Abstract
As it becomes more urgent to take action in CO2 reduction following the Paris accord it is essential to draw a plan for how a sustainable energy system may look like. This is not a fixed target but rather a plastic picture with, however a few hard contours in it. These contours describe critical elements interacting in the system sustainable energy.
Similar content being viewed by others
References
Truffer B, Schippl J, Fleischer T (2017) Decentering technology in technology assessment: prospects for socio-technical transitions in electric mobility in Germany. Technol Forecast Soc Chang 122:34–48
Aresta M (2017) My journey in the CO2-chemistry wonderland. Coord Chem Rev 334:150–183
Centi G, Quadrelli EA, Perathoner S (2013) Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ Sci 6(6):1711–1731
Pischinger S (2016) Current and future challenges for automotive catalysis: engine technology trends and their impact. Top Catal 59(10–12):834–844
Hoppe F, Heuser B, Thewes M, Kremer F, Pischinger S, Dahmen M, Hechinger M, Marquardt W (2016) Tailor-made fuels for future engine concepts. Int J Engine Res 17(1):16–27
Maus W, Jacob E (2015) Future-safe combustion-engined drives – the role of sustainable fuels. International Engine Congress, Baden, pp 283–284
Hartl M, Seidenspinner P, Jacob E, Wachtmeister G (2015) Oxygenate screening on a heavy-duty diesel engine and emission characteristics of highly oxygenated oxymethylene ether fuel OME1. Fuel 153:328–335
Klankermayer J, Wesselbaum S, Beydoun K, Leitner W (2016) Selective catalytic synthesis using the combination of carbon dioxide and hydrogen: catalytic chess at the interface of energy and chemistry. Angewandte Chemie Int Ed 55(26):7296–7343
Aresta M, Dibenedetto A, Angelini A (2013) The changing paradigm in CO2 utilization. J CO2 Utilization 3–5:65–73
Leitner W, Klankermayer J, Pischinger S, Pitsch H, Kohse-Hoinghaus K (2017) Advanced biofuels and beyond: chemistry solutions for propulsion and production. Angewandte Chemie Int Ed 56(20):5412–5452
Poliakoff M, Leitner W, Streng ES (2015) The twelve principles of CO2 chemistry. Faraday Discuss 183:9–17
Klankermayer J, Leitner W (2015) Love at second sight for CO2 and H-2 in organic synthesis. Science 350(6261):629–630
Aresta M, Dibenedetto A, Quaranta E (2016) State of the art and perspectives in catalytic processes for CO2 conversion into chemicals and fuels: the distinctive contribution of chemical catalysis and biotechnology. J Catal 343:2–45
Mac Dowell N, Fennell PS, Shah N, Maitland GC (2017) The role of CO2 capture and utilization in mitigating climate change. Nat Clim Change 7(4):243–249
Cuellar-Franca RM, Azapagic A (2015) Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts. J CO2 Utilization 9:82–102
Bruhn T, Naims H, Olfe-Krautlein B (2016) Separating the debate on CO2 utilisation from carbon capture and storage. Environ Sci Policy 60:38–43
Aresta M, Dibenedetto A, Angelini A (2014) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem Rev 114(3):1709–1742
Philibert C (2017) Renewable energy for industry. Int Energy Agency, Paris, S 65
Perez-Fortes M, Schoneberger JC, Boulamanti A, Tzimas E (2016) Methanol synthesis using captured CO2 as raw material: techno-economic and environmental assessment. Appl Energy 161:718–732
Haegel NM, Margolis R, Buonassisi T, Feldman D, Froitzheim A, Garabedian R, Green M, Glunz S, Henning HM, Holder B, Kaizuka I, Kroposki B, Matsubara K, Niki S, Sakurai K, Schindler RA, Tumas W, Weber ER, Wilson G, Woodhouse M, Kurtz S (2017) Terawatt-scale photovoltaics: trajectories and challenges. Science 356(6334):141–143
Palzer A, Henning HM (2014) A future German energy system with a dominating contribution from renewable energies: a holistic model based on hourly simulation. Energy Technol 2(1):13–28
Palzer A, Henning HM (2014) A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies – Part II: results. Renew Sustain Energy Rev 30:1019–1034
Henning HM, Palzer A (2014) A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies—part I: methodology. Renew Sustain Energy Rev 30:1003–1018
Lunz B, Stöcker P, Eckstein S, Nebel A, Samadi S, Erlach B, Fischedick M, Elsner P, Sauer DU (2016) Appl Energy 171(Suppl C):580
Archer MD, Bolton JR (1990) Requirements for ideal performance of photochemical and photovoltaic solar-energy converters. J Phys Chem 94(21):8028–8036
Yagi M, Syouji A, Yamada S, Komi M, Yamazaki H, Tajima S (2009) Molecular catalysts for water oxidation toward artificial photosynthesis. Photochem Photobiol Sci 8(2):139–147
Gust D, Moore TA, Moore AL (2009) Solar fuels via artificial photosynthesis. Acc Chem Res 42(12):1890–1898
Barber J (2009) Photosynthetic energy conversion: natural and artificial. Chem Soc Rev 38(1):185–196
Suopajarvi H, Pongracz E, Fabritius T (2013) The potential of using biomass-based reducing agents in the blast furnace: a review of thermochemical conversion technologies and assessments related to sustainability. Renew Sustain Energy Rev 25:511–528
Steinfeld A (2005) Solar thermochemical production of hydrogen – a review. Sol Energy 78(5):603–615
Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Gratzel M, Park NG (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2:591
Oregan B, Gratzel M (1991) A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TIO2 films. Nature 353(6346):737–740
Bukhtiyarova M, Lunkenbein T, Kähler K, Schlögl R (2017) Methanol synthesis from industrial CO2 sources: a contribution to chemical energy conversion. Catal Lett 147(2):416–427
Wang HR, Yan JB, Dong L (2016) Simulation and economic evaluation of biomass gasification with sets for heating, cooling and power production. Renew Energy 99:360–368
Li M, Rao AD, Brouwer J, Samuelsen GS (2010) Design of highly efficient coal-based integrated gasification fuel cell power plants. J Power Sources 195(17):5707–5718
Mahbub N, Oyedun AO, Kumar A, Oestreich D, Arnold U, Sauer J (2017) A life cycle assessment of oxymethylene ether synthesis from biomass-derived syngas as a diesel additive. J Clean Prod 165:1249–1262
Mirkouei A, Haapala KR, Sessions J, Murthy GS (2017) A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains. Renew Sustain Energy Rev 67:15–35
Rosillo-Calle F (2016) A review of biomass energy-shortcomings and concerns. J Chem Technol Biotechnol 91(7):1933–1945
Ail SS, Dasappa S (2016) Biomass to liquid transportation fuel via Fischer Tropsch synthesis – technology review and current scenario. Renew Sustain Energy Rev 58:267–286
Reiche S, Kowalew N, Schlögl R (2015) Influence of synthesis pH and oxidative strength of the catalyzing acid on the morphology and chemical structure of hydrothermal carbon. ChemPhysChem 16(3):579–587
Paraknowitsch JP, Thomas A, Antonietti M (2009) Carbon colloids prepared by hydrothermal carbonization as efficient fuel for indirect carbon fuel cells. Chem Mater 21(7):1170–1172
Deutz S, Bongartz D, Heuser B, Katelhon A, Langenhorst LS, Omari A, Walters M, Klankermayer J, Leitner W, Mitsos A, Pischinger S, Bardow A (2018) Cleaner production of cleaner fuels: wind-to-wheel – environmental assessment of CO2-based oxymethylene ether as a drop-in fuel. Energy Environ Sci 11(2):331–343
Schmidt P, Raksha T, Jöhrens J, Lambrecht U, Gerhardt N, Jentsch M (2016) Analyse von Herausforderungen und Synergiepotenzialen beim Zusammenspiel von Verkehrs- und Stromsektor. BMVI Ed
Deutsch D, Oestreich D, Lautenschutz L, Haltenort P, Arnold U, Sauer J (2017) High purity oligomeric oxymethylene ethers as diesel fuels. Chem Ing Tec 89(4):486–489
Oestreich D, Lautenschutz L, Arnold U, Sauer J (2017) Reaction kinetics and equilibrium parameters for the production of oxymethylene dimethyl ethers (OME) from methanol and formaldehyde. Chem Eng Sci 163:92–104
Lautenschutz L, Oestreich D, Haltenort P, Arnold U, Dinjus E, Sauer J (2017) Efficient synthesis of oxymethylene dimethyl ethers (OME) from dimethoxymethane and trioxane over zeolites. Fuel Process Technol 165:27–33
Schmitz N, Burger J, Strofer E, Hasse H (2016) From methanol to the oxygenated diesel fuel poly(oxymethylene) dimethyl ether: an assessment of the production costs. Fuel 185:67–72
Icha P (2013) Climate change. Umweltbundesamt Ed
Rockstrom J, Gaffney O, Rogelj J, Meinshausen M, Nakicenovic N, Schellnhuber HJ (2017) Climate policy a roadmap for rapid decarbonization. Science 355(6331):1269–1271
Xu XY, Liu Y, Zhang F, Di W, Zhang YL (2017) Clean coal technologies in China based on methanol platform. Catal Today 298:61–68
Ishimoto Y, Kurosawa A, Sasakura M, Sakata K (2017) Significance of CO2-free hydrogen globally and for Japan using a long-term global energy system analysis. Int J Hydrogen Energy 42(19):13357–13367
Schüth F, Palkovits R, Schlögl R, Su DS (2012) Ammonia as a possible element in an energy infrastructure: catalysts for ammonia decomposition. Energy Environ Sci 5(4):6278–6289
Dana AG, Elishav O, Bardow A, Shter GE, Grader GS (2016) Nitrogen-based fuels: a power-to-fuel-to-power analysis. Angewandte Chemie Int Ed 55(31):8798–8805
Koytsoumpa EI, Bergins C, Kakaras E (2018) The CO2 economy: review of CO2 capture and reuse technologies. J Supercrit Fluids 132:3–16
Abanades JC, Rubin ES, Mazzotti M, Herzog HJ (2017) On the climate change mitigation potential of CO2 conversion to fuels. Energy Environ Sci 10(12):2491–2499
Barro C, Parravicini M, Boulouchos K, Liati A (2018) Neat polyoxymethylene dimethyl ether in a diesel engine; part 2: exhaust emission analysis. Fuel 234:1414–1421
Baranowski CJ, Bahmanpour AM, Krocher O (2017) Catalytic synthesis of polyoxymethylene dimethyl ethers (OME): a review. Appl Catal B-Environ 217:407–420
Sinigaglia T, Lewiski F, Martins MES, Siluk JCM (2017) Production, storage, fuel stations of hydrogen and its utilization in automotive applications-a review. Int J Hydrogen Energy 42(39):24597–24611
Valente A, Iribarren D, Dufour J (2017) Life cycle assessment of hydrogen energy systems: a review of methodological choices. Int J Life Cycle Assess 22(3):346–363
Nikolaidis P, Poullikkas A (2017) A comparative overview of hydrogen production processes. Renew Sustain Energy Rev 67:597–611
Spanos I, Auer AA, Neugebauer S, Deng XH, Tuysuz H, Schlogl R (2017) Standardized benchmarking of water splitting catalysts in a Combined Electrochemical Flow Cell/Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) setup. ACS Catalysis 7(6):3768–3778
Bloor LG, Molina PI, Symes MD, Cronin L (2014) Low pH electrolytic water splitting using earth-abundant metastable catalysts that self-assemble in situ. J Am Chem Soc 136(8):3304–3311
McKone J, Lewis N (2013) Structured materials for photoelectrochemical water splitting. In: Lewerenz HJ, Peter L (eds) Photoelectrochemical water splitting: materials, processes and architectures, pp 52–82
Mette K, Bergmann A, Tessonnier J-P, Hävecker M, Yao L, Ressler T, Schloegl R, Strasser P, Behrens M (2012) Nanostructured manganese oxide supported on carbon nanotubes for electrocatalytic water splitting. Chemcatchem 4(6):851–862
Maeda K, Takata T, Hara M, Saito N, Inoue Y, Kobayashi H, Domen K (2005) GaN: ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J Am Chem Soc 127(23):8286–8287
Liu HR, Xu SY, Zhou GL, Huang GC, Huang SY, Xiong K (2018) CO2 hydrogenation to methane over Co/KIT-6 catalyst: effect of reduction temperature. Chem Eng J 351:65–73
Leonzio G (2018) State of art and perspectives about the production of methanol, dimethyl ether and syngas by carbon dioxide hydrogenation. J CO2 Utilization 27:326–354
Hoppe F, Burke U, Thewes M, Heufer A, Kremer F, Pischinger S (2016) Tailor-made fuels from biomass: potentials of 2-butanone and 2-methylfuran in direct injection spark ignition engines. Fuel 167:106–117
Kerschgens B, Cai LM, Pitsch H, Janssen A, Jakob M, Pischinger S (2015) Surrogate fuels for the simulation of diesel engine combustion of novel biofuels. Int J Engine Res 16(4):531–546
Niemantsverdriet H, van Helden P, Hensen E, Lennon D, Holt K, Hutchings G, Bowker M, Catlow R, Shozi M, Jewell L, Claeys M, Hayward J, Coville N, Fischer N, Roldan A, Redekop E, Gambu T, Deeplal L, Mkhwanazi TPO, Weststrate KJ, Bahnemann D, Neurock M, Schulz H, Ma D, Kondrat S, Collier P, Gupta AK, Corma A, Akomeah P, Iglesia E, van Steen E, de Leeuw N, Wolf M, van Heerden T (2017) Catalysis for fuels: general discussion. Faraday Discuss 197:165–205
Li H-J, Lausche AC, Peterson AA, Hansen HA, Studt F, Bligaard T (2015) Using microkinetic analysis to search for novel anhydrous formaldehyde production catalysts. Surf Sci 641:105–111
Häggblad R, Wagner JB, Hansen S, Andersson A (2008) Oxidation of methanol to formaldehyde over a series of Fe1-xAlx-V-oxide catalysts. J Catal 258(2):345–355
Nagy A, Mestl G, Rühle T, Weinberg G, Schlögl R (1998) The dynamic behaviour of electrolytic silver during the formaldehyde synthesis reaction. J Catal 179(2):548–559
Sarathy SM, Osswald P, Hansen N, Kohse-Hoinghaus K (2014) Alcohol combustion chemistry. Prog Energy Combust Sci 44:40–102
Omari A, Heuser B, Pischinger S (2017) Potential of oxymethylenether-diesel blends for ultra-low emission engines. Fuel 209:232–237
Peter A, Fehr SM, Dybbert V, Himmel D, Lindner I, Jacob E, Ouda M, Schaadt A, White RJ, Scherer H, Krossing I (2018) Towards a sustainable synthesis of oxymethylene dimethyl ether by homogeneous catalysis and uptake of molecular formaldehyde. Angewandte Chemie Int Ed 57(30):9461–9464
Haltenort P, Hackbarth K, Oestreich D, Lautenschutz L, Arnold U, Sauer J (2018) Heterogeneously catalyzed synthesis of oxymethylene dimethyl ethers (OME) from dimethyl ether and trioxane. Catal Commun 109:80–84
Grunert A, Losch P, Ochoa-Hernandez C, Schmidt W, Schuth F (2018) Gas-phase synthesis of oxymethylene ethers over Si-rich zeolites. Green Chem 20(20):4719–4728
Breitkreuz CF, Schmitz N, Strofer E, Burger J, Hasse H (2018) Design of a production process for poly(oxymethylene) dimethyl ethers from dimethyl ether and trioxane. Chem Ing Tec 90(10):1489–1496
Schittkowski J, Ruland H, Laudenschleger D, Girod K, Kähler K, Kaluza S, Muhler M, Schlögl R (2018) Methanol synthesis from steel mill exhaust gases: challenges for the industrial Cu/ZnO/Al2O3 catalyst. Chem Ing Tec 90(10):1419–1429
Zurbel A, Kraft M, Kavurucu-Schubert S, Bertau M (2018) Methanol synthesis by CO2 Hydrogenation over Cu/ZnO/Al2O3 catalysts under fluctuating conditions. Chem Ing Tec 90(5):721–724
Zhao Y, Noori M, Tatari O (2017) Boosting the adoption and the reliability of renewable energy sources: mitigating the large-scale wind power intermittency through vehicle to grid technology. Energy 120:608–618
Modi A, Buhler F, Andreasen JG, Haglind F (2017) A review of solar energy based heat and power generation systems. Renew Sustain Energy Rev 67:1047–1064
Koytsoumpa EI, Bergins C, Buddenberg T, Wu S, Sigurbjornsson O, Tran KC, Kakaras E (2016) The challenge of energy storage in Europe: focus on power to fuel. J Energy Resour Technol Trans ASME 138(4):042002
Khan N, Saleem Z, Wahid A (2008) Review of natural energy sources and global power needs. Renew Sustain Energy Rev 12(7):1959–1973
Perathoner S, Gross S, Hensen EJM, Wessel H, Chraye H, Centi G (2017) Looking at the future of chemical production through the European Roadmap on science and technology of catalysis the EU effort for a long-term vision. Chemcatchem 9(6):904–909
Navarrete A, Centi G, Bogaerts A, Martin A, York A, Stefanidis GD (2017) Harvesting renewable energy for carbon dioxide catalysis. Energy Technol 5(6):796–811
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature
About this chapter
Cite this chapter
Schlögl, R. (2019). Synthetic Fuels. In: Maus, W. (eds) Zukünftige Kraftstoffe. ATZ/MTZ-Fachbuch. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58006-6_11
Download citation
DOI: https://doi.org/10.1007/978-3-662-58006-6_11
Published:
Publisher Name: Springer Vieweg, Berlin, Heidelberg
Print ISBN: 978-3-662-58005-9
Online ISBN: 978-3-662-58006-6
eBook Packages: Computer Science and Engineering (German Language)