• Cen S and Alur R. From Transparency to Accountability and Back: A Discussion of Access and Evidence in AI Auditing. Proceedings of the 4th ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. (1-14).

    https://doi.org/10.1145/3689904.3694711

  • Caton S and Haas C. (2024). Fairness in Machine Learning: A Survey. ACM Computing Surveys. 56:7. (1-38). Online publication date: 31-Jul-2024.

    https://doi.org/10.1145/3616865

  • Hort M, Chen Z, Zhang J, Harman M and Sarro F. (2023). Bias Mitigation for Machine Learning Classifiers: A Comprehensive Survey. ACM Journal on Responsible Computing. 1:2. (1-52). Online publication date: 30-Jun-2024.

    https://doi.org/10.1145/3631326

  • Canalli Y, Braida F, Alvim L and Zimbrão G. (2024). Fair Transition Loss. Knowledge-Based Systems. 294:C. Online publication date: 21-Jun-2024.

    https://doi.org/10.1016/j.knosys.2024.111711

  • Yuste J, Pardo E and Duarte A. Optimization of Fairness and Accuracy on Logistic Regression Models. Metaheuristics. (383-389).

    https://doi.org/10.1007/978-3-031-62912-9_37

  • Binkyte R, Gorla D and Palamidessi C. BaBE: Enhancing Fairness via Estimation of Explaining Variables. Proceedings of the 2024 ACM Conference on Fairness, Accountability, and Transparency. (1917-1925).

    https://doi.org/10.1145/3630106.3659016

  • Chan E, Liu Z, Qiu R, Zhang Y, Maciejewski R and Tong H. Group Fairness via Group Consensus. Proceedings of the 2024 ACM Conference on Fairness, Accountability, and Transparency. (1788-1808).

    https://doi.org/10.1145/3630106.3659006

  • Yeh M, Metevier B, Hoag A and Thomas P. Analyzing the Relationship Between Difference and Ratio-Based Fairness Metrics. Proceedings of the 2024 ACM Conference on Fairness, Accountability, and Transparency. (518-528).

    https://doi.org/10.1145/3630106.3658922

  • Chen Z, Zhang J, Sarro F and Harman M. Fairness Improvement with Multiple Protected Attributes: How Far Are We?. Proceedings of the IEEE/ACM 46th International Conference on Software Engineering. (1-13).

    https://doi.org/10.1145/3597503.3639083

  • Yang M, Arai H, Yamashita N and Baba Y. Fair Machine Guidance to Enhance Fair Decision Making in Biased People. Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems. (1-18).

    https://doi.org/10.1145/3613904.3642627

  • Pessach D, Tassa T and Shmueli E. (2024). Fairness-Driven Private Collaborative Machine Learning. ACM Transactions on Intelligent Systems and Technology. 15:2. (1-30). Online publication date: 30-Apr-2024.

    https://doi.org/10.1145/3639368

  • González-Zelaya V, Salas J, Megías D and Missier P. (2023). Fair and Private Data Preprocessing through Microaggregation. ACM Transactions on Knowledge Discovery from Data. 18:3. (1-24). Online publication date: 30-Apr-2024.

    https://doi.org/10.1145/3617377

  • Sarkar P and Liem C. (2024). "It's the most fair thing to do but it doesn't make any sense": Perceptions of Mathematical Fairness Notions by Hiring Professionals. Proceedings of the ACM on Human-Computer Interaction. 8:CSCW1. (1-35). Online publication date: 17-Apr-2024.

    https://doi.org/10.1145/3637360

  • Haider C, Clifton C and Yin M. Do Crowdsourced Fairness Preferences Correlate with Risk Perceptions?. Proceedings of the 29th International Conference on Intelligent User Interfaces. (304-324).

    https://doi.org/10.1145/3640543.3645209

  • Zheng W, Lin L, Wu X and Chen X. (2024). An Empirical Study on Correlations Between Deep Neural Network Fairness and Neuron Coverage Criteria. IEEE Transactions on Software Engineering. 50:3. (391-412). Online publication date: 1-Mar-2024.

    https://doi.org/10.1109/TSE.2023.3349001

  • Liu J, Li J, Liu L, Le T, Ye F and Li G. (2024). Fairmod: making predictions fair in multiple protected attributes. Knowledge and Information Systems. 66:3. (1861-1884). Online publication date: 1-Mar-2024.

    https://doi.org/10.1007/s10115-023-02003-4

  • Chen H, Zhu T, Zhang T, Zhou W and Yu P. (2023). Privacy and Fairness in Federated Learning: On the Perspective of Tradeoff. ACM Computing Surveys. 56:2. (1-37). Online publication date: 29-Feb-2024.

    https://doi.org/10.1145/3606017

  • Lazri Z, Brugere I, Tian X, Dachman-Soled D, Polychroniadou A, Dervovic D and Wu M. (2024). A Canonical Data Transformation for Achieving Inter- and Within-Group Fairness. IEEE Transactions on Information Forensics and Security. 19. (7449-7464). Online publication date: 1-Jan-2024.

    https://doi.org/10.1109/TIFS.2024.3416040

  • Hort M, Zhang J, Sarro F and Harman M. (2024). Search-based Automatic Repair for Fairness and Accuracy in Decision-making Software. Empirical Software Engineering. 29:1. Online publication date: 1-Jan-2024.

    https://doi.org/10.1007/s10664-023-10419-3

  • Openja M, Laberge G and Khomh F. (2023). Detection and evaluation of bias-inducing features in machine learning. Empirical Software Engineering. 29:1. Online publication date: 1-Jan-2024.

    https://doi.org/10.1007/s10664-023-10409-5

  • Sharrock L, Mackey L and Nemeth C. Learning rate free sampling in constrained domains. Proceedings of the 37th International Conference on Neural Information Processing Systems. (65380-65415).

    /doi/10.5555/3666122.3668974

  • Fukuchi K and Sakuma J. Demographic parity constrained minimax optimal regression under linear model. Proceedings of the 37th International Conference on Neural Information Processing Systems. (8653-8689).

    /doi/10.5555/3666122.3666500

  • Favier M, Calders T, Pinxteren S and Meyer J. (2023). How to be fair? A study of label and selection bias. Machine Language. 112:12. (5081-5104). Online publication date: 1-Dec-2023.

    https://doi.org/10.1007/s10994-023-06401-1

  • Zhang M, Sun J, Wang J and Sun B. (2023). TestSGD: Interpretable Testing of Neural Networks against Subtle Group Discrimination. ACM Transactions on Software Engineering and Methodology. 32:6. (1-24). Online publication date: 30-Nov-2023.

    https://doi.org/10.1145/3591869

  • Cui S, Pan W, Zhang C and Wang F. (2023). Bipartite Ranking Fairness Through a Model Agnostic Ordering Adjustment. IEEE Transactions on Pattern Analysis and Machine Intelligence. 45:11. (13235-13249). Online publication date: 1-Nov-2023.

    https://doi.org/10.1109/TPAMI.2023.3290949

  • Wang Y and Singh L. Mitigating demographic bias of machine learning models on social media. Proceedings of the 3rd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. (1-12).

    https://doi.org/10.1145/3617694.3623244

  • El-Sappagh S, Alonso-Moral J, Abuhmed T, Ali F and Bugarín-Diz A. (2023). Trustworthy artificial intelligence in Alzheimer’s disease: state of the art, opportunities, and challenges. Artificial Intelligence Review. 56:10. (11149-11296). Online publication date: 1-Oct-2023.

    https://doi.org/10.1007/s10462-023-10415-5

  • Li B, Qi P, Liu B, Di S, Liu J, Pei J, Yi J and Zhou B. (2023). Trustworthy AI: From Principles to Practices. ACM Computing Surveys. 55:9. (1-46). Online publication date: 30-Sep-2023.

    https://doi.org/10.1145/3555803

  • Chen Z, Zhang J, Sarro F and Harman M. (2023). A Comprehensive Empirical Study of Bias Mitigation Methods for Machine Learning Classifiers. ACM Transactions on Software Engineering and Methodology. 32:4. (1-30). Online publication date: 31-Jul-2023.

    https://doi.org/10.1145/3583561

  • Giuliani L, Misino E and Lombardi M. Generalized disparate impact for configurable fairness solutions in ML. Proceedings of the 40th International Conference on Machine Learning. (11443-11458).

    /doi/10.5555/3618408.3618867

  • Blanzeisky W and Cunningham P. Addressing Underestimation Bias in CBR Through Case-Base Maintenance. Case-Based Reasoning Research and Development. (233-243).

    https://doi.org/10.1007/978-3-031-40177-0_15

  • Richardson B, Sattigeri P, Wei D, Ramamurthy K, Varshney K, Dhurandhar A and Gilbert J. Add-Remove-or-Relabel: Practitioner-Friendly Bias Mitigation via Influential Fairness. Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency. (736-752).

    https://doi.org/10.1145/3593013.3594039

  • Orphanou K, Otterbacher J, Kleanthous S, Batsuren K, Giunchiglia F, Bogina V, Tal A, Hartman A and Kuflik T. (2022). Mitigating Bias in Algorithmic Systems—A Fish-eye View. ACM Computing Surveys. 55:5. (1-37). Online publication date: 31-May-2023.

    https://doi.org/10.1145/3527152

  • Biswas S and Rajan H. Fairify: Fairness Verification of Neural Networks. Proceedings of the 45th International Conference on Software Engineering. (1546-1558).

    https://doi.org/10.1109/ICSE48619.2023.00134

  • Gohar U, Biswas S and Rajan H. Towards Understanding Fairness and its Composition in Ensemble Machine Learning. Proceedings of the 45th International Conference on Software Engineering. (1533-1545).

    https://doi.org/10.1109/ICSE48619.2023.00133

  • Chen L, Wu L, Zhang K, Hong R, Lian D, Zhang Z, Zhou J and Wang M. Improving Recommendation Fairness via Data Augmentation. Proceedings of the ACM Web Conference 2023. (1012-1020).

    https://doi.org/10.1145/3543507.3583341

  • Pessach D and Shmueli E. (2022). A Review on Fairness in Machine Learning. ACM Computing Surveys. 55:3. (1-44). Online publication date: 31-Mar-2023.

    https://doi.org/10.1145/3494672

  • Liu H, Wang Y, Fan W, Liu X, Li Y, Jain S, Liu Y, Jain A and Tang J. (2022). Trustworthy AI: A Computational Perspective. ACM Transactions on Intelligent Systems and Technology. 14:1. (1-59). Online publication date: 28-Feb-2023.

    https://doi.org/10.1145/3546872

  • Lawless C, Dash S, Günlük O and Wei D. (2023). Interpretable and fair boolean rule sets via column generation. The Journal of Machine Learning Research. 24:1. (10795-10844). Online publication date: 1-Jan-2023.

    /doi/10.5555/3648699.3648928

  • Zhang R, Liu Q and Tong X. Sampling in constrained domains with orthogonal-space variational gradient descent. Proceedings of the 36th International Conference on Neural Information Processing Systems. (37108-37120).

    /doi/10.5555/3600270.3602959

  • Zhang G, Zhang Y, Zhang Y, Fan W, Li Q, Liu S and Chang S. Fairness reprogramming. Proceedings of the 36th International Conference on Neural Information Processing Systems. (34347-34362).

    /doi/10.5555/3600270.3602759

  • Buyl M and De Bie T. Optimal transport of classifiers to fairness. Proceedings of the 36th International Conference on Neural Information Processing Systems. (33728-33740).

    /doi/10.5555/3600270.3602714

  • Mehrotra A and Vishnoi N. Fair ranking with noisy protected attributes. Proceedings of the 36th International Conference on Neural Information Processing Systems. (31711-31725).

    /doi/10.5555/3600270.3602569

  • Squadrone L, Croce D and Basili R. Ethics by Design for Intelligent and Sustainable Adaptive Systems. AIxIA 2022 – Advances in Artificial Intelligence. (154-167).

    https://doi.org/10.1007/978-3-031-27181-6_11

  • Ghadage A, Yi D, Coghill G and Pang W. Multi-stage Bias Mitigation for Individual Fairness in Algorithmic Decisions. Artificial Neural Networks in Pattern Recognition. (40-52).

    https://doi.org/10.1007/978-3-031-20650-4_4

  • Wu K, Erickson J, Wang W and Ning Y. Equipping Recommender Systems with Individual Fairness via Second-Order Proximity Embedding. Proceedings of the 2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. (171-175).

    https://doi.org/10.1109/ASONAM55673.2022.10068703

  • Gao Y, Sun T, Zhao L and Hong S. (2022). Aligning Eyes between Humans and Deep Neural Network through Interactive Attention Alignment. Proceedings of the ACM on Human-Computer Interaction. 6:CSCW2. (1-28). Online publication date: 7-Nov-2022.

    https://doi.org/10.1145/3555590

  • Zhang M and Sun J. Adaptive fairness improvement based on causality analysis. Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering. (6-17).

    https://doi.org/10.1145/3540250.3549103

  • Beiró M and Kalimeri K. (2022). Fairness in vulnerable attribute prediction on social media. Data Mining and Knowledge Discovery. 36:6. (2194-2213). Online publication date: 1-Nov-2022.

    https://doi.org/10.1007/s10618-022-00855-y

  • Fabris A, Messina S, Silvello G and Susto G. (2022). Algorithmic fairness datasets: the story so far. Data Mining and Knowledge Discovery. 36:6. (2074-2152). Online publication date: 1-Nov-2022.

    https://doi.org/10.1007/s10618-022-00854-z

  • Gu B, Zhai Z, Li X and Huang H. Towards Fairer Classifier via True Fairness Score Path. Proceedings of the 31st ACM International Conference on Information & Knowledge Management. (3113-3121).

    https://doi.org/10.1145/3511808.3557109

  • Fabris A, Messina S, Silvello G and Susto G. Tackling Documentation Debt: A Survey on Algorithmic Fairness Datasets. Proceedings of the 2nd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. (1-13).

    https://doi.org/10.1145/3551624.3555286

  • Kamani M, Haddadpour F, Forsati R and Mahdavi M. (2022). Efficient fair principal component analysis. Machine Language. 111:10. (3671-3702). Online publication date: 1-Oct-2022.

    https://doi.org/10.1007/s10994-021-06100-9

  • Wankhade M, Rao A and Kulkarni C. (2022). A survey on sentiment analysis methods, applications, and challenges. Artificial Intelligence Review. 55:7. (5731-5780). Online publication date: 1-Oct-2022.

    https://doi.org/10.1007/s10462-022-10144-1

  • Iosifidis V, Roy A and Ntoutsi E. (2022). Parity-based cumulative fairness-aware boosting. Knowledge and Information Systems. 64:10. (2737-2770). Online publication date: 1-Oct-2022.

    https://doi.org/10.1007/s10115-022-01723-3

  • Adomavicius G and Yang M. (2022). Integrating Behavioral, Economic, and Technical Insights to Understand and Address Algorithmic Bias: A Human-Centric Perspective. ACM Transactions on Management Information Systems. 13:3. (1-27). Online publication date: 30-Sep-2022.

    https://doi.org/10.1145/3519420

  • Brookhouse J and Freitas A. Fair Feature Selection with a Lexicographic Multi-objective Genetic Algorithm. Parallel Problem Solving from Nature – PPSN XVII. (151-163).

    https://doi.org/10.1007/978-3-031-14721-0_11

  • Mehrabi N, Morstatter F, Saxena N, Lerman K and Galstyan A. (2021). A Survey on Bias and Fairness in Machine Learning. ACM Computing Surveys. 54:6. (1-35). Online publication date: 31-Jul-2022.

    https://doi.org/10.1145/3457607

  • Dandl S, Pfisterer F and Bischl B. Multi-objective counterfactual fairness. Proceedings of the Genetic and Evolutionary Computation Conference Companion. (328-331).

    https://doi.org/10.1145/3520304.3528779

  • Cai W, Encarnacion R, Chern B, Corbett-Davies S, Bogen M, Bergman S and Goel S. Adaptive Sampling Strategies to Construct Equitable Training Datasets. Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency. (1467-1478).

    https://doi.org/10.1145/3531146.3533203

  • Sikdar S, Lemmerich F and Strohmaier M. GetFair: Generalized Fairness Tuning of Classification Models. Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency. (289-299).

    https://doi.org/10.1145/3531146.3533094

  • Wang X and Wang W. Providing Item-side Individual Fairness for Deep Recommender Systems. Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency. (117-127).

    https://doi.org/10.1145/3531146.3533079

  • Islam M, Fariha A, Meliou A and Salimi B. Through the Data Management Lens: Experimental Analysis and Evaluation of Fair Classification. Proceedings of the 2022 International Conference on Management of Data. (232-246).

    https://doi.org/10.1145/3514221.3517841

  • Fang M, Liu J, Momma M and Sun Y. FairRoad: Achieving Fairness for Recommender Systems with Optimized Antidote Data. Proceedings of the 27th ACM on Symposium on Access Control Models and Technologies. (173-184).

    https://doi.org/10.1145/3532105.3535023

  • Zheng T and Li B. InfoCensor. Proceedings of the 2022 ACM on Asia Conference on Computer and Communications Security. (437-451).

    https://doi.org/10.1145/3488932.3517402

  • Zhong D, Sun H, Xu J, Gong N and Wang W. Understanding Disparate Effects of Membership Inference Attacks and their Countermeasures. Proceedings of the 2022 ACM on Asia Conference on Computer and Communications Security. (959-974).

    https://doi.org/10.1145/3488932.3501279

  • Johnson B and Brun Y. Fairkit-learn. Proceedings of the ACM/IEEE 44th International Conference on Software Engineering: Companion Proceedings. (70-74).

    https://doi.org/10.1145/3510454.3516830

  • Li Y, Meng L, Chen L, Yu L, Wu D, Zhou Y and Xu B. Training data debugging for the fairness of machine learning software. Proceedings of the 44th International Conference on Software Engineering. (2215-2227).

    https://doi.org/10.1145/3510003.3510091

  • Hort M and Sarro F. Privileged and unprivileged groups. Proceedings of the 2nd International Workshop on Equitable Data and Technology. (17-24).

    https://doi.org/10.1145/3524491.3527308

  • Pitoura E, Stefanidis K and Koutrika G. (2021). Fairness in rankings and recommendations: an overview. The VLDB Journal — The International Journal on Very Large Data Bases. 31:3. (431-458). Online publication date: 1-May-2022.

    https://doi.org/10.1007/s00778-021-00697-y

  • Wei S and Niethammer M. (2022). The fairness‐accuracy Pareto front. Statistical Analysis and Data Mining. 15:3. (287-302). Online publication date: 1-May-2022.

    https://doi.org/10.1002/sam.11560

  • Fukuchi K and Sakuma J. Neutralized Empirical Risk Minimization with Generalization Neutrality Bound. Machine Learning and Knowledge Discovery in Databases. (418-433).

    https://doi.org/10.1007/978-3-662-44848-9_27

  • McDonald G, Macdonald C and Ounis I. (2021). Search results diversification for effective fair ranking in academic search. Information Retrieval. 25:1. (1-26). Online publication date: 1-Mar-2022.

    https://doi.org/10.1007/s10791-021-09399-z

  • Johnson K, Foster D and Stine R. Impartial Predictive Modeling and the Use of Proxy Variables. Information for a Better World: Shaping the Global Future. (292-308).

    https://doi.org/10.1007/978-3-030-96957-8_26

  • Wu D and Liu J. Involve Humans in Algorithmic Fairness Issue: A Systematic Review. Information for a Better World: Shaping the Global Future. (161-176).

    https://doi.org/10.1007/978-3-030-96957-8_15

  • Wang Z, Cheng X, Su S, Wang L and Karuppiah M. (2022). Achieving Private and Fair Truth Discovery in Crowdsourcing Systems. Security and Communication Networks. 2022. Online publication date: 1-Jan-2022.

    https://doi.org/10.1155/2022/9281729

  • Qian S, Pham H, Lutellier T, Hu Z, Kim J, Tan L, Yu Y, Chen J and Shah S. Are my deep learning systems fair? an empirical study of fixed-seed training. Proceedings of the 35th International Conference on Neural Information Processing Systems. (30211-30227).

    /doi/10.5555/3540261.3542573

  • Bendekgey H and Sudderth E. Scalable and stable surrogates for flexible classifiers with fairness constraints. Proceedings of the 35th International Conference on Neural Information Processing Systems. (30023-30036).

    /doi/10.5555/3540261.3542559

  • Gong C, Liu X and Liu Q. Bi-objective trade-off with dynamic barrier gradient descent. Proceedings of the 35th International Conference on Neural Information Processing Systems. (29630-29642).

    /doi/10.5555/3540261.3542529

  • Liu X, Tong X and Liu Q. Sampling with trustworthy constraints. Proceedings of the 35th International Conference on Neural Information Processing Systems. (23557-23568).

    /doi/10.5555/3540261.3542065

  • Barik A and Honorio J. Fair sparse regression with clustering. Proceedings of the 35th International Conference on Neural Information Processing Systems. (23245-23257).

    /doi/10.5555/3540261.3542041

  • Zhang Y and Long Q. Assessing fairness in the presence of missing data. Proceedings of the 35th International Conference on Neural Information Processing Systems. (16007-16019).

    /doi/10.5555/3540261.3541486

  • Aïvodji U, Arai H, Gambs S and Hara S. Characterizing the risk of fairwashing. Proceedings of the 35th International Conference on Neural Information Processing Systems. (14822-14834).

    /doi/10.5555/3540261.3541397

  • Liu X, Tong X and Liu Q. Profiling pareto front with multi-objective stein variational gradient descent. Proceedings of the 35th International Conference on Neural Information Processing Systems. (14721-14733).

    /doi/10.5555/3540261.3541389

  • Hort M and Sarro F. Did you do your homework?. Proceedings of the 36th IEEE/ACM International Conference on Automated Software Engineering. (1322-1326).

    https://doi.org/10.1109/ASE51524.2021.9678568

  • Burkholder K, Kwock K, Xu Y, Liu J, Chen C and Xie S. Certification and Trade-off of Multiple Fairness Criteria in Graph-based Spam Detection. Proceedings of the 30th ACM International Conference on Information & Knowledge Management. (130-139).

    https://doi.org/10.1145/3459637.3482325

  • Thomas O, Zilka M, Weller A and Quadrianto N. An Algorithmic Framework for Positive Action. Proceedings of the 1st ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. (1-13).

    https://doi.org/10.1145/3465416.3483303

  • Cheng L, Varshney K and Liu H. (2021). Socially Responsible AI Algorithms. Journal of Artificial Intelligence Research. 71. (1137-1181). Online publication date: 10-Sep-2021.

    https://doi.org/10.1613/jair.1.12814

  • Liao Y and Chen X. (2021). Multi-attribute overlapping radar working pattern recognition based on K-NN and SVM-BP. The Journal of Supercomputing. 77:9. (9642-9657). Online publication date: 1-Sep-2021.

    https://doi.org/10.1007/s11227-021-03660-4

  • Hort M, Zhang J, Sarro F and Harman M. Fairea: a model behaviour mutation approach to benchmarking bias mitigation methods. Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. (994-1006).

    https://doi.org/10.1145/3468264.3468565

  • Chakraborty J, Majumder S and Menzies T. Bias in machine learning software: why? how? what to do?. Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. (429-440).

    https://doi.org/10.1145/3468264.3468537

  • Biswas S and Rajan H. Fair preprocessing: towards understanding compositional fairness of data transformers in machine learning pipeline. Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. (981-993).

    https://doi.org/10.1145/3468264.3468536

  • Cui S, Pan W, Zhang C and Wang F. Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking Fairness and Algorithm Utility. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. (207-217).

    https://doi.org/10.1145/3447548.3467251

  • Amer-Yahia S, Elbassuoni S, Ghizzawi A and Hosami A. Quantifying and Addressing Ranking Disparity in Human-Powered Data Acquisition. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. (2525-2533).

    https://doi.org/10.1145/3447548.3467063

  • Rajabi A and Garibay O. Towards Fairness in AI: Addressing Bias in Data Using GANs. HCI International 2021 - Late Breaking Papers: Multimodality, eXtended Reality, and Artificial Intelligence. (509-518).

    https://doi.org/10.1007/978-3-030-90963-5_39

  • Belitz C, Jiang L and Bosch N. Automating Procedurally Fair Feature Selection in Machine Learning. Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society. (379-389).

    https://doi.org/10.1145/3461702.3462585

  • Khodadadian S, Ghassami A and Kiyavash N. Impact of Data Processing on Fairness in Supervised Learning. 2021 IEEE International Symposium on Information Theory (ISIT). (2643-2648).

    https://doi.org/10.1109/ISIT45174.2021.9517766

  • Lamba H, Rodolfa K and Ghani R. (2021). An Empirical Comparison of Bias Reduction Methods on Real-World Problems in High-Stakes Policy Settings. ACM SIGKDD Explorations Newsletter. 23:1. (69-85). Online publication date: 26-May-2021.

    https://doi.org/10.1145/3468507.3468518

  • Delobelle P, Temple P, Perrouin G, Frénay B, Heymans P and Berendt B. (2021). Ethical Adversaries. ACM SIGKDD Explorations Newsletter. 23:1. (32-41). Online publication date: 26-May-2021.

    https://doi.org/10.1145/3468507.3468513

  • Calders T, Ntoutsi E, Pechenizkiy M, Rosenhahn B and Ruggieri S. (2021). Introduction to The Special Section on Bias and Fairness in AI. ACM SIGKDD Explorations Newsletter. 23:1. (1-3). Online publication date: 26-May-2021.

    https://doi.org/10.1145/3468507.3468509

  • van Berkel N, Goncalves J, Russo D, Hosio S and Skov M. Effect of Information Presentation on Fairness Perceptions of Machine Learning Predictors. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. (1-13).

    https://doi.org/10.1145/3411764.3445365

  • Salazar R, Neutatz F and Abedjan Z. (2021). Automated feature engineering for algorithmic fairness. Proceedings of the VLDB Endowment. 14:9. (1694-1702). Online publication date: 1-May-2021.

    https://doi.org/10.14778/3461535.3463474

  • Sun H, Yang Y, Li Y, Liu H, Wang X and Wang W. Automating Fairness Configurations for Machine Learning. Companion Proceedings of the Web Conference 2021. (193-201).

    https://doi.org/10.1145/3442442.3452301

  • Zhou D, Liu H, Xu T, Zhang L, Zha R and Xiong H. Transportation Recommendation with Fairness Consideration. Database Systems for Advanced Applications. (566-578).

    https://doi.org/10.1007/978-3-030-73200-4_40

  • Friedler S, Scheidegger C and Venkatasubramanian S. (2021). The (Im)possibility of fairness. Communications of the ACM. 64:4. (136-143). Online publication date: 1-Apr-2021.

    https://doi.org/10.1145/3433949

  • Kawamoto Y. (2021). An epistemic approach to the formal specification of statistical machine learning. Software and Systems Modeling (SoSyM). 20:2. (293-310). Online publication date: 1-Apr-2021.

    https://doi.org/10.1007/s10270-020-00825-2

  • Taskesen B, Blanchet J, Kuhn D and Nguyen V. A Statistical Test for Probabilistic Fairness. Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency. (648-665).

    https://doi.org/10.1145/3442188.3445927

  • Yeom S and Tschantz M. Avoiding Disparity Amplification under Different Worldviews. Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency. (273-283).

    https://doi.org/10.1145/3442188.3445892

  • Mehrotra A and Celis L. Mitigating Bias in Set Selection with Noisy Protected Attributes. Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency. (237-248).

    https://doi.org/10.1145/3442188.3445887

  • Wei D, Ramamurthy K and Calmon F. (2021). Optimized score transformation for consistent fair classification. The Journal of Machine Learning Research. 22:1. (11692-11769). Online publication date: 1-Jan-2021.

    /doi/10.5555/3546258.3546516

  • Wang X, Sun J, Zhao Q, You Y and Jiang J. (2021). ER rule classifier with an optimization operator recommendation. Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology. 41:1. (1917-1929). Online publication date: 1-Jan-2021.

    https://doi.org/10.3233/JIFS-210629

  • Olfat M and Mintz Y. Flexible Regularization Approaches for Fairness in Deep Learning. 2020 59th IEEE Conference on Decision and Control (CDC). (3389-3394).

    https://doi.org/10.1109/CDC42340.2020.9303736

  • Ji D, Smyth P and Steyvers M. Can I trust my fairness metric? assessing fairness with unlabeled data and Bayesian inference. Proceedings of the 34th International Conference on Neural Information Processing Systems. (18600-18612).

    /doi/10.5555/3495724.3497286

  • Harb E and Shan L. KFC. Proceedings of the 34th International Conference on Neural Information Processing Systems. (14509-14519).

    /doi/10.5555/3495724.3496940

  • Yang F, Cisse M and Koyejo S. Fairness with overlapping groups. Proceedings of the 34th International Conference on Neural Information Processing Systems. (4067-4078).

    /doi/10.5555/3495724.3496066

  • Liu J, Li J, Ye F, Liu L, Le T, Xiong P and Liu H. Building Fair Predictive Models. AI 2020: Advances in Artificial Intelligence. (216-229).

    https://doi.org/10.1007/978-3-030-64984-5_17

  • Madhavan R and Wadhwa M. Fairness-Aware Learning with Prejudice Free Representations. Proceedings of the 29th ACM International Conference on Information & Knowledge Management. (2137-2140).

    https://doi.org/10.1145/3340531.3412150

  • Zhang W and Bifet A. FEAT: A Fairness-Enhancing and Concept-Adapting Decision Tree Classifier. Discovery Science. (175-189).

    https://doi.org/10.1007/978-3-030-61527-7_12

  • Salimi B, Howe B and Suciu D. (2020). Database Repair Meets Algorithmic Fairness. ACM SIGMOD Record. 49:1. (34-41). Online publication date: 4-Sep-2020.

    https://doi.org/10.1145/3422648.3422657

  • Cunningham P and Delany S. Underestimation Bias and Underfitting in Machine Learning. Trustworthy AI - Integrating Learning, Optimization and Reasoning. (20-31).

    https://doi.org/10.1007/978-3-030-73959-1_2

  • Ramadan Q, Strüber D, Salnitri M, Jürjens J, Riediger V and Staab S. (2020). A semi-automated BPMN-based framework for detecting conflicts between security, data-minimization, and fairness requirements. Software and Systems Modeling (SoSyM). 19:5. (1191-1227). Online publication date: 1-Sep-2020.

    https://doi.org/10.1007/s10270-020-00781-x

  • Li Y, Sun H and Wang W. Towards Fair Truth Discovery from Biased Crowdsourced Answers. Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. (599-607).

    https://doi.org/10.1145/3394486.3403102

  • Martinez N, Bertran M and Sapiro G. Minimax pareto fairness. Proceedings of the 37th International Conference on Machine Learning. (6755-6764).

    /doi/10.5555/3524938.3525565

  • Lohaus M, Perrot M and Von Luxburg U. Too relaxed to be fair. Proceedings of the 37th International Conference on Machine Learning. (6360-6369).

    /doi/10.5555/3524938.3525528

  • Kim J, Chen J and Talwalkar A. FACT. Proceedings of the 37th International Conference on Machine Learning. (5264-5274).

    /doi/10.5555/3524938.3525426

  • Gnansambandam A and Chan S. One size fits all. Proceedings of the 37th International Conference on Machine Learning. (3576-3586).

    /doi/10.5555/3524938.3525273

  • Buyl M and De Bie T. DeBayes. Proceedings of the 37th International Conference on Machine Learning. (1220-1229).

    /doi/10.5555/3524938.3525052

  • Lin K, Sonboli N, Mobasher B and Burke R. Calibration in Collaborative Filtering Recommender Systems. Proceedings of the 31st ACM Conference on Hypertext and Social Media. (197-206).

    https://doi.org/10.1145/3372923.3404793

  • Oppold S and Herschel M. A System Framework for Personalized and Transparent Data-Driven Decisions. Advanced Information Systems Engineering. (153-168).

    https://doi.org/10.1007/978-3-030-49435-3_10

  • Chouldechova A and Roth A. (2020). A snapshot of the frontiers of fairness in machine learning. Communications of the ACM. 63:5. (82-89). Online publication date: 20-Apr-2020.

    https://doi.org/10.1145/3376898

  • Li Y, Ning Y, Liu R, Wu Y and Hui Wang W. Fairness of Classification Using Users’ Social Relationships in Online Peer-To-Peer Lending. Companion Proceedings of the Web Conference 2020. (733-742).

    https://doi.org/10.1145/3366424.3383557

  • Ogura H and Takeda A. Convex Fairness Constrained Model Using Causal Effect Estimators. Companion Proceedings of the Web Conference 2020. (723-732).

    https://doi.org/10.1145/3366424.3383556

  • Zehlike M and Castillo C. Reducing Disparate Exposure in Ranking: A Learning To Rank Approach. Proceedings of The Web Conference 2020. (2849-2855).

    https://doi.org/10.1145/3366424.3380048

  • Nasr M and Tschantz M. Bidding strategies with gender nondiscrimination constraints for online ad auctions. Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency. (337-347).

    https://doi.org/10.1145/3351095.3375783

  • Yang K, Qinami K, Fei-Fei L, Deng J and Russakovsky O. Towards fairer datasets. Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency. (547-558).

    https://doi.org/10.1145/3351095.3375709

  • Slack D, Friedler S and Givental E. Fairness warnings and fair-MAML. Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency. (200-209).

    https://doi.org/10.1145/3351095.3372839

  • Zehlike M, Hacker P and Wiedemann E. (2019). Matching code and law: achieving algorithmic fairness with optimal transport. Data Mining and Knowledge Discovery. 34:1. (163-200). Online publication date: 1-Jan-2020.

    https://doi.org/10.1007/s10618-019-00658-8

  • Metevier B, Giguere S, Brockman S, Kobren A, Brun Y, Brunskill E and Thomas P. Offline contextual bandits with high probability fairness guarantees. Proceedings of the 33rd International Conference on Neural Information Processing Systems. (14922-14933).

    /doi/10.5555/3454287.3455623

  • Bechavod Y, Ligett K, Roth A, Waggoner B and Wu Z. Equal opportunity in online classification with partial feedback. Proceedings of the 33rd International Conference on Neural Information Processing Systems. (8974-8984).

    /doi/10.5555/3454287.3455092

  • Bera S, Chakrabarty D, Flores N and Negahbani M. Fair algorithms for clustering. Proceedings of the 33rd International Conference on Neural Information Processing Systems. (4954-4965).

    /doi/10.5555/3454287.3454733

  • Lamy A, Zhong Z, Menon A and Verma N. Noise-tolerant fair classification. Proceedings of the 33rd International Conference on Neural Information Processing Systems. (294-306).

    /doi/10.5555/3454287.3454314

  • van Berkel N, Goncalves J, Hettiachchi D, Wijenayake S, Kelly R and Kostakos V. (2019). Crowdsourcing Perceptions of Fair Predictors for Machine Learning. Proceedings of the ACM on Human-Computer Interaction. 3:CSCW. (1-21). Online publication date: 7-Nov-2019.

    https://doi.org/10.1145/3359130

  • Iosifidis V and Ntoutsi E. AdaFair. Proceedings of the 28th ACM International Conference on Information and Knowledge Management. (781-790).

    https://doi.org/10.1145/3357384.3357974

  • Oppold S and Herschel M. LuPe. Proceedings of the 28th ACM International Conference on Information and Knowledge Management. (2905-2908).

    https://doi.org/10.1145/3357384.3357857

  • Zhang L, Wu Y and Wu X. (2019). Causal Modeling-Based Discrimination Discovery and Removal: Criteria, Bounds, and Algorithms. IEEE Transactions on Knowledge and Data Engineering. 31:11. (2035-2050). Online publication date: 1-Nov-2019.

    https://doi.org/10.1109/TKDE.2018.2872988

  • Bastani O, Zhang X and Solar-Lezama A. (2019). Probabilistic verification of fairness properties via concentration. Proceedings of the ACM on Programming Languages. 3:OOPSLA. (1-27). Online publication date: 10-Oct-2019.

    https://doi.org/10.1145/3360544

  • Rahman T, Surma B, Backes M and Zhang Y. Fairwalk. Proceedings of the 28th International Joint Conference on Artificial Intelligence. (3289-3295).

    /doi/10.5555/3367471.3367498

  • Zhang W and Ntoutsi E. FAHT. Proceedings of the 28th International Joint Conference on Artificial Intelligence. (1480-1486).

    /doi/10.5555/3367032.3367242

  • Noei E, Zhang F, Wang S and Zou Y. (2019). Towards prioritizing user-related issue reports of mobile applications. Empirical Software Engineering. 24:4. (1964-1996). Online publication date: 1-Aug-2019.

    https://doi.org/10.1007/s10664-019-09684-y

  • Ahmadian S, Epasto A, Kumar R and Mahdian M. Clustering without Over-Representation. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. (267-275).

    https://doi.org/10.1145/3292500.3330987

  • Beutel A, Chen J, Doshi T, Qian H, Wei L, Wu Y, Heldt L, Zhao Z, Hong L, Chi E and Goodrow C. Fairness in Recommendation Ranking through Pairwise Comparisons. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. (2212-2220).

    https://doi.org/10.1145/3292500.3330745

  • Geyik S, Ambler S and Kenthapadi K. Fairness-Aware Ranking in Search & Recommendation Systems with Application to LinkedIn Talent Search. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. (2221-2231).

    https://doi.org/10.1145/3292500.3330691

  • Iqbal M, Karim A and Kamiran F. (2019). Balancing Prediction Errors for Robust Sentiment Classification. ACM Transactions on Knowledge Discovery from Data. 13:3. (1-21). Online publication date: 17-Jul-2019.

    https://doi.org/10.1145/3328795

  • Salimi B, Rodriguez L, Howe B and Suciu D. Interventional Fairness. Proceedings of the 2019 International Conference on Management of Data. (793-810).

    https://doi.org/10.1145/3299869.3319901

  • Jain B, Huber M, Fegaras L and Elmasri R. Singular race models. Proceedings of the 12th ACM International Conference on PErvasive Technologies Related to Assistive Environments. (599-607).

    https://doi.org/10.1145/3316782.3322787

  • Sapiezynski P, Zeng W, E Robertson R, Mislove A and Wilson C. Quantifying the Impact of User Attentionon Fair Group Representation in Ranked Lists. Companion Proceedings of The 2019 World Wide Web Conference. (553-562).

    https://doi.org/10.1145/3308560.3317595

  • Heindorf S, Scholten Y, Engels G and Potthast M. Debiasing Vandalism Detection Models at Wikidata. The World Wide Web Conference. (670-680).

    https://doi.org/10.1145/3308558.3313507

  • Alexopoulos C, Lachana Z, Androutsopoulou A, Diamantopoulou V, Charalabidis Y and Loutsaris M. How Machine Learning is Changing e-Government. Proceedings of the 12th International Conference on Theory and Practice of Electronic Governance. (354-363).

    https://doi.org/10.1145/3326365.3326412

  • Chen J, Kallus N, Mao X, Svacha G and Udell M. Fairness Under Unawareness. Proceedings of the Conference on Fairness, Accountability, and Transparency. (339-348).

    https://doi.org/10.1145/3287560.3287594

  • Kearns M, Neel S, Roth A and Wu Z. An Empirical Study of Rich Subgroup Fairness for Machine Learning. Proceedings of the Conference on Fairness, Accountability, and Transparency. (100-109).

    https://doi.org/10.1145/3287560.3287592

  • Friedler S, Scheidegger C, Venkatasubramanian S, Choudhary S, Hamilton E and Roth D. A comparative study of fairness-enhancing interventions in machine learning. Proceedings of the Conference on Fairness, Accountability, and Transparency. (329-338).

    https://doi.org/10.1145/3287560.3287589

  • Albarghouthi A and Vinitsky S. Fairness-Aware Programming. Proceedings of the Conference on Fairness, Accountability, and Transparency. (211-219).

    https://doi.org/10.1145/3287560.3287588

  • Celis L, Huang L, Keswani V and Vishnoi N. Classification with Fairness Constraints. Proceedings of the Conference on Fairness, Accountability, and Transparency. (319-328).

    https://doi.org/10.1145/3287560.3287586

  • Conitzer V, Freeman R, Shah N and Vaughan J. Group fairness for the allocation of indivisible goods. Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence. (1853-1860).

    https://doi.org/10.1609/aaai.v33i01.33011853

  • Aghaei S, Azizi M and Vayanos P. Learning optimal and fair decision trees for non-discriminative decision-making. Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence. (1418-1426).

    https://doi.org/10.1609/aaai.v33i01.33011418

  • McNamara D, Ong C and Williamson R. Costs and Benefits of Fair Representation Learning. Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society. (263-270).

    https://doi.org/10.1145/3306618.3317964

  • Gilbert T and Mintz Y. Epistemic Therapy for Bias in Automated Decision-Making. Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society. (61-67).

    https://doi.org/10.1145/3306618.3314294

  • McNamara D. Equalized Odds Implies Partially Equalized Outcomes Under Realistic Assumptions. Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society. (313-320).

    https://doi.org/10.1145/3306618.3314290

  • L. Cardoso R, Meira Jr. W, Almeida V and J. Zaki M. A Framework for Benchmarking Discrimination-Aware Models in Machine Learning. Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society. (437-444).

    https://doi.org/10.1145/3306618.3314262

  • Beutel A, Chen J, Doshi T, Qian H, Woodruff A, Luu C, Kreitmann P, Bischof J and Chi E. Putting Fairness Principles into Practice. Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society. (453-459).

    https://doi.org/10.1145/3306618.3314234

  • Zafar M, Valera I, Gomez-Rodriguez M and Gummadi K. (2021). Fairness constraints. The Journal of Machine Learning Research. 20:1. (2737-2778). Online publication date: 1-Jan-2019.

    /doi/10.5555/3322706.3362016

  • Raff E, Sylvester J and Mills S. Fair Forests. Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society. (243-250).

    https://doi.org/10.1145/3278721.3278742

  • Samadi S, Tantipongpipat U, Morgenstern J, Singh M and Vempala S. The price of fair PCA. Proceedings of the 32nd International Conference on Neural Information Processing Systems. (10999-11010).

    /doi/10.5555/3327546.3327755

  • Chen I, Johansson F and Sontag D. Why is my classifier discriminatory?. Proceedings of the 32nd International Conference on Neural Information Processing Systems. (3543-3554).

    /doi/10.5555/3327144.3327272

  • Zhu H, Yu B, Halfaker A and Terveen L. (2018). Value-Sensitive Algorithm Design. Proceedings of the ACM on Human-Computer Interaction. 2:CSCW. (1-23). Online publication date: 1-Nov-2018.

    https://doi.org/10.1145/3274463

  • Brun Y and Meliou A. Software fairness. Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. (754-759).

    https://doi.org/10.1145/3236024.3264838

  • Angell R, Johnson B, Brun Y and Meliou A. Themis: automatically testing software for discrimination. Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. (871-875).

    https://doi.org/10.1145/3236024.3264590

  • Wu Y, Zhang L and Wu X. On Discrimination Discovery and Removal in Ranked Data using Causal Graph. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. (2536-2544).

    https://doi.org/10.1145/3219819.3220087

  • Zhang L, Wu Y and Wu X. Achieving non-discrimination in prediction. Proceedings of the 27th International Joint Conference on Artificial Intelligence. (3097-3103).

    /doi/10.5555/3304889.3305091

  • Ramadan Q, Ahmadian A, Strüber D, Jürjens J and Staab S. Model-based discrimination analysis. Proceedings of the International Workshop on Software Fairness. (22-28).

    https://doi.org/10.1145/3194770.3194775

  • Chen L, Ma R, Hannák A and Wilson C. Investigating the Impact of Gender on Rank in Resume Search Engines. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. (1-14).

    https://doi.org/10.1145/3173574.3174225

  • Krasanakis E, Spyromitros-Xioufis E, Papadopoulos S and Kompatsiaris Y. Adaptive Sensitive Reweighting to Mitigate Bias in Fairness-aware Classification. Proceedings of the 2018 World Wide Web Conference. (853-862).

    https://doi.org/10.1145/3178876.3186133

  • Goel N, Yaghini M and Faltings B. Non-discriminatory machine learning through convex fairness criteria. Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence. (3029-3036).

    /doi/10.5555/3504035.3504405

  • Kamiran F, Mansha S, Karim A and Zhang X. (2018). Exploiting reject option in classification for social discrimination control. Information Sciences: an International Journal. 425:C. (18-33). Online publication date: 1-Jan-2018.

    https://doi.org/10.1016/j.ins.2017.09.064

  • Kamishima T, Akaho S, Asoh H and Sakuma J. (2018). Model-based and actual independence for fairness-aware classification. Data Mining and Knowledge Discovery. 32:1. (258-286). Online publication date: 1-Jan-2018.

    https://doi.org/10.1007/s10618-017-0534-x

  • Kusner M, Loftus J, Russell C and Silva R. Counterfactual fairness. Proceedings of the 31st International Conference on Neural Information Processing Systems. (4069-4079).

    /doi/10.5555/3294996.3295162

  • Kilbertus N, Rojas-Carulla M, Parascandolo G, Hardt M, Janzing D and Schölkopf B. Avoiding discrimination through causal reasoning. Proceedings of the 31st International Conference on Neural Information Processing Systems. (656-666).

    /doi/10.5555/3294771.3294834

  • Zafar M, Valera I, Rodriguez M, Gummadi K and Weller A. From parity to preference-based notions of fairness in classification. Proceedings of the 31st International Conference on Neural Information Processing Systems. (228-238).

    /doi/10.5555/3294771.3294793

  • Zehlike M, Bonchi F, Castillo C, Hajian S, Megahed M and Baeza-Yates R. FA*IR. Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. (1569-1578).

    https://doi.org/10.1145/3132847.3132938

  • Albarghouthi A, D'Antoni L, Drews S and Nori A. (2017). FairSquare: probabilistic verification of program fairness. Proceedings of the ACM on Programming Languages. 1:OOPSLA. (1-30). Online publication date: 12-Oct-2017.

    https://doi.org/10.1145/3133904

  • Goodman B and Flaxman S. (2017). European Union Regulations on Algorithmic Decision Making and a “Right to Explanation”. AI Magazine. 38:3. (50-57). Online publication date: 1-Sep-2017.

    https://doi.org/10.1609/aimag.v38i3.2741

  • Galhotra S, Brun Y and Meliou A. Fairness testing: testing software for discrimination. Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering. (498-510).

    https://doi.org/10.1145/3106237.3106277

  • Zhang L, Wu Y and Wu X. A causal framework for discovering and removing direct and indirect discrimination. Proceedings of the 26th International Joint Conference on Artificial Intelligence. (3929-3935).

    /doi/10.5555/3172077.3172438

  • Zhang L, Wu Y and Wu X. Achieving Non-Discrimination in Data Release. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. (1335-1344).

    https://doi.org/10.1145/3097983.3098167

  • ?Liobaită? I. (2017). Measuring discrimination in algorithmic decision making. Data Mining and Knowledge Discovery. 31:4. (1060-1089). Online publication date: 1-Jul-2017.

    https://doi.org/10.1007/s10618-017-0506-1

  • Joseph M, Kearns M, Morgenstern J and Roth A. Fairness in learning. Proceedings of the 30th International Conference on Neural Information Processing Systems. (325-333).

    /doi/10.5555/3157096.3157133

  • Hajian S, Bonchi F and Castillo C. Algorithmic Bias. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. (2125-2126).

    https://doi.org/10.1145/2939672.2945386

  • Zhang L, Wu Y and Wu X. Situation testing-based discrimination discovery. Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. (2718-2724).

    /doi/10.5555/3060832.3061001

  • Hajian S, Domingo-Ferrer J, Monreale A, Pedreschi D and Giannotti F. (2015). Discrimination- and privacy-aware patterns. Data Mining and Knowledge Discovery. 29:6. (1733-1782). Online publication date: 1-Nov-2015.

    https://doi.org/10.1007/s10618-014-0393-7

  • Datta A, Datta A, Procaccia A and Zick Y. Influence in classification via cooperative game theory. Proceedings of the 24th International Conference on Artificial Intelligence. (511-517).

    /doi/10.5555/2832249.2832320

  • Wang A, An N, Chen G, Li L and Alterovitz G. (2015). Improving PLS-RFE based gene selection for microarray data classification. Computers in Biology and Medicine. 62:C. (14-24). Online publication date: 1-Jul-2015.

    https://doi.org/10.1016/j.compbiomed.2015.04.011

  • Cuzzola J, Jovanović J, Bagheri E and Gašević D. (2015). Automated classification and localization of daily deal content from the Web. Applied Soft Computing. 31:C. (241-256). Online publication date: 1-Jun-2015.

    https://doi.org/10.1016/j.asoc.2015.02.029

  • Iqbal M, Karim A and Kamiran F. Bias-aware lexicon-based sentiment analysis. Proceedings of the 30th Annual ACM Symposium on Applied Computing. (845-850).

    https://doi.org/10.1145/2695664.2695759

  • Hajian S, Domingo-Ferrer J and Farràs O. (2014). Generalization-based privacy preservation and discrimination prevention in data publishing and mining. Data Mining and Knowledge Discovery. 28:5-6. (1158-1188). Online publication date: 1-Sep-2014.

    https://doi.org/10.1007/s10618-014-0346-1

  • Berendt B and Preibusch S. (2014). Better decision support through exploratory discrimination-aware data mining. Artificial Intelligence and Law. 22:2. (175-209). Online publication date: 1-Jun-2014.

    https://doi.org/10.1007/s10506-013-9152-0

  • Hajian S, Monreale A, Pedreschi D, Domingo-Ferrer J and Giannotti F. Fair pattern discovery. Proceedings of the 29th Annual ACM Symposium on Applied Computing. (113-120).

    https://doi.org/10.1145/2554850.2555043

  • Ristanoski G, Liu W and Bailey J. Discrimination aware classification for imbalanced datasets. Proceedings of the 22nd ACM international conference on Information & Knowledge Management. (1529-1532).

    https://doi.org/10.1145/2505515.2507836

  • Zemel R, Wu Y, Swersky K, Pitassi T and Dwork C. Learning fair representations. Proceedings of the 30th International Conference on International Conference on Machine Learning - Volume 28. (III-325-III-333).

    /doi/10.5555/3042817.3042973

  • Cuzzola J, Gašević D and Bagheri E. What's the deal?. Proceedings of the First Australasian Web Conference - Volume 144. (69-73).

    /doi/10.5555/2527208.2527217

  • Kamiran F and Calders T. (2012). Data preprocessing techniques for classification without discrimination. Knowledge and Information Systems. 33:1. (1-33). Online publication date: 1-Oct-2012.

    https://doi.org/10.1007/s10115-011-0463-8

  • Berendt B. (2012). More than modelling and hiding. Data Mining and Knowledge Discovery. 24:3. (697-737). Online publication date: 1-May-2012.

    https://doi.org/10.1007/s10618-012-0254-1

  • Luong B, Ruggieri S and Turini F. k-NN as an implementation of situation testing for discrimination discovery and prevention. Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. (502-510).

    https://doi.org/10.1145/2020408.2020488

  • Hajian S, Domingo-Ferrer J and Martínez-Ballesté A. Rule protection for indirect discrimination prevention in data mining. Proceedings of the 8th international conference on Modeling decisions for artificial intelligence. (211-222).

    /doi/10.5555/2032654.2032679