forked from ispamm/MHyEEG
-
Notifications
You must be signed in to change notification settings - Fork 0
/
earlystopping.py
63 lines (58 loc) · 2.69 KB
/
earlystopping.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
"""Taken from https://github.com/Bjarten/early-stopping-pytorch"""
import numpy as np
import torch
class EarlyStopping:
"""Early stops the training if validation metric doesn't improve after a given patience."""
def __init__(self, patience=7, verbose=False, delta=0, path='checkpoint.pt', trace_func=print, mode='max'):
"""
Args:
patience (int): How long to wait after last time validation loss improved.
Default: 7
verbose (bool): If True, prints a message for each validation loss improvement.
Default: False
delta (float): Minimum change in the monitored quantity to qualify as an improvement.
Default: 0
path (str): Path for the checkpoint to be saved to.
Default: 'checkpoint.pt'
trace_func (function): trace print function.
Default: print
mode (str): 'min' to save model when metric decreases (e.g. loss), 'max' when it increases (e.g. accuracy).
Default: 'max'
"""
self.patience = patience
self.verbose = verbose
self.counter = 0
self.best_score = None
self.early_stop = False
self.val_metric_min = -np.Inf
self.delta = delta
self.path = path
self.trace_func = trace_func
self.mode = mode
def __call__(self, metric, model):
if self.mode == 'min':
#Loss saved
score = -metric
else:
score = metric
if self.best_score is None: # initial step
self.best_score = score
self.save_checkpoint(metric, model)
elif score < self.best_score + self.delta: # if not improving (i.e. not growing)
self.counter += 1
self.trace_func(f'EarlyStopping counter: {self.counter} out of {self.patience}')
if self.counter >= self.patience:
self.early_stop = True
else: # if improved (i.e. grown)
self.best_score = score
self.save_checkpoint(metric, model)
self.counter = 0
def save_checkpoint(self, metric, model):
'''Saves model when metric imroves.'''
if self.verbose:
if metric > 0:
self.trace_func(f'Validation auc increased ({self.val_metric_min:.6f} --> {metric:.6f}). Saving model ...')
else: # case a loss is given
self.trace_func(f'Validation auc increased ({-self.val_metric_min:.6f} --> {-metric:.6f}). Saving model ...')
torch.save(model.state_dict(), self.path)
self.val_metric_min = metric