Skip to main content

DRAT-trim: Efficient Checking and Trimming Using Expressive Clausal Proofs

  • Conference paper
Theory and Applications of Satisfiability Testing – SAT 2014 (SAT 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8561))

Abstract

The DRAT-trim tool is a satisfiability proof checker based on the new DRAT proof format. Unlike its predecessor, DRUP-trim, all presently known SAT solving and preprocessing techniques can be validated using DRAT-trim. Checking time of a proof is comparable to the running time of the proof-producing solver. Memory usage is also similar to solving memory consumption, which overcomes a major hurdle of resolution-based proof checkers. The DRAT-trim tool can emit trimmed formulas, optimized proofs, and new TraceCheck +  dependency graphs. We describe the output that is produced, what optimizations have been made to check RAT clauses, and potential applications of the tool.

The authors are supported by DARPA contract number N66001-10-2-4087 and by the National Science Foundation under Grant No. CCF-1153558.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Bulgaria)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Bulgaria)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Bulgaria)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Audemard, G., Katsirelos, G., Simon, L.: A restriction of extended resolution for clause learning SAT solvers. In: Fox, M., Poole, D. (eds.) Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI). AAAI Press (2010)

    Google Scholar 

  2. Audemard, G., Simon, L.: Glucose’s home page (2014), http://www.labri.fr/perso/lsimon/glucose/ (accessed: January 21, 2014)

  3. Balint, A., Belov, A., Heule, M., Järvisalo, M.: SAT Competition 2013 (2013), http://www.satcompetition.org/2013/ (accessed: January 21, 2014)

  4. Biere, A.: PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and Computation (JSAT) 4, 75–97 (2008)

    MATH  Google Scholar 

  5. Biere, A.: Lingeling, Plingeling, and Treengeling (2014), http://fmv.jku.at/lingeling/ (accessed: January 27, 2014)

  6. Brummayer, R., Biere, A.: Fuzzing and delta-debugging SMT solvers. In: International Workshop on Satisfiability Modulo Theories (SMT), pp. 1–5. ACM (2009)

    Google Scholar 

  7. Brummayer, R., Lonsing, F., Biere, A.: Automated testing and debugging of SAT and QBF solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 44–57. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Goldberg, E.I., Novikov, Y.: Verification of proofs of unsatisfiability for CNF formulas. In: Design, Automation and Test in Europe Conference and Exhibition (DATE), pp. 10886–10891. IEEE (2003)

    Google Scholar 

  9. Heule, M.J.H., Hunt Jr., W.A., Wetzler, N.: Trimming while checking clausal proofs. In: Formal Methods in Computer-Aided Design (FMCAD), pp. 181–188. IEEE (2013)

    Google Scholar 

  10. Heule, M.J.H., Hunt Jr., W.A., Wetzler, N.: Verifying refutations with extended resolution. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 345–359. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Heule, M.J.H., Järvisalo, M., Biere, A.: Clause elimination procedures for CNF formulas. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 357–371. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 355–370. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Jussila, T., Sinz, C., Biere, A.: Extended resolution proofs for symbolic SAT solving with quantification. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 54–60. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Kullmann, O.: On a generalization of extended resolution. Discrete Applied Mathematics 96-97, 149–176 (1999)

    Article  MathSciNet  Google Scholar 

  15. Manthey, N., Heule, M.J.H., Biere, A.: Automated reencoding of boolean formulas. In: Biere, A., Nahir, A., Vos, T. (eds.) HVC 2012. LNCS, vol. 7857, pp. 102–117. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Marques-Silva, J.P., Lynce, I., Malik, S.: Conflict-Driven Clause Learning SAT Solvers. In: Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, ch. 4, vol. 185, pp. 131–153. IOS Press (February 2009)

    Google Scholar 

  17. Rivest, R.L.: Partial-match retrieval algorithms. SIAM J. Comput. 5(1), 19–50 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sinz, C., Biere, A.: Extended resolution proofs for conjoining BDDs. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 600–611. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siekmann, J., Wrightson, G. (eds.) Automation of Reasoning 2, pp. 466–483. Springer (1983)

    Google Scholar 

  20. Van Gelder, A.: Verifying RUP proofs of propositional unsatisfiability. In: International Symposium on Artificial Intelligence and Mathematics (ISAIM) (2008)

    Google Scholar 

  21. Wetzler, N., Heule, M.J.H., Hunt Jr., W.A.: Mechanical verification of SAT refutations with extended resolution. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 229–244. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Wetzler, N., Heule, M.J.H., Hunt, W.A. (2014). DRAT-trim: Efficient Checking and Trimming Using Expressive Clausal Proofs. In: Sinz, C., Egly, U. (eds) Theory and Applications of Satisfiability Testing – SAT 2014. SAT 2014. Lecture Notes in Computer Science, vol 8561. Springer, Cham. https://doi.org/10.1007/978-3-319-09284-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09284-3_31

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09283-6

  • Online ISBN: 978-3-319-09284-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics