-
Notifications
You must be signed in to change notification settings - Fork 80
/
sampler_hijack.py
245 lines (192 loc) · 10.8 KB
/
sampler_hijack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import math
import torch
import transformers
from transformers import LogitsWarper
from transformers.generation.logits_process import (
LogitNormalization,
LogitsProcessor,
LogitsProcessorList,
TemperatureLogitsWarper
)
global_scores = None
def is_torch_xpu_available():
return False
class TailFreeLogitsWarper(LogitsWarper):
def __init__(self, tfs: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
tfs = float(tfs)
if tfs < 0 or tfs > 1.0:
raise ValueError(f"`tfs` has to be a float >= 0 and <= 1, but is {tfs}")
self.tfs = tfs
self.filter_value = filter_value
self.min_tokens_to_keep = min_tokens_to_keep
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
sorted_logits, sorted_indices = torch.sort(scores, descending=True)
probs = sorted_logits.softmax(dim=-1)
# Compute second derivative normalized CDF
d2 = probs.diff().diff().abs()
normalized_d2 = d2 / d2.sum(dim=-1, keepdim=True)
normalized_d2_cdf = normalized_d2.cumsum(dim=-1)
# Remove tokens with CDF value above the threshold (token with 0 are kept)
sorted_indices_to_remove = normalized_d2_cdf > self.tfs
# Centre the distribution around the cutoff as in the original implementation of the algorithm
sorted_indices_to_remove = torch.cat(
(
torch.zeros(scores.shape[0], 1, dtype=torch.bool, device=scores.device),
sorted_indices_to_remove,
torch.ones(scores.shape[0], 1, dtype=torch.bool, device=scores.device),
),
dim=-1,
)
if self.min_tokens_to_keep > 1:
# Keep at least min_tokens_to_keep
sorted_indices_to_remove[..., : self.min_tokens_to_keep] = 0
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
scores = scores.masked_fill(indices_to_remove, self.filter_value)
return scores
class TopALogitsWarper(LogitsWarper):
def __init__(self, top_a: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
top_a = float(top_a)
if top_a < 0 or top_a > 1.0:
raise ValueError(f"`top_a` has to be a float >= 0 and <= 1, but is {top_a}")
self.top_a = top_a
self.filter_value = filter_value
self.min_tokens_to_keep = min_tokens_to_keep
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
sorted_logits, sorted_indices = torch.sort(scores, descending=True)
probs = sorted_logits.softmax(dim=-1)
# Remove tokens with probability less than top_a*(max(probs))^2 (token with 0 are kept)
probs_max = probs[..., 0, None]
sorted_indices_to_remove = probs < probs_max * probs_max * self.top_a
if self.min_tokens_to_keep > 1:
# Keep at least min_tokens_to_keep
sorted_indices_to_remove[..., : self.min_tokens_to_keep] = 0
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
scores = scores.masked_fill(indices_to_remove, self.filter_value)
return scores
class MirostatLogitsWarper(LogitsWarper):
def __init__(self, mirostat_mode: int, mirostat_tau: float, mirostat_eta: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
if mirostat_mode not in [2]:
raise ValueError(f"`mirostat` has to be a an integer 2, but is {mirostat_mode}")
self.mirostat_mode = mirostat_mode
self.mirostat_eta = mirostat_eta
self.mirostat_tau = mirostat_tau
self.filter_value = filter_value
self.min_tokens_to_keep = min_tokens_to_keep
self.mu = 2 * self.mirostat_tau
self.e = 0
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
logits = scores[0]
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
prob_original = torch.softmax(sorted_logits, dim=-1).tolist() # candidates
# Truncate the words with surprise values greater than mu
for i, candidate in enumerate(prob_original):
if candidate > 0 and -math.log2(candidate) > self.mu:
if (i == 0):
sorted_logits = sorted_logits[:1]
else:
sorted_logits = sorted_logits[:i]
break
# Normalize the probabilities of the remaining words
if is_torch_xpu_available():
prob_topk = torch.softmax(sorted_logits, dim=0).to("xpu")
prev_i = torch.multinomial(prob_topk, num_samples=1, replacement=True).to("xpu")
else:
prob_topk = torch.softmax(sorted_logits, dim=0).to('cuda')
prev_i = torch.multinomial(prob_topk, num_samples=1, replacement=True).to('cuda')
observed_surprise = -math.log2(prob_topk[prev_i])
self.e = observed_surprise - self.mirostat_tau
# Update mu using the learning rate and error
self.mu -= self.mirostat_eta * self.e
sorted_indices_to_remove = torch.ones_like(scores[0], dtype=torch.bool)
sorted_indices_to_remove[prev_i] = False
indices_to_remove = sorted_indices_to_remove.unsqueeze(0).scatter(1, sorted_indices.unsqueeze(0), sorted_indices_to_remove.unsqueeze(0))
scores = scores.masked_fill(indices_to_remove, self.filter_value)
return scores
class SpyLogitsWarper(LogitsWarper):
def __init__(self):
pass
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
global global_scores
global_scores = scores
return scores
class RepetitionPenaltyLogitsProcessorWithRange(LogitsProcessor):
'''
Copied from the transformers library
'''
def __init__(self, penalty: float, presence_penalty: float, frequency_penalty: float, _range: int):
if not (penalty > 0):
raise ValueError(f"`penalty` has to be strictly positive, but is {penalty}")
self.penalty = penalty
self.presence_penalty = presence_penalty
self.frequency_penalty = frequency_penalty
self._range = _range
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
input_ids = input_ids[:, -self._range:]
# We loop here because torch.unique() needs to process each row separately in the
# case that batch_size > 1.
for input_ids_row, scores_row in zip(input_ids, scores):
unique_ids, counts = torch.unique(input_ids_row, return_counts=True)
score = torch.gather(scores_row, 0, unique_ids)
# multiplicative repetition penalty
# if score < 0 then repetition penalty has to be multiplied to reduce the previous token probability
score = torch.where(score < 0, score * self.penalty, score / self.penalty)
scores_row.scatter_(0, unique_ids, score)
# presence_penalty and frequency_penalty
raw_presence_penalty = (counts > 0).to(scores.dtype)
raw_frequency_penalty = counts.to(scores.dtype)
additive_penalty = raw_presence_penalty*self.presence_penalty + raw_frequency_penalty*self.frequency_penalty
scores_row.scatter_add_(0, unique_ids, -additive_penalty)
return scores
def get_logits_warper_patch(self, generation_config):
warpers = self._get_logits_warper_old(generation_config)
warpers_to_add = LogitsProcessorList()
min_tokens_to_keep = 2 if generation_config.num_beams > 1 else 1
if generation_config.mirostat_mode is not None and generation_config.mirostat_mode == 2:
warpers_to_add.append(MirostatLogitsWarper(mirostat_mode=generation_config.mirostat_mode, mirostat_eta=generation_config.mirostat_eta, mirostat_tau=generation_config.mirostat_tau, min_tokens_to_keep=min_tokens_to_keep))
# We need to disable samplers other than temperature
for warper in warpers:
if not isinstance(warper, TemperatureLogitsWarper):
warpers.remove(warper)
else:
if generation_config.tfs is not None and 0.0 <= generation_config.tfs <= 1.0:
warpers_to_add.append(TailFreeLogitsWarper(tfs=generation_config.tfs, min_tokens_to_keep=min_tokens_to_keep))
if generation_config.top_a is not None and 0.0 <= generation_config.top_a <= 1.0:
warpers_to_add.append(TopALogitsWarper(top_a=generation_config.top_a, min_tokens_to_keep=min_tokens_to_keep))
if warpers and isinstance(warpers[-1], LogitNormalization):
warpers = warpers[:-1] + warpers_to_add + [warpers[-1]]
else:
warpers += warpers_to_add
warpers.append(SpyLogitsWarper())
return warpers
def get_logits_processor_patch(self, **kwargs):
repetition_penalty = kwargs['generation_config'].repetition_penalty
presence_penalty = kwargs['generation_config'].presence_penalty
frequency_penalty = kwargs['generation_config'].frequency_penalty
repetition_penalty_range = kwargs['generation_config'].repetition_penalty_range
do_rep_pen_hijack = (repetition_penalty > 1) or (presence_penalty != 0) or (frequency_penalty != 0)
if do_rep_pen_hijack:
# Make sure that a RepetitionPenaltyLogitsProcessor will be created
kwargs['generation_config'].repetition_penalty = 1.1 # must set to some value > 1
result = self._get_logits_processor_old(**kwargs)
if do_rep_pen_hijack:
for i in range(len(result)):
if result[i].__class__.__name__ == 'RepetitionPenaltyLogitsProcessor':
result[i] = RepetitionPenaltyLogitsProcessorWithRange(repetition_penalty, presence_penalty, frequency_penalty, repetition_penalty_range)
return result
def generation_config_init_patch(self, **kwargs):
self.__init___old(**kwargs)
self.tfs = kwargs.pop("tfs", 1.0)
self.top_a = kwargs.pop("top_a", 0.0)
self.mirostat_mode = kwargs.pop("mirostat_mode", 0)
self.mirostat_eta = kwargs.pop("mirostat_eta", 0.1)
self.mirostat_tau = kwargs.pop("mirostat_tau", 5)
self.repetition_penalty_range = kwargs.pop("repetition_penalty_range", 0)
self.presence_penalty = kwargs.pop("presence_penalty", 0)
self.frequency_penalty = kwargs.pop("frequency_penalty", 0)
def hijack_samplers():
transformers.GenerationMixin._get_logits_warper_old = transformers.GenerationMixin._get_logits_warper
transformers.GenerationMixin._get_logits_warper = get_logits_warper_patch
transformers.GenerationMixin._get_logits_processor_old = transformers.GenerationMixin._get_logits_processor
transformers.GenerationMixin._get_logits_processor = get_logits_processor_patch
transformers.GenerationConfig.__init___old = transformers.GenerationConfig.__init__
transformers.GenerationConfig.__init__ = generation_config_init_patch