Skip to main content

Synchronized Multi-arm Rearrangement Guided by Mode Graphs with Capacity Constraints

  • Conference paper
  • First Online:
Algorithmic Foundations of Robotics XIV (WAFR 2020)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 17))

Included in the following conference series:

Abstract

Solving task planning problems involving multiple objects and multiple robotic arms poses scalability challenges. Such problems involve not only coordinating multiple high-DoF arms, but also searching through possible sequences of actions including object placements, and handoffs. The current work identifies a useful connection between multi-arm rearrangement and recent results in multi-body path planning on graphs with vertex capacity constraints. Solving a synchronized multi-arm rearrangement at a high-level involves reasoning over a modal graph, where nodes correspond to stable object placements and object transfer states by the arms. Edges of this graph correspond to pick, placement and handoff operations. The objects can be viewed as pebbles moving over this graph, which has capacity constraints. For instance, each arm can carry a single object but placement locations can accumulate many objects. Efficient integer linear programming-based solvers have been proposed for the corresponding pebble problem. The current work proposes a heuristic to guide the task planning process for synchronized multi-arm rearrangement. Results indicate good scalability to multiple arms and objects, and an algorithm that can find high-quality solutions fast and exhibiting desirable anytime behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Bulgaria)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 234.33
Price includes VAT (Bulgaria)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 299.59
Price includes VAT (Bulgaria)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR 299.59
Price includes VAT (Bulgaria)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akbari, A., Lagriffoul, F., Rosell, J.: Combined heuristic task and motion planning for bi-manual robots. Auton. Robots, pp. 1–16 (2018)

    Google Scholar 

  2. van den Berg, J., Snoeyink, J., Lin, M., Manocha, D.: Centralized path planning for multiple robots: optimal decoupling into sequential plans. In: RSS (2009)

    Google Scholar 

  3. Cohen, B., Phillips, M., Likhachev, M.: Planning single-arm manipulations with n-arm robots. In: SoCS (2015)

    Google Scholar 

  4. Dantam, N.T., Kingston, Z.K., Chaudhuri, S., Kavraki, L.E.: Incremental task and motion planning: a constraint-based approach. In: RSS (2016)

    Google Scholar 

  5. Dobson, A., Bekris, K.E.: Planning representations and algorithms for prehensile multi-arm manipulation. In: IROS, pp. 6381–6386. IEEE (2015)

    Google Scholar 

  6. Dobson, A., Solovey, K., Shome, R., Halperin, D., Bekris, K.E.: Scalable asymptotically-optimal multi-robot motion planning. In: MRS (2017)

    Google Scholar 

  7. Garrett, C.R., Lozano-Perez, T., Kaelbling, L.P.: Ffrob: leveraging symbolic planning for efficient task and motion planning. IJRR 37(1), 104–136 (2018)

    Google Scholar 

  8. Ghrist, R., O’Kane, J.M., LaValle, S.M.: . Computing pareto optimal coordinations on roadmaps. IJRR 24(11) (2005)

    Google Scholar 

  9. Halperin, D., Latombe, J.C., Wilson, R.H.: A general framework for assembly planning: the motion space approach. Algorithmica 26(3–4) (2000)

    Google Scholar 

  10. Han, S.D., Stiffler, N.M., Bekris, K.E., Yu, J.: Efficient, high-quality stack rearrangement. IEEE RAL 3(3), 1608–1615 (2018)

    Google Scholar 

  11. Han, S.D., Stiffler, N.M., Krontiris, A., Bekris, K., Yu, J.: Complexity results and fast methods for optimal tabletop rearrangement with overhand grasps. arXiv:1711.07369 (2017)

  12. Harada, K., Tsuji, T., Laumond, J.P.: A manipulation motion planner for dual-arm industrial manipulators. In: ICRA (2014)

    Google Scholar 

  13. Hauser, K., Ng-Thow-Hing, V.: Randomized multi-modal motion planning for a humanoid robot manipulation task. IJRR 30(6) (2011)

    Google Scholar 

  14. Havur, G., Ozbilgin, G., Erdem, E., Patoglu, V.: Geometric rearrangement of multiple movable objects on cluttered surfaces: a hybrid reasoning approach. In: ICRA (2014)

    Google Scholar 

  15. Janson, L., Schmerling, E., Clark, A., Pavone, M.: Fast marching tree: a fast marching sampling-based method for optimal motion planning in many dimensions. IJRR (2015)

    Google Scholar 

  16. Kaelbling, L.P., Lozano-Pérez, T.: Hierarchical task and motion planning in the now. In: ICRA (2011)

    Google Scholar 

  17. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. IJRR 30(7) (2011)

    Google Scholar 

  18. Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4) (1996)

    Google Scholar 

  19. Krontiris, A., Bekris, K.E.: Dealing with difficult instances of object rearrangement. In: RSS (2015)

    Google Scholar 

  20. Krontiris, A., Bekris, K.E.: Efficiently solving general rearrangement tasks: a fast extension primitive for an incremental sampling-based planner. In: ICRA (2016)

    Google Scholar 

  21. LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. IJRR 20 (2001)

    Google Scholar 

  22. Ota, J.: Rearrangement of multiple movable objects-integration of global and local planning methodology. In: ICRA, 2 (2004)

    Google Scholar 

  23. Saribatur, Z.G., Patoglu, V., Erdem, E.: Finding optimal feasible global plans for multiple teams of heterogeneous robots using hybrid reasoning: an application to cognitive factories. Auton. Robot 43(1), 213–238 (2019)

    Article  Google Scholar 

  24. Schmitt, P.S., Neubauer, W., Feiten, W., Wurm, K.M., Wichert, G.V., Burgard, W.: Optimal, sampling-based manipulation planning. In: ICRA. IEEE (2017)

    Google Scholar 

  25. Shome, R., Bekris, K.E.: Anytime multi-arm task and motion planning for pick-and-place of individual objects via handoffs. In: MRS, pp. 37–43. IEEE (2019)

    Google Scholar 

  26. Shome, R., Bekris, K.E.: Synchronized multi-arm rearrangement guided by mode graphs with capacity constraints. arXiv preprint arXiv:2005.09127 (2020)

  27. Shome, R., Solovey, K., Dobson, A., Halperin, D., Bekris, K.E.: drrt*: Scalable and informed asymptotically-optimal multi-robot motion planning. Auton. Robots, pp. 1–25 (2019)

    Google Scholar 

  28. Shome, R., Solovey, K., Yu, J., Halperin, D., Bekris, K.E.: Fast, high-quality dual-arm rearrangement in synchronous, monotone tabletop setups. In: WAFR (2018)

    Google Scholar 

  29. Siméon, T., Laumond, J.P., Cortés, J., Sahbani, A.: Manipulation Planning with Probabilistic Roadmaps. IJRR 23(8) (2004)

    Google Scholar 

  30. Solovey, K., Salzman, O., Halperin, D.: Finding a needle in an exponential haystack: Discrete RRT for exploration of implicit roadmaps in multi-robot motion planning. IJRR 35(5) (2016)

    Google Scholar 

  31. Stilman, M., Schamburek, J.U., Kuffner, J., Asfour, T.: Manipulation planning among movable obstacles. In: ICRA (2007)

    Google Scholar 

  32. Surynek, P., Felner, A., Stern, R., Boyarski, E.: Efficient sat approach to multi-agent path finding under the sum of costs objective. In: Proceedings of the Twenty-second European Conference on Artificial Intelligence, pp. 810–818. IOS (2016)

    Google Scholar 

  33. Surynek, P., Kumar, T.S., Koenig, S.: Multi-agent path finding with capacity constraints. In: International Conference of the Italian Association for Artificial Intelligence (2019)

    Google Scholar 

  34. Toussaint, M.: Logic-geometric programming: an optimization-based approach to combined task and motion planning. In: International Joint Conference on Artificial Intelligence (2015)

    Google Scholar 

  35. Vega-Brown, W., Roy, N.: Asymptotically optimal planning under piecewise-analytic constraints. In: WAFR (2016)

    Google Scholar 

  36. Wagner, G., Choset, H.: Subdimensional expansion for multirobot path planning. Artif. Intell. J. 219 (2015)

    Google Scholar 

  37. Yu, J., LaValle, S.M.: Optimal multirobot path planning on graphs: Complete algorithms and effective heuristics. IEEE Trans. Robot. 32(5), 1163–1177 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of NSF awards IIS:1617744 and CCF:1934924. Any findings reported here do not reflect the opinions of the sponsor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostas E. Bekris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shome, R., Bekris, K.E. (2021). Synchronized Multi-arm Rearrangement Guided by Mode Graphs with Capacity Constraints. In: LaValle, S.M., Lin, M., Ojala, T., Shell, D., Yu, J. (eds) Algorithmic Foundations of Robotics XIV. WAFR 2020. Springer Proceedings in Advanced Robotics, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-030-66723-8_15

Download citation

Publish with us

Policies and ethics