skip to main content
10.5555/3026877.3026899acmotherconferencesArticle/Chapter ViewAbstractPublication PagesosdiConference Proceedingsconference-collections
Article

TensorFlow: a system for large-scale machine learning

Published: 02 November 2016 Publication History
  • Get Citation Alerts
  • Abstract

    TensorFlow is a machine learning system that operates at large scale and in heterogeneous environments. Tensor-Flow uses dataflow graphs to represent computation, shared state, and the operations that mutate that state. It maps the nodes of a dataflow graph across many machines in a cluster, and within a machine across multiple computational devices, including multicore CPUs, general-purpose GPUs, and custom-designed ASICs known as Tensor Processing Units (TPUs). This architecture gives flexibility to the application developer: whereas in previous "parameter server" designs the management of shared state is built into the system, TensorFlow enables developers to experiment with novel optimizations and training algorithms. TensorFlow supports a variety of applications, with a focus on training and inference on deep neural networks. Several Google services use TensorFlow in production, we have released it as an open-source project, and it has become widely used for machine learning research. In this paper, we describe the TensorFlow dataflow model and demonstrate the compelling performance that TensorFlow achieves for several real-world applications.

    References

    [1]
    M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. J. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Józefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. G. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. A. Tucker, V. Vanhoucke, V. Vasudevan, F. B. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint, 1603.04467, 2016. arxiv.org/abs/1603.04467. Software available from tensorflow.org.
    [2]
    R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller, D. Bahdanau, N. Ballas, F. Bastien, J. Bayer, A. Belikov, A. Belopolsky, Y. Bengio, A. Bergeron, J. Bergstra, V. Bisson, J. Bleecher Snyder, N. Bouchard, N. Boulanger-Lewandowski, X. Bouthillier, A. de Brébisson, O. Breuleux, P.- L. Carrier, K. Cho, J. Chorowski, P. Christiano, T. Cooijmans, M.-A. Côté, M. Côté, A. Courville, Y. N. Dauphin, O. Delalleau, J. Demouth, G. Desjardins, S. Dieleman, L. Dinh, M. Ducoffe, V. Dumoulin, S. Ebrahimi Kahou, D. Erhan, Z. Fan, O. Firat, M. Germain, X. Glorot, I. Goodfellow, M. Graham, C. Gulcehre, P. Hamel, I. Harlouchet, J.-P. Heng, B. Hidasi, S. Honari, A. Jain, S. Jean, K. Jia, M. Korobov, V. Kulkarni, A. Lamb, P. Lamblin, E. Larsen, C. Laurent, S. Lee, S. Lefrancois, S. Lemieux, N. Léonard, Z. Lin, J. A. Livezey, C. Lorenz, J. Lowin, Q. Ma, P.-A. Manzagol, O. Mastropietro, R. T. McGibbon, R. Memisevic, B. van Merriënboer, V. Michalski, M. Mirza, A. Orlandi, C. Pal, R. Pascanu, M. Pezeshki, C. Raffel, D. Renshaw, M. Rocklin, A. Romero, M. Roth, P. Sadowski, J. Salvatier, F. Savard, J. Schlüter, J. Schulman, G. Schwartz, I. V. Serban, D. Serdyuk, S. Shabanian, E. Simon, S. Spieckermann, S. R. Subramanyam, J. Sygnowski, J. Tanguay, G. van Tulder, J. Turian, S. Urban, P. Vincent, F. Visin, H. de Vries, D. Warde-Farley, D. J. Webb, M. Willson, K. Xu, L. Xue, L. Yao, S. Zhang, and Y. Zhang. Theano: A Python framework for fast computation of mathematical expressions. arXiv preprint, 1605.02688, 2016. arxiv.org/abs/1605.02688.
    [3]
    A. Angelova, A. Krizhevsky, and V. Vanhoucke. Pedestrian detection with a large-field-of-view deep network. In Proceedings of ICRA, pages 704-711. IEEE, 2015. www.vision.caltech.edu/anelia/publications/Angelova15LFOV.pdf.
    [4]
    Arvind and D. E. Culler. Dataflow architectures. In Annual Review of Computer Science Vol. 1, 1986, pages 225-253. Annual Reviews Inc., 1986. www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA166235.
    [5]
    J. Ba, V. Mnih, and K. Kavukcuoglu. Multiple object recognition with visual attention. arXiv preprint, 1412.7755, 2014. arxiv.org/abs/1412.7755.
    [6]
    Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin. A neural probabilistic language model. Journal of Machine Learning Research, 3:1137-1155, 2003. jmlr.org/papers/volume3/bengio03a/bengio03a.pdf.
    [7]
    T. Brants and A. Franz. Web 1T 5-gram version 1, 2006. catalog.ldc.upenn.edu/LDC2006T13.
    [8]
    R. H. Byrd, G. M. Chin, J. Nocedal, and Y. Wu. Sample size selection in optimization methods for machine learning. Mathematical Programming, 134(1):127-155, 2012. dx.doi.org/10.1007/s10107-012-0572-5.
    [9]
    C. Chelba, T. Mikolov, M. Schuster, Q. Ge, T. Brants, and P. Koehn. One billion word benchmark for measuring progress in statistical language modeling. arXiv preprint, 1312.3005, 2013. arxiv.org/abs/1312.3005.
    [10]
    J. Chen, R. Monga, S. Bengio, and R. Jozefowicz. Revisiting distributed synchronous SGD. In Proceedings of ICLR Workshop Track, 2016. arxiv.org/abs/1604.00981.
    [11]
    T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and Z. Zhang. MXNet: A flexible and efficient machine learning library for heterogeneous distributed systems. In Proceedings of LearningSys, 2015. www.cs.cmu.edu/~muli/file/mxnet-learning-sys.pdf.
    [12]
    H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson, G. Corrado, W. Chai, M. Ispir, R. Anil, Z. Haque, L. Hong, V. Jain, X. Liu, and H. Shah. Wide & deep learning for recommender systems. arXiv preprint, 1606.07792, 2016. arxiv.org/abs/1606.07792.
    [13]
    S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and E. Shelhamer. cuDNN: Efficient primitives for deep learning. arXiv preprint, 1410.0759, 2014. arxiv.org/abs/1410.0759.
    [14]
    T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman. Project Adam: Building an efficient and scalable deep learning training system. In Proceedings of OSDI, pages 571-582, 2014. www.usenix.org/system/files/conference/osdi14/osdi14-paper-chilimbi.pdf.
    [15]
    S. Chintala. convnet-benchmarks, 2016. github.com/soumith/convnet-benchmarks.
    [16]
    E. S. Chung, J. D. Davis, and J. Lee. LINQits: Big data on little clients. In Proceedings of ISCA, pages 261-272, 2013. www.microsoft.com/enus/research/wp-content/uploads/2013/06/ISCA13_-linqits.pdf.
    [17]
    R. Collobert, S. Bengio, and J. Mariéthoz. Torch: A modular machine learning software library. Technical report, IDIAP, 2002. infoscience.epfl.ch/record/82802/files/rr02-46.pdf.
    [18]
    H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P. Xing. GeePS: Scalable deep learning on distributed GPUs with a GPU-specialized parameter server. In Proceedings of EuroSys, 2016. www.pdl.cmu.edu/PDL-FTP/CloudComputing/GeePS-cui-eurosys16.pdf.
    [19]
    A. Dai, C. Olah, and Q. V. Le. Document embedding with paragraph vectors. arXiv preprint, 1507.07998, 2015. arxiv.org/abs/1507.07998.
    [20]
    J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng. Large scale distributed deep networks. In Proceedings of NIPS, pages 1232-1240, 2012. research.google.com/archive/large_deep_networks_nips2012.pdf.
    [21]
    J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. In Proceedings of OSDI, pages 137-149, 2004. research.google.com/archive/mapreduceosdi04.pdf.
    [22]
    DMLC. MXNet for deep learning, 2016. github.com/dmlc/mxnet.
    [23]
    J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12:2121-2159, 2011. jmlr.org/papers/volume12/duchi11a/duchi11a.pdf.
    [24]
    A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean, T. Mikolov, et al. DeVISE: A deep visual-semantic embedding model. In Proceedings of NIPS, pages 2121-2129, 2013. research.google.com/pubs/archive/41473.pdf.
    [25]
    J. Gonzalez-Dominguez, I. Lopez-Moreno, P. J. Moreno, and J. Gonzalez-Rodriguez. Frame-by-frame language identification in short utterances using deep neural networks. Neural Networks, 64:49-58, 2015. research.google.com/pubs/archive/42929.pdf.
    [26]
    I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. C. Courville, and Y. Bengio. Generative adversarial nets. In Proceedings of NIPS, pages 2672- 2680, 2014. papers.nips.cc/paper/5423-generative-adversarial-nets.pdf.
    [27]
    Google Research. Tensorflow serving, 2016. tensorflow.github.io/serving/.
    [28]
    K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of CVPR, pages 770-778, 2016. arxiv.org/abs/1512.03385.
    [29]
    G. Heigold, V. Vanhoucke, A. Senior, P. Nguyen, M. Ranzato, M. Devin, and J. Dean. Multilingual acoustic models using distributed deep neural networks. In Proceedings of ICASSP, pages 8619-8623, 2013. research.google.com/pubs/archive/40807.pdf.
    [30]
    G. E. Hinton. Learning distributed representations of concepts. In Proceedings of the Eighth Annual Conference of the Cognitive Science Society, pages 1-12, 1986. www.cogsci.ucsd.edu/~ajyu/Teaching/Cogs202_-sp13/Readings/hinton86.pdf.
    [31]
    G. E. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Process. Mag., 29(6):82- 97, 2012. www.cs.toronto.edu/~gdahl/papers/deepSpeechReviewSPM2012.pdf.
    [32]
    S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735-1780, 1997. deeplearning.cs.cmu.edu/pdfs/Hochreiter97_-lstm.pdf.
    [33]
    S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of ICML, pages 448-456, 2015. jmlr.org/proceedings/papers/v37/ioffe15.pdf.
    [34]
    M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed data-parallel programs from sequential building blocks. In Proceedings of EuroSys, pages 59-72, 2007. www.microsoft.com/en-us/research/wpcontent/uploads/2007/03/eurosys07.pdf.
    [35]
    B. Jacob et al. gemmlowp: a small self-contained low-precision GEMM library, 2015. github.com/google/gemmlowp.
    [36]
    B. Jacob, G. Guennebaud, et al. Eigen library for linear algebra. eigen.tuxfamily.org.
    [37]
    S. Jean, K. Cho, R. Memisevic, and Y. Bengio. On using very large target vocabulary for neural machine translation. In Proceedings of ACL-ICJNLP, pages 1-10, July 2015. www.aclweb.org/anthology/P15-1001.
    [38]
    Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of ACM Multimedia, pages 675-678, 2014. arxiv.org/abs/1408.5093.
    [39]
    M. I. Jordan. Serial order: A parallel distributed processing approach. ICS report 8608, Institute for Cognitive Science, UCSD, La Jolla, 1986. cseweb.ucsd.edu/~gary/PAPERSUGGESTIONS/Jordan-TR-8604.pdf.
    [40]
    N. Jouppi. Google supercharges machine learning tasks with TPU custom chip, 2016. cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-customchip.html.
    [41]
    R. Józefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu. Exploring the limits of language modeling. arXiv preprint, 1602.02410, 2016. arxiv.org/abs/1602.02410.
    [42]
    A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. Large-scale video classification with convolutional neural networks. In Proceedings of CVPR, pages 1725-1732, 2014. research.google.com/pubs/archive/42455.pdf.
    [43]
    A. Krizhevsky. One weird trick for parallelizing convolutional neural networks. arXiv preprint, 1404.5997, 2014. arxiv.org/abs/1404.5997.
    [44]
    A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In Proceedings of NIPS, pages 1106-1114, 2012. papers.nips.cc/paper/4824- imagenet-classification-with-deep-convolutional-neural-networks.pdf.
    [45]
    H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin. Exploring strategies for training deep neural networks. Journal of Machine Learning Research, 10:1-40, 2009. jmlr.org/papers/volume10/larochelle09a/larochelle09a.pdf.
    [46]
    A. Lavin and S. Gray. Fast algorithms for convolutional neural networks. In Proceedings of CVPR, pages 4013-4021, 2016. arxiv.org/abs/1509.09308.
    [47]
    Q. Le, M. Ranzato, R. Monga, M. Devin, G. Corrado, K. Chen, J. Dean, and A. Ng. Building high-level features using large scale unsupervised learning. In Proceedings of ICML, pages 81-88, 2012. research.google.com/archive/unsupervised_-icml2012.pdf.
    [48]
    Y. LeCun, C. Cortes, and C. J. Burges. The MNIST database of handwritten digits, 1998. yann.lecun.com/exdb/mnist/.
    [49]
    M. Li, D. G. Andersen, J. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su. Scaling distributed machine learning with the Parameter Server. In Proceedings of OSDI, pages 583-598, 2014. www.usenix.org/system/files/conference/osdi14/osdi14-paper-li_mu.pdf.
    [50]
    C. J. Maddison, A. Huang, I. Sutskever, and D. Silver. Move evaluation in Go using deep convolutional neural networks. arXiv preprint, 1412.6564, 2014. arxiv.org/abs/1412.6564.
    [51]
    F. McSherry, M. Isard, and D. G. Murray. Scalability! But at what COST? In Proceedings of HotOS, HOTOS'15, 2015. www.usenix.org/system/files/conference/hotos15/ hotos15-paper-mcsherry.pdf.
    [52]
    T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in vector space. In Proceedings of ICLR Workshops Track, 2013. arxiv.org/abs/1301.3781.
    [53]
    V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu. Recurrent models of visual attention. In Proceedings of NIPS, pages 2204-2212, 2014. papers.nips.cc/paper/5542-recurrent-models-of-visual-attention.pdf.
    [54]
    V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through deep reinforcement learning. Nature, 518(7540):529-533, 02 2015. dx.doi.org/10.1038/nature14236.
    [55]
    P. Moritz, R. Nishihara, I. Stoica, and M. I. Jordan. SparkNet: Training deep networks in Spark. In Proceedings of ICLR, 2016. arxiv.org/abs/1511.06051.
    [56]
    D. G. Murray, F. McSherry, M. Isard, R. Isaacs, P. Barham, and M. Abadi. Incremental, iterative data processing with timely dataflow. Commun. ACM, 59(10):75-83, Sept. 2016. dl.acm.org/citation.cfm?id=2983551.
    [57]
    A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon, A. De Maria, V. Panneershelvam, M. Suleyman, C. Beattie, S. Petersen, et al. Massively parallel methods for deep reinforcement learning. arXiv preprint, 1507.04296, 2015. arxiv.org/abs/1507.04296.
    [58]
    Nervana Systems. Neon deep learning framework, 2016. github.com/NervanaSystems/neon.
    [59]
    NVIDIA Corporation. NCCL: Optimized primitives for collective multi-GPU communication, 2016. github.com/NVIDIA/nccl.
    [60]
    R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural networks. In Proceedings of ICML, pages 1310-1318, 2013. jmlr.org/proceedings/papers/v28/pascanu13.pdf.
    [61]
    B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-free approach to parallelizing stochastic gradient descent. In Proceedings of NIPS, pages 693-701, 2011. papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent.pdf.
    [62]
    C. J. Rossbach, Y. Yu, J. Currey, J.-P. Martin, and D. Fetterly. Dandelion: a compiler and runtime for heterogeneous systems. In Proceedings of SOSP, pages 49-68, 2013. sigops.org/sosp/sosp13/papers/p49-rossbach.pdf.
    [63]
    D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating errors. In Cognitive modeling, volume 5, pages 213-220. MIT Press, 1988. www.cs.toronto.edu/~hinton/absps/naturebp.pdf.
    [64]
    O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision, 115(3):211-252, 2015. arxiv.org/abs/1409.0575.
    [65]
    A. Smola and S. Narayanamurthy. An architecture for parallel topic models. Proc. VLDB Endow., 3(1-2):703-710, Sept. 2010. vldb.org/pvldb/vldb2010/papers/R63.pdf.
    [66]
    I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton. On the importance of initialization and momentum in deep learning. In Proceedings of ICML, pages 1139-1147, 2013. jmlr.org/proceedings/papers/v28/sutskever13.pdf.
    [67]
    I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In Proceedings of NIPS, pages 3104- 3112, 2014. papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural.pdf.
    [68]
    C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In Proceedings of CVPR, pages 1-9, 2015. arxiv.org/abs/1409.4842.
    [69]
    C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the Inception architecture for computer vision. arXiv preprint, 1512.00567, 2015. arxiv.org/abs/1512.00567.
    [70]
    C. tao Chu, S. K. Kim, Y. an Lin, Y. Yu, G. Bradski, K. Olukotun, and A. Y. Ng. Map-reduce for machine learning on multicore. In Proceedings of NIPS, pages 281-288, 2007. papers.nips.cc/paper/3150-map-reduce-for-machine-learning-on-multicore.pdf.
    [71]
    A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes. Large-scale cluster management at Google with Borg. In Proceedings of EuroSys, 2015. research.google.com/pubs/archive/43438.pdf.
    [72]
    O. Vinyals, L. Kaiser, T. Koo, S. Petrov, I. Sutskever, and G. Hinton. Grammar as a foreign language. arXiv preprint, 2014. arxiv.org/abs/1412.7449.
    [73]
    Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, L. Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and J. Dean. Google's Neural Machine Translation system: Bridging the gap between human and machine translation. arXiv preprint, 1609.08144, 2016. arxiv.org/abs/1609.08144.
    [74]
    Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda, and J. Currey. DryadLINQ: A system for general-purpose distributed data-parallel computing using a high-level language. In Proceedings of OSDI, pages 1-14, 2008. www.usenix.org/legacy/event/osdi08/tech/full_papers/yu_y/yu_y.pdf.
    [75]
    M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In Proceedings of NSDI, pages 15-28, 2012. https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf.
    [76]
    M. D. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang, Q. Le, P. Nguyen, A. Senior, V. Vanhoucke, J. Dean, and G. E. Hinton. On rectified linear units for speech processing. In Proceedings of ICASSP, pages 3517-3521, 2013. research.google.com/pubs/archive/40811.pdf.

    Cited By

    View all
    • (2024)Combining Weight Approximation, Sharing and Retraining for Neural Network Model CompressionACM Transactions on Embedded Computing Systems10.1145/3687466Online publication date: 10-Aug-2024
    • (2024)Cross-Regional Transferability of AI Crop-Type Mapping: Insights and ChallengesProceedings of the 2024 International Conference on Information Technology for Social Good10.1145/3677525.3678696(453-461)Online publication date: 4-Sep-2024
    • (2024)A PSO-based Method to Test Deep Learning Library at API LevelProceedings of the 3rd International Conference on Computer, Artificial Intelligence and Control Engineering10.1145/3672758.3672777(117-130)Online publication date: 26-Jan-2024
    • Show More Cited By
    1. TensorFlow: a system for large-scale machine learning

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM Other conferences
      OSDI'16: Proceedings of the 12th USENIX conference on Operating Systems Design and Implementation
      November 2016
      786 pages
      ISBN:9781931971331

      Sponsors

      • VMware
      • NetApp
      • Google Inc.
      • Microsoft: Microsoft
      • Facebook: Facebook

      In-Cooperation

      Publisher

      USENIX Association

      United States

      Publication History

      Published: 02 November 2016

      Check for updates

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 14 Aug 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Combining Weight Approximation, Sharing and Retraining for Neural Network Model CompressionACM Transactions on Embedded Computing Systems10.1145/3687466Online publication date: 10-Aug-2024
      • (2024)Cross-Regional Transferability of AI Crop-Type Mapping: Insights and ChallengesProceedings of the 2024 International Conference on Information Technology for Social Good10.1145/3677525.3678696(453-461)Online publication date: 4-Sep-2024
      • (2024)A PSO-based Method to Test Deep Learning Library at API LevelProceedings of the 3rd International Conference on Computer, Artificial Intelligence and Control Engineering10.1145/3672758.3672777(117-130)Online publication date: 26-Jan-2024
      • (2024)A Miss Is as Good as A Mile: Metamorphic Testing for Deep Learning OperatorsProceedings of the ACM on Software Engineering10.1145/36607961:FSE(2005-2027)Online publication date: 12-Jul-2024
      • (2024)Lightweight Deep Learning for Resource-Constrained Environments: A SurveyACM Computing Surveys10.1145/365728256:10(1-42)Online publication date: 24-Jun-2024
      • (2024)Reactive Dataflow for Inflight Error Handling in ML WorkflowsProceedings of the Eighth Workshop on Data Management for End-to-End Machine Learning10.1145/3650203.3663333(51-61)Online publication date: 9-Jun-2024
      • (2024)Fasor: A Fast Tensor Program Optimization Framework for Efficient DNN DeploymentProceedings of the 38th ACM International Conference on Supercomputing10.1145/3650200.3656631(498-510)Online publication date: 30-May-2024
      • (2024)The Droplet Search Algorithm for Kernel SchedulingACM Transactions on Architecture and Code Optimization10.1145/365010921:2(1-28)Online publication date: 21-May-2024
      • (2024)An Exploratory Study of Dataset and Model Management in Open Source Machine Learning ApplicationsProceedings of the IEEE/ACM 3rd International Conference on AI Engineering - Software Engineering for AI10.1145/3644815.3644963(64-74)Online publication date: 14-Apr-2024
      • (2024)Convergence of datalog over (Pre-) SemiringsJournal of the ACM10.1145/364302771:2(1-55)Online publication date: 30-Jan-2024
      • Show More Cited By

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media