Skip to main content

A Smart Sensor Suit (SSS) to Assess Cognitive and Physical Fatigue with Machine Learning

  • Conference paper
  • First Online:
Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management (HCII 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14028))

Included in the following conference series:

Abstract

Fatigue is a loss in cognitive or physical performance due to physiological factors such as insufficient sleep, long work hours, stress, and physical exertion. It adversely affects the human body and can slow reaction times, reduce attention, and limit short-term memory. Hence, there is a need to monitor a person’s state to avoid extreme fatigue conditions that can result in physiological complications. However, tools to understand and assess fatigue are minimal. This paper primarily focuses on building an experimental setup that induces cognitive fatigue (CF) and physical fatigue (PF) through multiple cognitive and physical tasks while simultaneously recording physiological data. First, we built a prototype sensor suit embedded with numerous physiological sensors for easy use during data collection. Second, participants’ self-reported visual analog scores (VAS) are reported after each task to confirm fatigue induction. Finally, an evaluation system is built that utilizes machine learning (ML) models to detect states of CF and PF from sensor data, thus providing an objective measure. Our methods beat state-of-the-art approaches, where Random Forest performs the best in detecting PF with an accuracy of 80.5% while correctly predicting the true PF condition 88% of the time. On the other hand, the long short-term memory (LSTM) recurrent neural network produces the best results in detecting CF in the subjects (with 84.1% accuracy, 0.9 recall).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Bulgaria)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Bulgaria)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Bulgaria)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adão Martins, N.R., Annaheim, S., Spengler, C.M., Rossi, R.M.: Fatigue monitoring through wearables: a state-of-the-art review. Front. Physiol. 2285 (2021)

    Google Scholar 

  2. Al-Libawy, H., Al-Ataby, A., Al-Nuaimy, W., Al-Taee, M.A.: HRV-based operator fatigue analysis and classification using wearable sensors. In: 2016 13th International Multi-Conference on Systems, Signals & Devices (SSD), pp. 268–273. IEEE (2016)

    Google Scholar 

  3. Armour, U.: Men’s ua heatgear armour sleeveless compression shirt. https://www.underarmour.com/en-us/p/tops/mens_ua_heatgear_armour_sleeveless_compression_shirt/1257469.html

  4. Aryal, A., Ghahramani, A., Becerik-Gerber, B.: Monitoring fatigue in construction workers using physiological measurements. Autom. Constr. 82, 154–165 (2017)

    Article  Google Scholar 

  5. Babu, A.R., Cloud, J., Theofanidis, M., Makedon, F.: Facial expressions as a modality for fatigue detection in robot based rehabilitation. In: Proceedings of the 11th PErvasive Technologies Related to Assistive Environments Conference, pp. 112–113 (2018)

    Google Scholar 

  6. Babu, A.R., Rajavenkatanarayanan, A., Brady, J.R., Makedon, F.: Multimodal approach for cognitive task performance prediction from body postures, facial expressions and EEG signal. In: Proceedings of the Workshop on Modeling Cognitive Processes from Multimodal Data, pp. 1–7 (2018)

    Google Scholar 

  7. Bai, Y., Guan, Y., Ng, W.F.: Fatigue assessment using ECG and actigraphy sensors. In: Proceedings of the 2020 International Symposium on Wearable Computers, pp. 12–16 (2020)

    Google Scholar 

  8. Bailey, A., Channon, S., Beaumont, J.: The relationship between subjective fatigue and cognitive fatigue in advanced multiple sclerosis. Mult. Scler. J. 13(1), 73–80 (2007)

    Article  Google Scholar 

  9. Belmont, A., Agar, N., Hugeron, C., Gallais, B., Azouvi, P.: Fatigue and traumatic brain injury. In: Annales de réadaptation et de médecine physique, vol. 49, pp. 370–374. Elsevier (2006)

    Google Scholar 

  10. Bendak, S., Rashid, H.S.: Fatigue in aviation: a systematic review of the literature. Int. J. Ind. Ergon. 76, 102928 (2020)

    Article  Google Scholar 

  11. Braithwaite, J.J., Watson, D.G., Jones, R., Rowe, M.: A guide for analysing electrodermal activity (EDA) & skin conductance responses (SCRS) for psychological experiments. Psychophysiology 49(1), 1017–1034 (2013)

    Google Scholar 

  12. Chaudhuri, A., Behan, P.O.: Fatigue in neurological disorders. The Lancet 363(9413), 978–988 (2004)

    Article  Google Scholar 

  13. Cifrek, M., Medved, V., Tonković, S., Ostojić, S.: Surface EMG based muscle fatigue evaluation in biomechanics. Clin. Biomech. 24(4), 327–340 (2009)

    Article  Google Scholar 

  14. Dawson, M.E., Schell, A.M., Courtney, C.G.: The skin conductance response, anticipation, and decision-making. J. Neurosci. Psychol. Econ. 4(2), 111 (2011)

    Article  Google Scholar 

  15. Einthoven, W., Fahr, G., De Waart, A.: On the direction and manifest size of the variations of potential in the human heart and on the influence of the position of the heart on the form of the electrocardiogram. Am. Heart J. 40(2), 163–211 (1950)

    Article  Google Scholar 

  16. García-Pérez, J.A., Pérez-Soriano, P., Llana Belloch, S., Lucas-Cuevas, Á.G., Sánchez-Zuriaga, D.: Effects of treadmill running and fatigue on impact acceleration in distance running. Sports Biomech. 13(3), 259–266 (2014)

    Article  Google Scholar 

  17. Guastello, S.J., Reiter, K., Malon, M., Timm, P., Shircel, A., Shaline, J.: Catastrophe models for cognitive workload and fatigue in n-back tasks. Psychology, and Life Sciences, Nonlinear Dynamics (2015)

    Google Scholar 

  18. Hagell, P., Brundin, L.: Towards an understanding of fatigue in Parkinson disease. J. Neurol. Neurosurg. Psychiatr. 80(5), 489–492 (2009)

    Article  Google Scholar 

  19. Hopstaken, J.F., Van Der Linden, D., Bakker, A.B., Kompier, M.A.: A multifaceted investigation of the link between mental fatigue and task disengagement. Psychophysiology 52(3), 305–315 (2015)

    Article  Google Scholar 

  20. Huang, S., Li, J., Zhang, P., Zhang, W.: Detection of mental fatigue state with wearable ECG devices. Int. J. Med. Inform. 119, 39–46 (2018)

    Article  Google Scholar 

  21. Jaiswal, A., Babu, A.R., Zadeh, M.Z., Makedon, F., Wylie, G.: Understanding cognitive fatigue from FMRI scans with self-supervised learning. arXiv preprint arXiv:2106.15009 (2021)

  22. Jap, B.T., Lal, S., Fischer, P., Bekiaris, E.: Using EEG spectral components to assess algorithms for detecting fatigue. Expert Syst. Appl. 36(2), 2352–2359 (2009)

    Article  Google Scholar 

  23. Ji, Q., Lan, P., Looney, C.: A probabilistic framework for modeling and real-time monitoring human fatigue. IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 36(5), 862–875 (2006)

    Article  Google Scholar 

  24. Krupp, L.B., Alvarez, L.A., LaRocca, N.G., Scheinberg, L.C.: Fatigue in multiple sclerosis. Arch. Neurol. 45(4), 435–437 (1988)

    Article  Google Scholar 

  25. Luo, H., Lee, P.A., Clay, I., Jaggi, M., De Luca, V.: Assessment of fatigue using wearable sensors: a pilot study. Digit. Biomark. 4(1), 59–72 (2020)

    Article  Google Scholar 

  26. Makowski, D., et al.: NeuroKit2: a Python toolbox for neurophysiological signal processing. Behav. Res. Methods 53(4), 1689–1696 (2021). https://doi.org/10.3758/s13428-020-01516-y

    Article  Google Scholar 

  27. Marcora, S.M., Staiano, W., Manning, V.: Mental fatigue impairs physical performance in humans. J. Appl. Physiol. 106(3), 857–864 (2009)

    Article  Google Scholar 

  28. Meier, B., Rothen, N., Walter, S.: Developmental aspects of synaesthesia across the adult lifespan. Front. Hum. Neurosci. 8, 129 (2014)

    Article  Google Scholar 

  29. MUSE: Muse s - the next generation of muses. https://choosemuse.com/muse-s/

  30. Myles, W.S.: Sleep deprivation, physical fatigue, and the perception of exercise intensity. Med. Sci. Sports Exerc. (1985)

    Google Scholar 

  31. Nelesen, R., Dar, Y., Thomas, K., Dimsdale, J.E.: The relationship between fatigue and cardiac functioning. Arch. Intern. Med. 168(9), 943–949 (2008)

    Article  Google Scholar 

  32. Pan, J., Tompkins, W.J.: A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 230–236 (1985)

    Google Scholar 

  33. Ramesh Babu, A., Zadeh, M.Z., Jaiswal, A., Lueckenhoff, A., Kyrarini, M., Makedon, F.: A multi-modal system to assess cognition in children from their physical movements. In: Proceedings of the 2020 International Conference on Multimodal Interaction, pp. 6–14 (2020)

    Google Scholar 

  34. Richley, D.: New training and qualifications in electrocardiography. Br. J. Card. Nurs. 8(1), 38–42 (2013)

    Article  Google Scholar 

  35. Ringnér, M.: What is principal component analysis? Nat. Biotechnol. 26, 303–304 (2008)

    Article  Google Scholar 

  36. Rota, S., Morel, B., Saboul, D., Rogowski, I., Hautier, C.: Influence of fatigue on upper limb muscle activity and performance in tennis. J. Electromyogr. Kinesiol. 24(1), 90–97 (2014)

    Article  Google Scholar 

  37. Russell, B., McDaid, A., Toscano, W., Hume, P.: Predicting fatigue in long duration mountain events with a single sensor and deep learning model. Sensors 21(16), 5442 (2021)

    Article  Google Scholar 

  38. Sedighi Maman, Z., Alamdar Yazdi, M.A., Cavuoto, L.A., Megahed, F.M.: A data-driven approach to modeling physical fatigue in the workplace using wearable sensors. Appl. Ergon. 65, 515–529 (2017)

    Article  Google Scholar 

  39. Xu, R., et al.: How physical activities affect mental fatigue based on EEG energy, connectivity, and complexity. Front. Neurol. 9 (2018)

    Google Scholar 

  40. Zadeh, M.Z., Babu, A.R., Lim, J.B., Kyrarini, M., Wylie, G., Makedon, F.: Towards cognitive fatigue detection from functional magnetic resonance imaging data. In: Proceedings of the 13th ACM International Conference on PErvasive Technologies Related to Assistive Environments, pp. 1–2 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Jaiswal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jaiswal, A., Zaki Zadeh, M., Hebri, A., Ramesh Babu, A., Makedon, F. (2023). A Smart Sensor Suit (SSS) to Assess Cognitive and Physical Fatigue with Machine Learning. In: Duffy, V.G. (eds) Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. HCII 2023. Lecture Notes in Computer Science, vol 14028. Springer, Cham. https://doi.org/10.1007/978-3-031-35741-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35741-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35740-4

  • Online ISBN: 978-3-031-35741-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics