Skip to content
This repository has been archived by the owner on Sep 20, 2024. It is now read-only.

michioxd/koboldai-chub-venus

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 

Repository files navigation

KoboldAI for Chub Venus on Google Colab

By michioxd

Open in Google Colab

Google Colab

Usage

Browser setup

Because the CORS very stupid so we need disable them in Chromium (Chrome and another Chromium-based is fine but still recommend Chromium)

Download Chromium

Linux:

chromium-browser --disable-web-security --user-data-dir="[some directory here]"

Windows:

  • Right click to Chromium shortcut > Properties
  • At Target, add this:
 --disable-web-security --user-data-dir="[some directory here]"

It should be look like this:

C:\Users\Administrator\AppData\Local\Chromium\Application\chrome.exe --disable-web-security --user-data-dir="[some directory here]"

Remember to change [some directory here] to another directory.

Like:

C:\Users\<yourusername>\ChromiumData
or
/home/<yourusername>/ChromiumData

Cloudflare Tunnels Setup

  • Go to Zero Trust
  • In sidebar, click Access > Tunnels
  • Click Create a tunnel
  • Name your tunel, then click Next
  • Copy token (random string) from installation guide:
sudo cloudflared service install <TOKEN>
  • Paste to cfToken

  • Click next

  • Public hostname:

    Choose a domain (and subdomain if you want)

    Remember: Path must be empty

  • Service section:

    Type: HTTP

    URL: 127.0.0.1:5000

  • Click Save tunnel

Google Colab

Click in the given order

Chub Venus setup

Remember to run Chub Venus in already disabled CORS browser

  • Go to API Settings (click hambuger dropdown button)
  • At API, select KoboldAI
  • KoboldAI API URL set to your public hostname
  • Click Check KoboldAI then click Save Settings

KoboldAI still run in Read Only mode

  • Go to your public hostname
  • Click to AI button
  • Select to another Model (8GB VRAM Model is recommend)

PLEASE NOTE: Google only give 15GB VRAM