Skip to main content

Synthetic Fuels

A Contribution of Chemistry to Sustainable Energy Systems

  • Chapter
  • First Online:
Zukünftige Kraftstoffe

Part of the book series: ATZ/MTZ-Fachbuch ((ATZMTZ))

  • 17k Accesses

Abstract

As it becomes more urgent to take action in CO2 reduction following the Paris accord it is essential to draw a plan for how a sustainable energy system may look like. This is not a fixed target but rather a plastic picture with, however a few hard contours in it. These contours describe critical elements interacting in the system sustainable energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Truffer B, Schippl J, Fleischer T (2017) Decentering technology in technology assessment: prospects for socio-technical transitions in electric mobility in Germany. Technol Forecast Soc Chang 122:34–48

    Article  Google Scholar 

  2. Aresta M (2017) My journey in the CO2-chemistry wonderland. Coord Chem Rev 334:150–183

    Article  Google Scholar 

  3. Centi G, Quadrelli EA, Perathoner S (2013) Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ Sci 6(6):1711–1731

    Article  Google Scholar 

  4. Pischinger S (2016) Current and future challenges for automotive catalysis: engine technology trends and their impact. Top Catal 59(10–12):834–844

    Article  Google Scholar 

  5. Hoppe F, Heuser B, Thewes M, Kremer F, Pischinger S, Dahmen M, Hechinger M, Marquardt W (2016) Tailor-made fuels for future engine concepts. Int J Engine Res 17(1):16–27

    Article  Google Scholar 

  6. Maus W, Jacob E (2015) Future-safe combustion-engined drives – the role of sustainable fuels. International Engine Congress, Baden, pp 283–284

    Google Scholar 

  7. Hartl M, Seidenspinner P, Jacob E, Wachtmeister G (2015) Oxygenate screening on a heavy-duty diesel engine and emission characteristics of highly oxygenated oxymethylene ether fuel OME1. Fuel 153:328–335

    Article  Google Scholar 

  8. Klankermayer J, Wesselbaum S, Beydoun K, Leitner W (2016) Selective catalytic synthesis using the combination of carbon dioxide and hydrogen: catalytic chess at the interface of energy and chemistry. Angewandte Chemie Int Ed 55(26):7296–7343

    Article  Google Scholar 

  9. Aresta M, Dibenedetto A, Angelini A (2013) The changing paradigm in CO2 utilization. J CO2 Utilization 3–5:65–73

    Article  Google Scholar 

  10. Leitner W, Klankermayer J, Pischinger S, Pitsch H, Kohse-Hoinghaus K (2017) Advanced biofuels and beyond: chemistry solutions for propulsion and production. Angewandte Chemie Int Ed 56(20):5412–5452

    Article  Google Scholar 

  11. Poliakoff M, Leitner W, Streng ES (2015) The twelve principles of CO2 chemistry. Faraday Discuss 183:9–17

    Article  Google Scholar 

  12. Klankermayer J, Leitner W (2015) Love at second sight for CO2 and H-2 in organic synthesis. Science 350(6261):629–630

    Article  Google Scholar 

  13. Aresta M, Dibenedetto A, Quaranta E (2016) State of the art and perspectives in catalytic processes for CO2 conversion into chemicals and fuels: the distinctive contribution of chemical catalysis and biotechnology. J Catal 343:2–45

    Article  Google Scholar 

  14. Mac Dowell N, Fennell PS, Shah N, Maitland GC (2017) The role of CO2 capture and utilization in mitigating climate change. Nat Clim Change 7(4):243–249

    Article  Google Scholar 

  15. Cuellar-Franca RM, Azapagic A (2015) Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts. J CO2 Utilization 9:82–102

    Article  Google Scholar 

  16. Bruhn T, Naims H, Olfe-Krautlein B (2016) Separating the debate on CO2 utilisation from carbon capture and storage. Environ Sci Policy 60:38–43

    Article  Google Scholar 

  17. Aresta M, Dibenedetto A, Angelini A (2014) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem Rev 114(3):1709–1742

    Article  Google Scholar 

  18. Philibert C (2017) Renewable energy for industry. Int Energy Agency, Paris, S 65

    Google Scholar 

  19. Perez-Fortes M, Schoneberger JC, Boulamanti A, Tzimas E (2016) Methanol synthesis using captured CO2 as raw material: techno-economic and environmental assessment. Appl Energy 161:718–732

    Article  Google Scholar 

  20. Haegel NM, Margolis R, Buonassisi T, Feldman D, Froitzheim A, Garabedian R, Green M, Glunz S, Henning HM, Holder B, Kaizuka I, Kroposki B, Matsubara K, Niki S, Sakurai K, Schindler RA, Tumas W, Weber ER, Wilson G, Woodhouse M, Kurtz S (2017) Terawatt-scale photovoltaics: trajectories and challenges. Science 356(6334):141–143

    Article  Google Scholar 

  21. Palzer A, Henning HM (2014) A future German energy system with a dominating contribution from renewable energies: a holistic model based on hourly simulation. Energy Technol 2(1):13–28

    Article  Google Scholar 

  22. Palzer A, Henning HM (2014) A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies – Part II: results. Renew Sustain Energy Rev 30:1019–1034

    Article  Google Scholar 

  23. Henning HM, Palzer A (2014) A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies—part I: methodology. Renew Sustain Energy Rev 30:1003–1018

    Article  Google Scholar 

  24. Lunz B, Stöcker P, Eckstein S, Nebel A, Samadi S, Erlach B, Fischedick M, Elsner P, Sauer DU (2016) Appl Energy 171(Suppl C):580

    Google Scholar 

  25. Archer MD, Bolton JR (1990) Requirements for ideal performance of photochemical and photovoltaic solar-energy converters. J Phys Chem 94(21):8028–8036

    Article  Google Scholar 

  26. Yagi M, Syouji A, Yamada S, Komi M, Yamazaki H, Tajima S (2009) Molecular catalysts for water oxidation toward artificial photosynthesis. Photochem Photobiol Sci 8(2):139–147

    Article  Google Scholar 

  27. Gust D, Moore TA, Moore AL (2009) Solar fuels via artificial photosynthesis. Acc Chem Res 42(12):1890–1898

    Article  Google Scholar 

  28. Barber J (2009) Photosynthetic energy conversion: natural and artificial. Chem Soc Rev 38(1):185–196

    Article  Google Scholar 

  29. Suopajarvi H, Pongracz E, Fabritius T (2013) The potential of using biomass-based reducing agents in the blast furnace: a review of thermochemical conversion technologies and assessments related to sustainability. Renew Sustain Energy Rev 25:511–528

    Article  Google Scholar 

  30. Steinfeld A (2005) Solar thermochemical production of hydrogen – a review. Sol Energy 78(5):603–615

    Article  Google Scholar 

  31. Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Gratzel M, Park NG (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2:591

    Article  Google Scholar 

  32. Oregan B, Gratzel M (1991) A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TIO2 films. Nature 353(6346):737–740

    Article  Google Scholar 

  33. Bukhtiyarova M, Lunkenbein T, Kähler K, Schlögl R (2017) Methanol synthesis from industrial CO2 sources: a contribution to chemical energy conversion. Catal Lett 147(2):416–427

    Article  Google Scholar 

  34. Wang HR, Yan JB, Dong L (2016) Simulation and economic evaluation of biomass gasification with sets for heating, cooling and power production. Renew Energy 99:360–368

    Article  Google Scholar 

  35. Li M, Rao AD, Brouwer J, Samuelsen GS (2010) Design of highly efficient coal-based integrated gasification fuel cell power plants. J Power Sources 195(17):5707–5718

    Article  Google Scholar 

  36. Mahbub N, Oyedun AO, Kumar A, Oestreich D, Arnold U, Sauer J (2017) A life cycle assessment of oxymethylene ether synthesis from biomass-derived syngas as a diesel additive. J Clean Prod 165:1249–1262

    Article  Google Scholar 

  37. Mirkouei A, Haapala KR, Sessions J, Murthy GS (2017) A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains. Renew Sustain Energy Rev 67:15–35

    Article  Google Scholar 

  38. Rosillo-Calle F (2016) A review of biomass energy-shortcomings and concerns. J Chem Technol Biotechnol 91(7):1933–1945

    Article  Google Scholar 

  39. Ail SS, Dasappa S (2016) Biomass to liquid transportation fuel via Fischer Tropsch synthesis – technology review and current scenario. Renew Sustain Energy Rev 58:267–286

    Article  Google Scholar 

  40. Reiche S, Kowalew N, Schlögl R (2015) Influence of synthesis pH and oxidative strength of the catalyzing acid on the morphology and chemical structure of hydrothermal carbon. ChemPhysChem 16(3):579–587

    Article  Google Scholar 

  41. Paraknowitsch JP, Thomas A, Antonietti M (2009) Carbon colloids prepared by hydrothermal carbonization as efficient fuel for indirect carbon fuel cells. Chem Mater 21(7):1170–1172

    Article  Google Scholar 

  42. Deutz S, Bongartz D, Heuser B, Katelhon A, Langenhorst LS, Omari A, Walters M, Klankermayer J, Leitner W, Mitsos A, Pischinger S, Bardow A (2018) Cleaner production of cleaner fuels: wind-to-wheel – environmental assessment of CO2-based oxymethylene ether as a drop-in fuel. Energy Environ Sci 11(2):331–343

    Article  Google Scholar 

  43. Schmidt P, Raksha T, Jöhrens J, Lambrecht U, Gerhardt N, Jentsch M (2016) Analyse von Herausforderungen und Synergiepotenzialen beim Zusammenspiel von Verkehrs- und Stromsektor. BMVI Ed

    Google Scholar 

  44. Deutsch D, Oestreich D, Lautenschutz L, Haltenort P, Arnold U, Sauer J (2017) High purity oligomeric oxymethylene ethers as diesel fuels. Chem Ing Tec 89(4):486–489

    Article  Google Scholar 

  45. Oestreich D, Lautenschutz L, Arnold U, Sauer J (2017) Reaction kinetics and equilibrium parameters for the production of oxymethylene dimethyl ethers (OME) from methanol and formaldehyde. Chem Eng Sci 163:92–104

    Article  Google Scholar 

  46. Lautenschutz L, Oestreich D, Haltenort P, Arnold U, Dinjus E, Sauer J (2017) Efficient synthesis of oxymethylene dimethyl ethers (OME) from dimethoxymethane and trioxane over zeolites. Fuel Process Technol 165:27–33

    Article  Google Scholar 

  47. Schmitz N, Burger J, Strofer E, Hasse H (2016) From methanol to the oxygenated diesel fuel poly(oxymethylene) dimethyl ether: an assessment of the production costs. Fuel 185:67–72

    Article  Google Scholar 

  48. Icha P (2013) Climate change. Umweltbundesamt Ed

    Google Scholar 

  49. Rockstrom J, Gaffney O, Rogelj J, Meinshausen M, Nakicenovic N, Schellnhuber HJ (2017) Climate policy a roadmap for rapid decarbonization. Science 355(6331):1269–1271

    Article  Google Scholar 

  50. Xu XY, Liu Y, Zhang F, Di W, Zhang YL (2017) Clean coal technologies in China based on methanol platform. Catal Today 298:61–68

    Article  Google Scholar 

  51. Ishimoto Y, Kurosawa A, Sasakura M, Sakata K (2017) Significance of CO2-free hydrogen globally and for Japan using a long-term global energy system analysis. Int J Hydrogen Energy 42(19):13357–13367

    Article  Google Scholar 

  52. Schüth F, Palkovits R, Schlögl R, Su DS (2012) Ammonia as a possible element in an energy infrastructure: catalysts for ammonia decomposition. Energy Environ Sci 5(4):6278–6289

    Article  Google Scholar 

  53. Dana AG, Elishav O, Bardow A, Shter GE, Grader GS (2016) Nitrogen-based fuels: a power-to-fuel-to-power analysis. Angewandte Chemie Int Ed 55(31):8798–8805

    Article  Google Scholar 

  54. Koytsoumpa EI, Bergins C, Kakaras E (2018) The CO2 economy: review of CO2 capture and reuse technologies. J Supercrit Fluids 132:3–16

    Article  Google Scholar 

  55. Abanades JC, Rubin ES, Mazzotti M, Herzog HJ (2017) On the climate change mitigation potential of CO2 conversion to fuels. Energy Environ Sci 10(12):2491–2499

    Article  Google Scholar 

  56. Barro C, Parravicini M, Boulouchos K, Liati A (2018) Neat polyoxymethylene dimethyl ether in a diesel engine; part 2: exhaust emission analysis. Fuel 234:1414–1421

    Article  Google Scholar 

  57. Baranowski CJ, Bahmanpour AM, Krocher O (2017) Catalytic synthesis of polyoxymethylene dimethyl ethers (OME): a review. Appl Catal B-Environ 217:407–420

    Article  Google Scholar 

  58. Sinigaglia T, Lewiski F, Martins MES, Siluk JCM (2017) Production, storage, fuel stations of hydrogen and its utilization in automotive applications-a review. Int J Hydrogen Energy 42(39):24597–24611

    Article  Google Scholar 

  59. Valente A, Iribarren D, Dufour J (2017) Life cycle assessment of hydrogen energy systems: a review of methodological choices. Int J Life Cycle Assess 22(3):346–363

    Article  Google Scholar 

  60. Nikolaidis P, Poullikkas A (2017) A comparative overview of hydrogen production processes. Renew Sustain Energy Rev 67:597–611

    Article  Google Scholar 

  61. Spanos I, Auer AA, Neugebauer S, Deng XH, Tuysuz H, Schlogl R (2017) Standardized benchmarking of water splitting catalysts in a Combined Electrochemical Flow Cell/Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) setup. ACS Catalysis 7(6):3768–3778

    Article  Google Scholar 

  62. Bloor LG, Molina PI, Symes MD, Cronin L (2014) Low pH electrolytic water splitting using earth-abundant metastable catalysts that self-assemble in situ. J Am Chem Soc 136(8):3304–3311

    Article  Google Scholar 

  63. McKone J, Lewis N (2013) Structured materials for photoelectrochemical water splitting. In: Lewerenz HJ, Peter L (eds) Photoelectrochemical water splitting: materials, processes and architectures, pp 52–82

    Google Scholar 

  64. Mette K, Bergmann A, Tessonnier J-P, Hävecker M, Yao L, Ressler T, Schloegl R, Strasser P, Behrens M (2012) Nanostructured manganese oxide supported on carbon nanotubes for electrocatalytic water splitting. Chemcatchem 4(6):851–862

    Article  Google Scholar 

  65. Maeda K, Takata T, Hara M, Saito N, Inoue Y, Kobayashi H, Domen K (2005) GaN: ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J Am Chem Soc 127(23):8286–8287

    Article  Google Scholar 

  66. Liu HR, Xu SY, Zhou GL, Huang GC, Huang SY, Xiong K (2018) CO2 hydrogenation to methane over Co/KIT-6 catalyst: effect of reduction temperature. Chem Eng J 351:65–73

    Article  Google Scholar 

  67. Leonzio G (2018) State of art and perspectives about the production of methanol, dimethyl ether and syngas by carbon dioxide hydrogenation. J CO2 Utilization 27:326–354

    Article  Google Scholar 

  68. Hoppe F, Burke U, Thewes M, Heufer A, Kremer F, Pischinger S (2016) Tailor-made fuels from biomass: potentials of 2-butanone and 2-methylfuran in direct injection spark ignition engines. Fuel 167:106–117

    Article  Google Scholar 

  69. Kerschgens B, Cai LM, Pitsch H, Janssen A, Jakob M, Pischinger S (2015) Surrogate fuels for the simulation of diesel engine combustion of novel biofuels. Int J Engine Res 16(4):531–546

    Article  Google Scholar 

  70. Niemantsverdriet H, van Helden P, Hensen E, Lennon D, Holt K, Hutchings G, Bowker M, Catlow R, Shozi M, Jewell L, Claeys M, Hayward J, Coville N, Fischer N, Roldan A, Redekop E, Gambu T, Deeplal L, Mkhwanazi TPO, Weststrate KJ, Bahnemann D, Neurock M, Schulz H, Ma D, Kondrat S, Collier P, Gupta AK, Corma A, Akomeah P, Iglesia E, van Steen E, de Leeuw N, Wolf M, van Heerden T (2017) Catalysis for fuels: general discussion. Faraday Discuss 197:165–205

    Article  Google Scholar 

  71. Li H-J, Lausche AC, Peterson AA, Hansen HA, Studt F, Bligaard T (2015) Using microkinetic analysis to search for novel anhydrous formaldehyde production catalysts. Surf Sci 641:105–111

    Article  Google Scholar 

  72. Häggblad R, Wagner JB, Hansen S, Andersson A (2008) Oxidation of methanol to formaldehyde over a series of Fe1-xAlx-V-oxide catalysts. J Catal 258(2):345–355

    Article  Google Scholar 

  73. Nagy A, Mestl G, Rühle T, Weinberg G, Schlögl R (1998) The dynamic behaviour of electrolytic silver during the formaldehyde synthesis reaction. J Catal 179(2):548–559

    Article  Google Scholar 

  74. Sarathy SM, Osswald P, Hansen N, Kohse-Hoinghaus K (2014) Alcohol combustion chemistry. Prog Energy Combust Sci 44:40–102

    Article  Google Scholar 

  75. Omari A, Heuser B, Pischinger S (2017) Potential of oxymethylenether-diesel blends for ultra-low emission engines. Fuel 209:232–237

    Article  Google Scholar 

  76. Peter A, Fehr SM, Dybbert V, Himmel D, Lindner I, Jacob E, Ouda M, Schaadt A, White RJ, Scherer H, Krossing I (2018) Towards a sustainable synthesis of oxymethylene dimethyl ether by homogeneous catalysis and uptake of molecular formaldehyde. Angewandte Chemie Int Ed 57(30):9461–9464

    Article  Google Scholar 

  77. Haltenort P, Hackbarth K, Oestreich D, Lautenschutz L, Arnold U, Sauer J (2018) Heterogeneously catalyzed synthesis of oxymethylene dimethyl ethers (OME) from dimethyl ether and trioxane. Catal Commun 109:80–84

    Article  Google Scholar 

  78. Grunert A, Losch P, Ochoa-Hernandez C, Schmidt W, Schuth F (2018) Gas-phase synthesis of oxymethylene ethers over Si-rich zeolites. Green Chem 20(20):4719–4728

    Article  Google Scholar 

  79. Breitkreuz CF, Schmitz N, Strofer E, Burger J, Hasse H (2018) Design of a production process for poly(oxymethylene) dimethyl ethers from dimethyl ether and trioxane. Chem Ing Tec 90(10):1489–1496

    Article  Google Scholar 

  80. Schittkowski J, Ruland H, Laudenschleger D, Girod K, Kähler K, Kaluza S, Muhler M, Schlögl R (2018) Methanol synthesis from steel mill exhaust gases: challenges for the industrial Cu/ZnO/Al2O3 catalyst. Chem Ing Tec 90(10):1419–1429

    Article  Google Scholar 

  81. Zurbel A, Kraft M, Kavurucu-Schubert S, Bertau M (2018) Methanol synthesis by CO2 Hydrogenation over Cu/ZnO/Al2O3 catalysts under fluctuating conditions. Chem Ing Tec 90(5):721–724

    Article  Google Scholar 

  82. Zhao Y, Noori M, Tatari O (2017) Boosting the adoption and the reliability of renewable energy sources: mitigating the large-scale wind power intermittency through vehicle to grid technology. Energy 120:608–618

    Article  Google Scholar 

  83. Modi A, Buhler F, Andreasen JG, Haglind F (2017) A review of solar energy based heat and power generation systems. Renew Sustain Energy Rev 67:1047–1064

    Article  Google Scholar 

  84. Koytsoumpa EI, Bergins C, Buddenberg T, Wu S, Sigurbjornsson O, Tran KC, Kakaras E (2016) The challenge of energy storage in Europe: focus on power to fuel. J Energy Resour Technol Trans ASME 138(4):042002

    Article  Google Scholar 

  85. Khan N, Saleem Z, Wahid A (2008) Review of natural energy sources and global power needs. Renew Sustain Energy Rev 12(7):1959–1973

    Article  Google Scholar 

  86. Perathoner S, Gross S, Hensen EJM, Wessel H, Chraye H, Centi G (2017) Looking at the future of chemical production through the European Roadmap on science and technology of catalysis the EU effort for a long-term vision. Chemcatchem 9(6):904–909

    Article  Google Scholar 

  87. Navarrete A, Centi G, Bogaerts A, Martin A, York A, Stefanidis GD (2017) Harvesting renewable energy for carbon dioxide catalysis. Energy Technol 5(6):796–811

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Schlögl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schlögl, R. (2019). Synthetic Fuels. In: Maus, W. (eds) Zukünftige Kraftstoffe. ATZ/MTZ-Fachbuch. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58006-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-58006-6_11

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-58005-9

  • Online ISBN: 978-3-662-58006-6

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics