-
Notifications
You must be signed in to change notification settings - Fork 26
/
Joy_caption_node.py
219 lines (175 loc) · 7.87 KB
/
Joy_caption_node.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from huggingface_hub import InferenceClient
from torch import nn
from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM
from pathlib import Path
import torch
import torch.amp.autocast_mode
from PIL import Image
import os
import folder_paths
from .lib.ximg import *
from .lib.xmodel import *
from model_management import get_torch_device
DEVICE = get_torch_device()
# def get_torch_device():
# """
# 返回PyTorch模型应该运行的设备(CPU或GPU)
# 如果系统支持CUDA并且至少有一个GPU可用,则返回GPU设备;否则返回CPU设备。
# """
# if torch.cuda.is_available():
# # 选择第一个可用的GPU
# device = torch.device("cuda:0")
# print(f"There are {torch.cuda.device_count()} GPU(s) available.")
# print(f"We will use the GPU: {device}")
# else:
# # 如果没有GPU可用,则使用CPU
# device = torch.device("cpu")
# print("No GPU available, using the CPU instead.")
# return device
class JoyPipeline:
def __init__(self):
self.clip_model = None
self.clip_processor =None
self.tokenizer = None
self.text_model = None
self.image_adapter = None
self.parent = None
def clearCache(self):
self.clip_model = None
self.clip_processor =None
self.tokenizer = None
self.text_model = None
self.image_adapter = None
class ImageAdapter(nn.Module):
def __init__(self, input_features: int, output_features: int):
super().__init__()
self.linear1 = nn.Linear(input_features, output_features)
self.activation = nn.GELU()
self.linear2 = nn.Linear(output_features, output_features)
def forward(self, vision_outputs: torch.Tensor):
x = self.linear1(vision_outputs)
x = self.activation(x)
x = self.linear2(x)
return x
class Joy_caption_load:
def __init__(self):
self.model = None
self.pipeline = JoyPipeline()
self.pipeline.parent = self
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": (["unsloth/Meta-Llama-3.1-8B-bnb-4bit", "meta-llama/Meta-Llama-3.1-8B"],),
}
}
CATEGORY = "CXH/LLM"
RETURN_TYPES = ("JoyPipeline",)
FUNCTION = "gen"
def loadCheckPoint(self):
# 清除一波
if self.pipeline != None:
self.pipeline.clearCache()
# clip
model_id = "google/siglip-so400m-patch14-384"
CLIP_PATH = download_hg_model(model_id,"clip")
clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
clip_model = AutoModel.from_pretrained(
CLIP_PATH,
trust_remote_code=True
)
clip_model = clip_model.vision_model
clip_model.eval()
clip_model.requires_grad_(False)
clip_model.to("cuda")
# LLM
MODEL_PATH = download_hg_model(self.model,"LLM")
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH,use_fast=False)
assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Tokenizer is of type {type(tokenizer)}"
text_model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto",trust_remote_code=True)
text_model.eval()
# Image Adapter
adapter_path = os.path.join(folder_paths.models_dir,"Joy_caption","image_adapter.pt")
image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size) # ImageAdapter(clip_model.config.hidden_size, 4096)
image_adapter.load_state_dict(torch.load(adapter_path, map_location="cpu"))
adjusted_adapter = image_adapter #AdjustedImageAdapter(image_adapter, text_model.config.hidden_size)
adjusted_adapter.eval()
adjusted_adapter.to("cuda")
self.pipeline.clip_model = clip_model
self.pipeline.clip_processor = clip_processor
self.pipeline.tokenizer = tokenizer
self.pipeline.text_model = text_model
self.pipeline.image_adapter = adjusted_adapter
def clearCache(self):
if self.pipeline != None:
self.pipeline.clearCache()
def gen(self,model):
if self.model == None or self.model != model or self.pipeline == None:
self.model = model
self.loadCheckPoint()
return (self.pipeline,)
class Joy_caption:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"joy_pipeline": ("JoyPipeline",),
"image": ("IMAGE",),
"prompt": ("STRING", {"multiline": True, "default": "A descriptive caption for this image"},),
"max_new_tokens":("INT", {"default": 1024, "min": 10, "max": 4096, "step": 1}),
"temperature": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}),
"cache": ("BOOLEAN", {"default": False}),
}
}
CATEGORY = "CXH/LLM"
RETURN_TYPES = ("STRING",)
FUNCTION = "gen"
def gen(self,joy_pipeline,image,prompt,max_new_tokens,temperature,cache):
if joy_pipeline.clip_processor == None :
joy_pipeline.parent.loadCheckPoint()
clip_processor = joy_pipeline.clip_processor
tokenizer = joy_pipeline.tokenizer
clip_model = joy_pipeline.clip_model
image_adapter = joy_pipeline.image_adapter
text_model = joy_pipeline.text_model
input_image = tensor2pil(image)
# Preprocess image
pImge = clip_processor(images=input_image, return_tensors='pt').pixel_values
pImge = pImge.to(DEVICE)
# Tokenize the prompt
prompt = tokenizer.encode(prompt, return_tensors='pt', padding=False, truncation=False, add_special_tokens=False)
# Embed image
with torch.amp.autocast_mode.autocast(str(DEVICE), enabled=True):
vision_outputs = clip_model(pixel_values=pImge, output_hidden_states=True)
image_features = vision_outputs.hidden_states[-2]
embedded_images = image_adapter(image_features)
embedded_images = embedded_images.to(DEVICE)
# Embed prompt
prompt_embeds = text_model.model.embed_tokens(prompt.to(DEVICE))
assert prompt_embeds.shape == (1, prompt.shape[1], text_model.config.hidden_size), f"Prompt shape is {prompt_embeds.shape}, expected {(1, prompt.shape[1], text_model.config.hidden_size)}"
embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64))
# Construct prompts
inputs_embeds = torch.cat([
embedded_bos.expand(embedded_images.shape[0], -1, -1),
embedded_images.to(dtype=embedded_bos.dtype),
prompt_embeds.expand(embedded_images.shape[0], -1, -1),
], dim=1)
input_ids = torch.cat([
torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long),
torch.zeros((1, embedded_images.shape[1]), dtype=torch.long),
prompt,
], dim=1).to(DEVICE)
attention_mask = torch.ones_like(input_ids)
generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=max_new_tokens, do_sample=True, top_k=10, temperature=temperature, suppress_tokens=None)
# Trim off the prompt
generate_ids = generate_ids[:, input_ids.shape[1]:]
if generate_ids[0][-1] == tokenizer.eos_token_id:
generate_ids = generate_ids[:, :-1]
caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0]
r = caption.strip()
if cache == False:
joy_pipeline.parent.clearCache()
return (r,)