Abstract
Sketching is a group of dimensionality reduction approaches which succinctly approximate the original data using random projections or samplings. In contrast to general random subsamplings, the sketching matrices are chosen from certain sets of random maps, which can reduce the computational and storage complexities with provable theoretical guarantees. Sketching finds successful applications in regression, low-rank approximation, network compression, etc. In this chapter, we introduce basic ideas, methods and applications of sketching. We start with count sketch, but mainly focus on its extensions to higher-order tensors, including tensor sketch and higher-order count sketch. Finally, the effectiveness of tensor sketching methods is verified in some multidimensional data processing tasks, such as tensor decomposition, Kronecker product regression, and tensorized neural network approximations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
In this chapter, [N] denotes the set \(\left \{0, 1, \cdots , N-1\right \}\) for any \(N\in \mathbb {R}^+\).
- 2.
For simplicity we focus on symmetric tensor here, i.e., \(\mathcal {T}_{i, j, k}\) remains the same for all permutations of i, j, k. An extension to asymmetric case can be seen in [4].
- 3.
- 4.
- 5.
References
Ahle, T.D., Kapralov, M., Knudsen, J.B., Pagh, R., Velingker, A., Woodruff, D.P., Zandieh, A.: Oblivious sketching of high-degree polynomial kernels. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 141–160. SIAM, Philadelphia (2020)
Ailon, N., Chazelle, B.: Approximate nearest neighbors and the fast johnson-lindenstrauss transform. In: Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing, pp. 557–563 (2006)
Anandkumar, A., Ge, R., Hsu, D., Kakade, S., Telgarsky, M.: Tensor decompositions for learning latent variable models. J. Mach. Learn. Res. 15, 2773–2832 (2014)
Anandkumar, A., Ge, R., Janzamin, M.: Guaranteed non-orthogonal tensor decomposition via alternating rank-1 updates (2014, preprint). arXiv:1402.5180
Avron, H., Nguyen, H., Woodruff, D.: Subspace embeddings for the polynomial kernel. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 27. Curran Associates, Red Hook (2014). https://proceedings.neurips.cc/paper/2014/file/b571ecea16a9824023ee1af16897a582-Paper.pdf
Avron, H., Nguyundefinedn, H.L., Woodruff, D.P.: Subspace embeddings for the polynomial kernel. In: Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2, NIPS’14, pp. 2258–2266. MIT Press, Cambridge (2014)
Bhojanapalli, S., Sanghavi, S.: A new sampling technique for tensors (2015, preprint). arXiv:1502.05023
Bingham, E., Mannila, H.: Random projection in dimensionality reduction: applications to image and text data. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 245–250 (2001)
Bringmann, K., Panagiotou, K.: Efficient sampling methods for discrete distributions. In: International Colloquium on Automata, Languages, and Programming, pp. 133–144. Springer, Berlin (2012)
Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent items in data streams. Autom. Lang. Program. 2380, 693–703 (2002)
Clarkson, K.L., Woodruff, D.P.: Low-rank approximation and regression in input sparsity time. J. ACM 63(6), 1–45 (2017)
Demaine, E.D., López-Ortiz, A., Munro, J.I.: Frequency estimation of internet packet streams with limited space. In: European Symposium on Algorithms, pp. 348–360. Springer, Berlin (2002)
Diao, H., Jayaram, R., Song, Z., Sun, W., Woodruff, D.: Optimal sketching for kronecker product regression and low rank approximation. In: Advances in Neural Information Processing Systems, pp. 4737–4748 (2019)
Diao, H., Song, Z., Sun, W., Woodruff, D.P.: Sketching for kronecker product regression and p-splines. In: Proceedings of International Conference on Artificial Intelligence and Statistics (AISTATS 2018) (2018)
Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)
Eldar, Y.C., Kutyniok, G.: Compressed Sensing: Theory and Applications. Cambridge University Press, Cambridge (2012)
Gama, F., Marques, A.G., Mateos, G., Ribeiro, A.: Rethinking sketching as sampling: a graph signal processing approach. Signal Process. 169, 107404 (2020)
Han, I., Avron, H., Shin, J.: Polynomial tensor sketch for element-wise function of low-rank matrix. In: International Conference on Machine Learning, pp. 3984–3993. PMLR, Westminster (2020)
Hsu, C.Y., Indyk, P., Katabi, D., Vakilian, A.: Learning-based frequency estimation algorithms. In: International Conference on Learning Representations (2019)
Indyk, P., Vakilian, A., Yuan, Y.: Learning-based low-rank approximations. In: Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Red Hook (2019). https://proceedings.neurips.cc/paper/2019/file/1625abb8e458a79765c62009235e9d5b-Paper.pdf
Kasiviswanathan, S.P., Narodytska, N., Jin, H.: Network approximation using tensor sketching. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, pp. 2319–2325. International Joint Conferences on Artificial Intelligence Organization (2018). https://doi.org/10.24963/ijcai.2018/321
Kossaifi, J., Lipton, Z.C., Kolbeinsson, A., Khanna, A., Furlanello, T., Anandkumar, A.: Tensor regression networks. J. Mach. Learn. Res. 21, 1–21 (2020)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
Liu, S., Liu, T., Vakilian, A., Wan, Y., Woodruff, D.P.: Extending and improving learned CountSketch (2020, preprint). arXiv:2007.09890
Ma, J., Zhang, Q., Ho, J.C., Xiong, L.: Spatio-temporal tensor sketching via adaptive sampling (2020, preprint). arXiv:2006.11943
Malik, O.A., Becker, S.: Low-rank tucker decomposition of large tensors using tensorsketch. Adv. Neural Inf. Process. Syst. 31, 10096–10106 (2018)
Malik, O.A., Becker, S.: Guarantees for the kronecker fast johnson–lindenstrauss transform using a coherence and sampling argument. Linear Algebra Appl. 602, 120–137 (2020)
Nelson, J., Nguyên, H.L.: OSNAP: faster numerical linear algebra algorithms via sparser subspace embeddings. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pp. 117–126. IEEE, Piscataway (2013)
Pagh, R.: Compressed matrix multiplication. ACM Trans. Comput. Theory 5(3), 1–17 (2013)
Pham, N., Pagh, R.: Fast and scalable polynomial kernels via explicit feature maps. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’13, vol. 128815, pp. 239–247. ACM, New York (2013)
Prasad Kasiviswanathan, S., Narodytska, N., Jin, H.: Deep neural network approximation using tensor sketching (2017, e-prints). arXiv:1710.07850
Sarlos, T.: Improved approximation algorithms for large matrices via random projections. In: 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), pp. 143–152. IEEE, Piscataway (2006)
Sarlós, T., Benczúr, A.A., Csalogány, K., Fogaras, D., Rácz, B.: To randomize or not to randomize: space optimal summaries for hyperlink analysis. In: Proceedings of the 15th International Conference on World Wide Web, pp. 297–306 (2006)
Shi, Y.: Efficient tensor operations via compression and parallel computation. Ph.D. Thesis, UC Irvine (2019)
Shi, Y., Anandkumar, A.: Higher-order count sketch: dimensionality reduction that retains efficient tensor operations. In: Data Compression Conference, DCC 2020, Snowbird, March 24–27, 2020, p. 394. IEEE, Piscataway (2020). https://doi.org/10.1109/DCC47342.2020.00045
Sun, Y., Guo, Y., Luo, C., Tropp, J., Udell, M.: Low-rank tucker approximation of a tensor from streaming data. SIAM J. Math. Data Sci. 2(4), 1123–1150 (2020)
Vempala, S.S.: The Random Projection Method, vol. 65. American Mathematical Society, Providence (2005)
Wang, Y., Tung, H.Y., Smola, A., Anandkumar, A.: Fast and guaranteed tensor decomposition via sketching. UC Irvine 1, 991–999 (2015). https://escholarship.org/uc/item/6zt3b0g3
Wang, Y., Tung, H.Y., Smola, A.J., Anandkumar, A.: Fast and guaranteed tensor decomposition via sketching. In: Advances in Neural Information Processing Systems, pp. 991–999 (2015)
Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 10, 207–244 (2009)
Woodruff, D.P., et al.: Sketching as a tool for numerical linear algebra. Found. Trends® Theor. Comput. Sci. 10(1–2), 1–157 (2014)
Xia, D., Yuan, M.: Effective tensor sketching via sparsification. IEEE Trans. Inf. Theory 67(2), 1356–1369 (2021)
Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms (2017, preprint). arXiv:1708.07747 (2017)
Yang, B., Zamzam, A., Sidiropoulos, n.d.: Parasketch: parallel tensor factorization via sketching. In: Proceedings of the 2018 SIAM International Conference on Data Mining, pp. 396–404. SIAM, Philadelphia (2018)
Yang, B., Zamzam, A.S., Sidiropoulos, n.d.: Large scale tensor factorization via parallel sketches. IEEE Trans. Knowl. Data Eng. (2020). https://doi.org/10.1109/TKDE.2020.2982144
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Liu, Y., Liu, J., Long, Z., Zhu, C. (2022). Tensor Sketch. In: Tensor Computation for Data Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-74386-4_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-74386-4_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-74385-7
Online ISBN: 978-3-030-74386-4
eBook Packages: EngineeringEngineering (R0)