The code is tested with Red Hat Enterprise Linux Workstation release 7.7 (Maipo), g++ (GCC) 5.3.1, TensorFlow v1.12, CUDA 9.0 and cuDNN v7.4.
Install TensorFlow v1.12:
pip install tensorflow-gpu==1.12
Compile the CUDA layers for PointNet++, which we used for furthest point sampling (FPS) and radius neighbouring search, and Chamfer Distance (CD) and Earth Mover's Distance (EMD):
cd modules/tf_ops/3d_interpolation && make
cd modules/tf_ops/approxmatch && make
cd modules/tf_ops/grouping && make
cd modules/tf_ops/nn_distance && make
cd modules/tf_ops/sampling && make
Before compiling, plese correctly set the CUDA_HOME and CUDNN_HOME in each Makefile under the 3d_interpolation, approxmatch, grouping, nn_distance and sampling directories, resplectively.
CUDA_HOME := /usr/local/cuda-9.0
CUDNN_HOME := /usr/local/cudnn7.4-9.0
We provide the test sets for evaluating moving point cloud prediction:
The code is released under MIT License.
If you find our work useful in your research, please consider citing:
@article{fan19pointrnn,
author = {Hehe Fan and Yi Yang},
title = {PointRNN: Point Recurrent Neural Network for Moving Point Cloud Processing},
journal = {arXiv},
volume = {1910.08287},
year = {2019}
}
- PointRNN PyTorch implementation: https://github.com/hehefan/PointRNN-PyTorch
- PointNet++ TensorFlow implementation: https://github.com/charlesq34/pointnet2
Dataset | 1 MNIST | 2 MNIST | Argoverse | Argoverse | nuScenes | nuScenes |
---|---|---|---|---|---|---|
Input | ||||||
Ground truth | ||||||
PointRNN | ||||||
PointGRU | ||||||
PointLSTM |