Abstract
The DRAT-trim tool is a satisfiability proof checker based on the new DRAT proof format. Unlike its predecessor, DRUP-trim, all presently known SAT solving and preprocessing techniques can be validated using DRAT-trim. Checking time of a proof is comparable to the running time of the proof-producing solver. Memory usage is also similar to solving memory consumption, which overcomes a major hurdle of resolution-based proof checkers. The DRAT-trim tool can emit trimmed formulas, optimized proofs, and new TraceCheck + dependency graphs. We describe the output that is produced, what optimizations have been made to check RAT clauses, and potential applications of the tool.
The authors are supported by DARPA contract number N66001-10-2-4087 and by the National Science Foundation under Grant No. CCF-1153558.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Audemard, G., Katsirelos, G., Simon, L.: A restriction of extended resolution for clause learning SAT solvers. In: Fox, M., Poole, D. (eds.) Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI). AAAI Press (2010)
Audemard, G., Simon, L.: Glucose’s home page (2014), http://www.labri.fr/perso/lsimon/glucose/ (accessed: January 21, 2014)
Balint, A., Belov, A., Heule, M., Järvisalo, M.: SAT Competition 2013 (2013), http://www.satcompetition.org/2013/ (accessed: January 21, 2014)
Biere, A.: PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and Computation (JSAT) 4, 75–97 (2008)
Biere, A.: Lingeling, Plingeling, and Treengeling (2014), http://fmv.jku.at/lingeling/ (accessed: January 27, 2014)
Brummayer, R., Biere, A.: Fuzzing and delta-debugging SMT solvers. In: International Workshop on Satisfiability Modulo Theories (SMT), pp. 1–5. ACM (2009)
Brummayer, R., Lonsing, F., Biere, A.: Automated testing and debugging of SAT and QBF solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 44–57. Springer, Heidelberg (2010)
Goldberg, E.I., Novikov, Y.: Verification of proofs of unsatisfiability for CNF formulas. In: Design, Automation and Test in Europe Conference and Exhibition (DATE), pp. 10886–10891. IEEE (2003)
Heule, M.J.H., Hunt Jr., W.A., Wetzler, N.: Trimming while checking clausal proofs. In: Formal Methods in Computer-Aided Design (FMCAD), pp. 181–188. IEEE (2013)
Heule, M.J.H., Hunt Jr., W.A., Wetzler, N.: Verifying refutations with extended resolution. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 345–359. Springer, Heidelberg (2013)
Heule, M.J.H., Järvisalo, M., Biere, A.: Clause elimination procedures for CNF formulas. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 357–371. Springer, Heidelberg (2010)
Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 355–370. Springer, Heidelberg (2012)
Jussila, T., Sinz, C., Biere, A.: Extended resolution proofs for symbolic SAT solving with quantification. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 54–60. Springer, Heidelberg (2006)
Kullmann, O.: On a generalization of extended resolution. Discrete Applied Mathematics 96-97, 149–176 (1999)
Manthey, N., Heule, M.J.H., Biere, A.: Automated reencoding of boolean formulas. In: Biere, A., Nahir, A., Vos, T. (eds.) HVC 2012. LNCS, vol. 7857, pp. 102–117. Springer, Heidelberg (2013)
Marques-Silva, J.P., Lynce, I., Malik, S.: Conflict-Driven Clause Learning SAT Solvers. In: Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, ch. 4, vol. 185, pp. 131–153. IOS Press (February 2009)
Rivest, R.L.: Partial-match retrieval algorithms. SIAM J. Comput. 5(1), 19–50 (1976)
Sinz, C., Biere, A.: Extended resolution proofs for conjoining BDDs. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 600–611. Springer, Heidelberg (2006)
Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siekmann, J., Wrightson, G. (eds.) Automation of Reasoning 2, pp. 466–483. Springer (1983)
Van Gelder, A.: Verifying RUP proofs of propositional unsatisfiability. In: International Symposium on Artificial Intelligence and Mathematics (ISAIM) (2008)
Wetzler, N., Heule, M.J.H., Hunt Jr., W.A.: Mechanical verification of SAT refutations with extended resolution. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 229–244. Springer, Heidelberg (2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Wetzler, N., Heule, M.J.H., Hunt, W.A. (2014). DRAT-trim: Efficient Checking and Trimming Using Expressive Clausal Proofs. In: Sinz, C., Egly, U. (eds) Theory and Applications of Satisfiability Testing – SAT 2014. SAT 2014. Lecture Notes in Computer Science, vol 8561. Springer, Cham. https://doi.org/10.1007/978-3-319-09284-3_31
Download citation
DOI: https://doi.org/10.1007/978-3-319-09284-3_31
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-09283-6
Online ISBN: 978-3-319-09284-3
eBook Packages: Computer ScienceComputer Science (R0)