CollectionContainsMultipleFonts,
}

impl Error {
    fn description(&self) -> &str {
        use self::Error::*;
        match *self {
            UnrecognizedFormat => "Font data in unrecognized format",
            IllFormed => "Font data is ill-formed",
            CollectionIndexOutOfBounds => "Font collection has no font at the given index",
            CollectionContainsMultipleFonts => {
                "Attempted to convert collection into a font, \
                 but collection contais more than one font"
            }
        }
    }
}

impl fmt::Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> core::result::Result<(), fmt::Error> {
        f.write_str(self.description())
    }
}

#[cfg(feature = "std")]
impl std::error::Error for Error {
    fn description(&self) -> &str {
        self.description()
    }
}

#[cfg(feature = "std")]
impl std::convert::From<Error> for std::io::Error {
    fn from(error: Error) -> Self {
        std::io::Error::new(std::io::ErrorKind::Other, error)
    }
}