Skip to main content
Log in

Synthesis of Cyclic Carbonates from CO2 and Epoxide Catalyzed by Co, Ni and Cu Complexes in Ionic Liquids

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of first row metal complexes (Co, Ni and Cu) containing commercial nitrogen ligands were synthetized and used as catalyst in the cycloaddition of CO2 to epoxides. The reaction was carried out in ionic liquids based on 1-n-butyl-3-methylimidazolium as solvents. Best catalytic results were achieved with Co catalysts in 1-n-butyl-3-methylimidazolium tetrafluoroborate (BMIm.BF4). Under optimized reaction conditions cyclic carbonates were selectively obtained with good to excellent yields, presenting a reliable alternative to synthetize the product using low cost and abundant catalytic system containing a common ligand as ethylenediamine. Finally, macrocycle effects where studied in each case comparing the conversion rates obtained by using ethylenediamine and 1,4,8,11-tetraazacyclotetradecane.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Bulgaria)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Weaver AJ, Hillaire-Marcel C (2004) Science 304:400

    Article  CAS  PubMed  Google Scholar 

  2. Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J (2014) Nat Clim Change 4:17–22

    Article  Google Scholar 

  3. Lau L-S, Choong C-K, Eng Y-K (2014) Renew Energy 68:276–281

    Article  CAS  Google Scholar 

  4. Omae I (2012) Coord Chem Rev 256:1384–1405

    Article  CAS  Google Scholar 

  5. Leung DYC, Caramanna G, Maroto-Valer MM (2014) Renew Sustain Energy Rev 39:426–443

    Article  CAS  Google Scholar 

  6. Heinz C, Lutz JP, Simmons EM, Miller MM, Ewing WR, Doyle AG (2018) J Am Chem Soc 140:2292–2300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kar S, Kothandaraman J, Goeppert A, Prakash GKS (2018) J CO2 Util 23:212–218

    Article  CAS  Google Scholar 

  8. Natsui K, Iwakawa H, Ikemiya N, Nakata K, Einaga Y (2018) Angew Chemie Int Ed 57:2639–2643

    Article  CAS  Google Scholar 

  9. Chan FL, Altinkaya G, Fung N, Tanksale A (2018) Catal Today 309:242–247

    Article  CAS  Google Scholar 

  10. Steinlechner C, Junge H (2018) Angew Chemie Int Ed 57:44–45

    Article  CAS  Google Scholar 

  11. Mikkelsen M, Jørgensen M, Krebs FC (2010) Energy Environ Sci 3:43–81

    Article  CAS  Google Scholar 

  12. Klankermayer J, Wesselbaum S, Beydoun K, Leitner W (2016) Angew Chemie Int Ed 55:7296–7343

    Article  CAS  Google Scholar 

  13. Martín C, Fiorani G, Kleij AW (2015) ACS Catal 5:1353–1370

    Article  CAS  Google Scholar 

  14. Artz J, Müller TE, Thenert K, Kleinekorte J, Meys R, Sternberg A, Bardow A, Leitner W (2018) Chem Rev 118:434–504

    Article  CAS  PubMed  Google Scholar 

  15. Hashiguchi S, Fujii A, Takehara J, Ikariya T, Noyori R (1995) J Am Chem Soc 117:7562–7563

    Article  CAS  Google Scholar 

  16. Milani JLS, Oliveira IS, Santos PA, Valdo AKSM Dos, Martins FT, Cangussu D, Chagas RP, Das (2018) Chin J Catal 39:245–249

    Article  CAS  Google Scholar 

  17. Kember MR, Buchard A, Williams CK (2011) Chem Commun 47:141–163

    Article  CAS  Google Scholar 

  18. Yin SF, Shimada S (2009) Chem Commun 1136–1138

  19. Sakakura T, Choi J-C, Yasuda H (2007) Chem Rev 107:2365–2387

    Article  CAS  PubMed  Google Scholar 

  20. He Q, O’Brien JW, Kitselman KA, Tompkins LE, Curtis GCT, Kerton FM (2014) Catal Sci Technol 4:1513–1528

    Article  CAS  Google Scholar 

  21. Cokoja M, Wilhelm ME, Anthofer MH, Herrmann WA, Kühn FE (2015) ChemSusChem 8:2436–2454

    Article  CAS  PubMed  Google Scholar 

  22. Arakawa H, Aresta M, Armor JN, Barteau MA, Beckman EJ, Bell AT, Bercaw JE, Creutz C, Dinjus E, Dixon DA, Domen K, DuBois DL, Eckert J, Fujita E, Gibson DH, Goddard WA, Goodman DW, Keller J, Kubas GJ, Kung HH, Lyons JE, Manzer LE, Marks TJ, Morokuma K, Nicholas KM, Periana R, Que L, Rostrup-Nielson J, Sachtler WMH, Schmidt LD, Sen A, Somorjai GA, Stair PC, Stults BR, Tumas W (2001) Chem Rev 101:953–996

    Article  CAS  PubMed  Google Scholar 

  23. Liang S, Liu H, Jiang T, Song J, Yang G, Han B (2011) Chem Commun 47:2131–2133

    Article  CAS  Google Scholar 

  24. Omae I (2006) Catal Today 115:33–52

    Article  CAS  Google Scholar 

  25. Aresta M, Dibenedetto A, Tommasi I (2001) Energy Fuels 15:269–273

    Article  CAS  Google Scholar 

  26. Spinner NS, Vega JA, Mustain WE (2012) Catal Sci Technol 2:19–28

    Article  CAS  Google Scholar 

  27. Sakakura T, Kohno K (2009) Chem Commun 1312

  28. North M, Pasquale R, Young C (2010) Green Chem 12:1514–1539

    Article  CAS  Google Scholar 

  29. Sun J, Fujita S, Arai M (2005) J Organomet Chem 690:3490–3497

    Article  CAS  Google Scholar 

  30. Fukuoka S, Kawamura M, Komiya K, Tojo M, Hachiya H, Hasegawa K, Aminaka M, Okamoto H, Fukawa I, Konno S (2003) Green Chem 5:497–507

    Article  CAS  Google Scholar 

  31. Ochiai B, Koda K, Endo T (2012) J Polym Sci Part A Polym Chem 50:47–51

    Article  CAS  Google Scholar 

  32. Lenden P, Ylioja PM, González-Rodríguez C, Entwistle DA, Willis MC (2011) Green Chem 13:1980

    Article  CAS  Google Scholar 

  33. Ogasawara T, Débart A, Holzapfel M, Novák P, Bruce PG (2006) J Am Chem Soc 128:1390–1393

    Article  CAS  PubMed  Google Scholar 

  34. Schäffner B, Schäffner F, Verevkin SP, Börner A (2010) Chem Rev 110:4554–4581

    Article  CAS  PubMed  Google Scholar 

  35. Yoshida M, Ihara M (2004) Chem A Eur J 10:2887–2893

    Article  CAS  Google Scholar 

  36. Coates GW, Moore DR (2004) Angew Chemie Int Ed 43:6618–6639

    Article  CAS  Google Scholar 

  37. Darensbourg DJ (2007) Chem Rev 107:2388–2410

    Article  CAS  PubMed  Google Scholar 

  38. Yue C, Su D, Zhang X, Wu W, Xiao L (2014) Catal Lett 144:1313–1321

    Article  CAS  Google Scholar 

  39. Luo R, Zhou X, Fang Y, Ji H (2015) Carbon N Y 82:1–11

    Article  CAS  Google Scholar 

  40. Gruttadauria M, Pescarmona PP, Agrigento P, Al-Amsyar S, Sorée B, Taherimehr M, Aprile C (2014) Catal Sci Technol 4:1598–1607

    Article  Google Scholar 

  41. Anthofer MH, Wilhelm ME, Cokoja M, Markovits IIE, Pöthig A, Mink J, Herrmann WA, Kühn FE (2014) Catal Sci Technol 4:1749

    Article  CAS  Google Scholar 

  42. Huang J-W, Shi M (2003) J Org Chem 68:6705–6709

    Article  CAS  PubMed  Google Scholar 

  43. Tsutsumi Y, Yamakawa K, Yoshida M, Ema T, Sakai T (2010) Org Lett 12:5728–5731

    Article  CAS  PubMed  Google Scholar 

  44. Yang Z-Z, He L-N, Miao C-X, Chanfreau S (2010) Adv Synth Catal 352:2233–2240

    Article  CAS  Google Scholar 

  45. Kumar S, Jain SL, Sain B (2011) Tetrahedron Lett 52:6957–6959

    Article  CAS  Google Scholar 

  46. Han L, Choi H-J, Choi S-J, Liu B, Park D-W (2011) Green Chem 13:1023–1028

    Article  CAS  Google Scholar 

  47. Dai W-L, Yin S-F, Guo R, Luo S-L, Du X, Au C-T (2009) Catal Lett 136:35–44

    Article  CAS  Google Scholar 

  48. Yasuda H, He L-N, Sakakura T (2002) J Catal 209:547–550

    Article  CAS  Google Scholar 

  49. Tu M, Davis RJ (2001) J Catal 199:85–91

    Article  CAS  Google Scholar 

  50. Kim D-W, Roshan R, Tharun J, Cherian A, Park D-W (2013) Korean J Chem Eng 30:1973–1984

    Article  CAS  Google Scholar 

  51. Srivastava R, Srinivas D, Ratnasamy P (2005) Appl Catal A Gen 289:128–134

    Article  CAS  Google Scholar 

  52. Takahashi T, Watahiki T, Kitazume S, Yasuda H, Sakakura T (2006) Chem Commun 1664–1666

  53. Xiao L-F, Li F-W, Peng J-J, Xia C-G (2006) J Mol Catal A Chem 253:265–269

    Article  CAS  Google Scholar 

  54. Paddock RL, Hiyama Y, McKay JM, Nguyen ST (2004) Tetrahedron Lett 45:2023–2026

    Article  CAS  Google Scholar 

  55. Wang M, She Y, Zhou X, Ji H (2011) Chin J Chem Eng 19:446–451

    Article  CAS  Google Scholar 

  56. Vignesh Babu H, Muralidharan K (2013) Dalt Trans 42:1238–1248

    Article  CAS  Google Scholar 

  57. Deng Q, He G, Pan Y, Ruan X, Zheng W, Yan X (2016) RSC Adv 6:2217–2224

    Article  CAS  Google Scholar 

  58. Wang T, Wang W, Lyu Y, Chen X, Li C, Zhang Y, Song X, Ding Y (2017) RSC Adv 7:2836–2841

    Article  CAS  Google Scholar 

  59. Fernández M, Longaray F, Aquino A, Borges J, Dalla F, Menezes S, Ligabue R, Einloft S (2014) J Mol Catal A Chem 392:83–88

    Article  CAS  Google Scholar 

  60. Jadhav AH, Thorat GM, Lee K, Lim AC, Kang H, Seo JG (2016) Catal Today 265:56–67

    Article  CAS  Google Scholar 

  61. Besse V, Illy N, David G, Caillol S, Boutevin B (2016) ChemSusChem 9:2167–2173

    Article  CAS  PubMed  Google Scholar 

  62. Zhong W, Bobbink FD, Fei Z, Dyson PJ (2017) ChemSusChem 10:2728–2735

    Article  CAS  PubMed  Google Scholar 

  63. Sadeghzadeh SM (2015) Green Chem 17:3059–3066

    Article  CAS  Google Scholar 

  64. Sun J, Ren J, Zhang S, Cheng W (2009) Tetrahedron Lett 50:423–426

    Article  CAS  Google Scholar 

  65. Caló V, Nacci A, Monopoli A, Fanizzi A (2002) Org Lett 4:2561–2563

    Article  CAS  PubMed  Google Scholar 

  66. Shiels RA, Jones CW (2007) J Mol Catal A Chem 261:160–166

    Article  CAS  Google Scholar 

  67. Yu KMK, Curcic I, Gabriel J, Morganstewart H, Tsang SC (2010) J Phys Chem A 114:3863–3872

    Article  CAS  PubMed  Google Scholar 

  68. Decortes A, Castilla AM, Kleij AW (2010) Angew Chemie Int Ed 49:9822–9837

    Article  CAS  Google Scholar 

  69. Bai D, Duan S, Hai L, Jing H (2012) ChemCatChem 4:1752–1758

    Article  CAS  Google Scholar 

  70. Martin C, Kleij AW (2014) Beilstein J Org Chem 10:1817–1825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pescarmona PP, Taherimehr M (2012) Catal Sci Technol 2:2169–2187

    Article  CAS  Google Scholar 

  72. Meléndez J, North M, Pasquale R (2007) Eur J Inorg Chem 2007:3323–3326

    Article  CAS  Google Scholar 

  73. Kruper WJ, Dellar DD (1995) J Org Chem 60:725–727

    Article  CAS  Google Scholar 

  74. Luo R, Zhou X, Zhang W, Liang Z, Jiang J, Ji H (2014) Green Chem 16:4179–4189

    Article  CAS  Google Scholar 

  75. Song Q-W, Zhou Z-H, He L-N (2017) Green Chem 19:3707–3728

    Article  CAS  Google Scholar 

  76. Whiteoak CJ, Kielland N, Laserna V, Escudero-Adan EC, Martin E, Kleij AW (2013) J Am Chem Soc 135:1228–1231

    Article  CAS  PubMed  Google Scholar 

  77. Clegg W, Harrington RW, North M, Pasquale R (2010) Chem A Eur J 16:6828–6843

    Article  CAS  Google Scholar 

  78. Luinstra GA, Haas GR, Molnar F, Bernhart V, Eberhardt R, Rieger B (2005) Chem A Eur J 11:6298–6314

    Article  CAS  Google Scholar 

  79. Yang Y, Hayashi Y, Fujii Y, Nagano T, Kita Y, Ohshima T, Okuda J, Mashima K (2012) Catal Sci Technol 2:509–513

    Article  CAS  Google Scholar 

  80. Anselmo D, Bocokić V, Decortes A, Escudero-Adán EC, Benet-Buchholz J, Reek JNHH, Kleij AW (2012) Polyhedron 32:49–53

    Article  CAS  Google Scholar 

  81. Taherimehr M, Al-Amsyar SM, Whiteoak CJ, Kleij AW, Pescarmona PP (2013) Green Chem 15:3083–3090

    Article  CAS  Google Scholar 

  82. Maeda C, Miyazaki Y, Ema T (2014) Catal Sci Technol 4:1482–1497

    Article  CAS  Google Scholar 

  83. Whiteoak CJ, Martin E, Belmonte MM, Benet-Buchholz J, Kleij AW (2012) Adv Synth Catal 354:469–476

    Article  CAS  Google Scholar 

  84. Fuchs MA, Zevaco TA, Ember E, Walter O, Held I, Dinjus E, Doring M (2013) Dalt Trans 42:5322–5329

    Article  CAS  Google Scholar 

  85. Laserna V, Fiorani G, Whiteoak CJ, Martin E, Escudero-Adan E, Kleij AW (2014) Angew Chemie Int Ed 53:10416–10419

    Article  CAS  Google Scholar 

  86. Buchard A, Kember MR, Sandeman KG, Williams CK (2011) Chem Commun 47:212–214

    Article  CAS  Google Scholar 

  87. Dengler JE, Lehenmeier MW, Klaus S, Anderson CE, Herdtweck E, Rieger B (2011) Eur J Inorg Chem 2011:336–343

    Article  CAS  Google Scholar 

  88. Chen F, Liu N, Dai B (2017) ACS Sustain Chem Eng 5:9065–9075

    Article  CAS  Google Scholar 

  89. Martinez-Ferrate O, Lopez-Valbuena JM, Belmonte MM, White AJ, Benet-Buchholz J, Britovsek GJ, Claver C, van Leeuwen PW (2016) Dalt Trans 45:3564–3576

    Article  CAS  Google Scholar 

  90. Hallett JP, Welton T (2011) Chem Rev 111:3508–3576

    Article  CAS  Google Scholar 

  91. Girard A-L, Simon N, Zanatta M, Marmitt S, Gonçalves P, Dupont J (2014) Green Chem 16:2815–2825

    Article  CAS  Google Scholar 

  92. Frihed TG, Fürstner A (2016) Bull Chem Soc Jpn 89:135–160

    Article  CAS  Google Scholar 

  93. Miao CX, Wang JQ, Wu Y, Du Y, He LN (2008) ChemSusChem 1:236–241

    Article  CAS  PubMed  Google Scholar 

  94. Peng J, Yang HJ, Song N, Guo CY (2015) J CO2 Util 9:16–22

    Article  CAS  Google Scholar 

  95. Peng J, Yang H-J, Wei Z, Guo C-Y (2015) RSC Adv 5:53063–53072

    Article  CAS  Google Scholar 

  96. Peng J, Yang HJ, Geng Y, Wei Z, Wang L, Guo CY (2017) J CO2 Util 17:243–255

    Article  CAS  Google Scholar 

  97. Peng J, Yang HJ, Wang S, Ban B, Wei Z, Lei B, Guo CY (2018) J CO2 Util 24:1–9

    Article  CAS  Google Scholar 

  98. Peng J, Deng Y (2001) New J Chem 25:639–641

    Article  CAS  Google Scholar 

  99. Sun J, Zhang S, Cheng W, Ren J (2008) Tetrahedron Lett 49:3588–3591

    Article  CAS  Google Scholar 

  100. Lee E-H, Ahn J-Y, Dharman MM, Park D-W, Park S-W, Kim I (2008) Catal Today 131:130–134

    Article  CAS  Google Scholar 

  101. Martínez-Ferraté O, Chacón G, Bernardi F, Grehl T, Brüner P, Dupont J (2018) Catal Sci Technol 8:3081–3089

    Article  Google Scholar 

  102. Welton T (1999) Chem Rev 99:2071–2083

    Article  CAS  PubMed  Google Scholar 

  103. Sheldon RA (2005) Green Chem 7:267

    Article  CAS  Google Scholar 

  104. Gallardo-Fuentes S, Contreras R, Isaacs M, Honores J, Quezada D, Landaeta E, Ormazábal-Toledo R (2016) J CO2 Util 16:114–120

    Article  CAS  Google Scholar 

  105. Vivier V, Aguey F, Fournier J, Lambert J-F, Bedioui F, Che M (2006) J Phys Chem B 110:900–906

    Article  CAS  PubMed  Google Scholar 

  106. Chauhan M, Arjmand F (2005) Transit Met Chem 481–487

  107. Jacewicz D, Pranczk J, Wyrzykowski D, Zamojc K, Chmurzynski L (2014) React Kinet Mech Catal 113:321–331

    Article  CAS  Google Scholar 

  108. Tabassum S, Afzal M, Arjmand F (2012) J Photochem Photobiol B Biol 115:63–72

    Article  CAS  Google Scholar 

  109. Bosnich B, Tobe ML, Webb GA (1965) Inorg Chem 4:1109–1112

    Article  CAS  Google Scholar 

  110. BOSNICH B, POON CK, TOBE ML (1965) Inorg Chem 4:1102–1108

    Article  CAS  Google Scholar 

  111. Shim H-L, Udayakumar S, Yu J-I, Kim I, Park D-W (2009) Catal Today 148:350–354

    Article  CAS  Google Scholar 

  112. Sun J, Wang J, Cheng W, Zhang J, Li X, Zhang S, She Y (2012) Green Chem 14:654–660

    Article  CAS  Google Scholar 

  113. Wang J-Q, Dong K, Cheng W-G, Sun J, Zhang S-J (2012) Catal Sci Technol 2:1480–1484

    Article  CAS  Google Scholar 

  114. Castro-Gomez F, Salassa G, Kleij AW, Bo C (2013) Chem A Eur J 19:6289–6298

    Article  CAS  Google Scholar 

  115. Bai D, Wang X, Song Y, Li B, Zhang L, Yan P, Jing H (2010) Chin J Catal 31:176–180

    Article  CAS  Google Scholar 

  116. Lang XD, Yu YC, He LN (2016) J Mol Catal A Chem 420:208–215

    Article  CAS  Google Scholar 

  117. Consorti CS, Aydos GLP, Ebeling G, Dupont J (2008) Org Lett 10:237–240

    Article  CAS  PubMed  Google Scholar 

  118. Dupont J, Chacon G (2018) ChemCatChem https://doi.org/10.1002/cctc.201801363

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Project RC 130006 CILIS, granted by Fondo de Innovación para la Competitividad, del Ministerio de Economía, Fomento y Turismo, Chile; FONDECYT 1181226, FONDECYT postdoctorado 3180061 and 3170333 and CAPES, Brazil. Authors are very thankful to Professor Jairton Dupont for all support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gustavo Chacón, Oriol Martínez-Ferraté or Mauricio Isaacs.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Honores, J., Quezada, D., Chacón, G. et al. Synthesis of Cyclic Carbonates from CO2 and Epoxide Catalyzed by Co, Ni and Cu Complexes in Ionic Liquids. Catal Lett 149, 1825–1832 (2019). https://doi.org/10.1007/s10562-019-02728-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02728-4

Navigation