Capstone is an experimental tablet+stylus device for creative professionals to develop their ideas. We used it as a playground to explore questions about digital tools for thinking and explaining, how to bring together desktop and touch interface metaphors, and what a power user might want from their digital tools in the coming five to ten years.
It was developed by Ink & Switch as part of our research in this area. While we're no longer developing Capstone, we learned a lot and wanted to share the code publicly.
Briefly, Capstone works as follows:
- You bring data into app - web pages, text snippets, and images - via a Chrome extension
- You organize your data visually on boards in the Capstone tablet app
- You can additionally write on boards for e.g. free-form notes and drawings
A screenshot showing the app in a trip planning use case:
The easiest way to get started is with a ChromeOS tablet device, such as the Google Pixelbook. Install these two apps on your ChromeOS tablet from the Chrome Web Store:
Then open the Capstone app and use the Capstone Clipper extension in Chrome to bring in content.
The cheatsheet describes how to use the app in detail.
It's possible to run degraded versions of Capstone on other devices - see below.
You can develop Capstone directly on ChromeOS tablets using the experimental Linux subsystem.
Linux is not yet included by default, so first install it according to these instructions.
Open the Terminal app and install NodeJS and Yarn. For example:
$ curl -sL https://nodejs.org/dist/v10.8.0/node-v10.8.0-linux-x64.tar.xz > nodejs.tar.xz
$ tar xJvf nodejs.tar.xz
$ export PATH=$HOME/node-v10.8.0-linux-x64/bin:$PATH
$ echo 'export PATH=$HOME/node-v10.8.0-linux-x64/bin:$PATH' >> ~/.bashrc
$ npm install -g yarn
Then proceed to "Building from source" below.
You'll need access to a standard NodeJS+Yarn install and a command line, but otherwise the instructions in "Building from source" below should work fine. See also "Pairing" on how to use two devices (e.g. a ChromeOS tablet and regular desktop) at the same time.
Note that running the main Capstone on something other than a ChromeOS tablet (including non-ChromeOS tablets like the Surface), will result in a degraded and/or buggy experience. But the clipper should work fine anywhere, and even the degraded app can be useful in development.
Clone into capstone
on your development machine (ChromeOS tablet or otherwise)
and run:
$ yarn install
$ yarn dev
Build artifacts are emitted to dist/capstone
and dist/clipper
for the main
app and the web clipper extension, respectively.
To install these artifacts, open Chrome, navigate to chrome://extensions
, and
select "Load unpacked". Choose dist/capstone
, then do this again for
dist/clipper
. This should install "Capstone" as an app and "Capstone Clipper"
as a Chrome extensions on that device.
You'll need to do this on each device you want to use.
You can link a desktop and tablet app together for a smoother workflow. In particular you may want to capture data from your desktop in the course of normal web browsing, but read/organize/sketch on your tablet.
Do this, first on your tablet open the Capstone app, press right-shift to open the debug panel, and click "copy" to copy the workspace URL. Send this to your desktop out of band (e.g. via email). On your desktop, open the Capstone app and then paste the URL.
Once that's done, you can e.g. add files to the desktop app and see them instantly appear on your tablet, or clip web pages from your desktop and see them show up on the tablet.
Capstone uses a rendezvous-style cloud server to implement discovery and "peer-to-peer" messaging. (This was a workaround for technical issues we experienced with a true peer-to-peer stack.) By default, installs of the app use a shared cloud server we run on Heroku.
You can alternately deploy your own cloud server:
$ TODO
To configure an instance of your Capstone app to use a custom cloud server, instead of the default one:
$ TODO
Useful commands:
yarn start
: Start the development buildyarn dev
: Runyarn install
and then build once in development modeyarn build
: Runyarn install
and then build once in production modeyarn build --env.>: Run the build for only the capstone app. Also works with
yarn start
andyarn dev
yarn clean
: Deletedist/*
for a clean buildyarn test
: Same asyarn tests
yarn repl
: Start a TypeScript REPLyarn cloud
: Run a development cloud server on localhostyarn format
: Format allsrc/*
code with prettieryarn capstone
: Open the "capstone" Chrome app. Runyarn start
firstyarn clipper
: Open the "clipper" Chrome app. Runyarn start
firstyarn tests
: Open the "tests" Chrome app. Runyarn start
first
We're using prettier
for code formatting.
It should be recommended in the extensions tab of VSCode, and there is
support for other editors as well.
Otherwise, you can format the code by running yarn format
.
Widgets are React components that handle the rendering and construction of a document.
A widget component is required to accept two props:
url
is a document URL of the form:capstone://Image/5M23ked3t3UBQGDS5uDqWVNsffebBhmo3PjguECRt7xH/HDP
mode
is a string enum informing the widget how it's expected to render1. Possible values are:"fullscreen"
: the widget is full screen."embed"
: the widget is embedded in another document (e.g. on the board)."preview"
: same as "embed", but the widget should not expect user interaction.
Given a document URL, a widget can be rendered using Content
:
<Content url={url} mode="preview" />
Every widget must implement a static reify(doc)
method which translates a
free-form document which you hope contains your data into a definitive data
structure you can render. The reify method helps to guarantee that later in
your code you won't encounter runtime errors caused by unexpected null
or
undefined
fields or subfields.
To make widgets easier to build, a base Widget
class is provided.
A basic widget looks like this:
import * as React from "react"
import Content from "capstone/Content"
import Widget, { Doc, AnyDoc } from "capstone/Widget"
// These are the properties we expect our document to include
interface Model {
count: number
}
export default Counter extends Widget<Model> {
static reify(doc: AnyDoc): Model {
return {
count: Content.number(doc.count, 0), // Content.number ensures that doc.count is a number, and provides 0 as a default
}
}
show({count}: Doc<Model>) {
return (
<button onClick={this.click}>{count}</button>
)
}
click = () => {
this.change(doc => {
doc.count += 1
})
}
}
Content.register("Counter", Counter) // Register the widget with Content, so other components can render it.
The capstone project contains a partially implemented “Actor” system. Actors
are a means of manipulating documents independent of the React/UI hierarchy
(for the most part - Widget components can send messages to Actors). Actors
send and receive messages which have a "topic" and are addressed to specific
documents. Actors are generally implemented per-plugin and provide plugin-
specific logic for manipulating documents. For example, the BoardActor
provided by the Board
plugin will handle a ReceiveDocuments
message by
adding those documents to a board as card.
Widgets can communicate with the Actor system via their emit
prop. emit
acts as a pre-addressed message send
function - all messages sent from the
Widget are automatically addressed to the Widget’s own document and sent to the
Actor provided by the widget’s plugin.
In the developer console for the backend process some debug tools are available type
> peek()
To see the documents being track by the backend
> peek(docid)
To get more info on a single doc
> peek(docid,"p")
To get more info on peers and network activity
[1]: mode
is intended to give the widget a general
sense of what it can expect about the context it is rendering into. For example,
a widget receiving "fullscreen"
can expect that it is (almost) the only thing
rendered on the screen. The widget might then show additional controls, or enable
a richer set of gestures.
Similarly, "preview"
is informing the widget that it is being rendered as a
preview and will not receive user input events. The widget might hide
interactive controls in this mode.
mode
is not explicitly saying anything about the size of the widget, which
will likely be provided via a separate prop.
Released under the MIT license.
Capstone was created in 2018 by Adam Wiggins, Orion Henry, Peter van Hardenberg, Mark McGranaghan, Gokcen Keskin, Jeff Peterson, Julia Roggatz, and Matt Tognett; with contributions from James Lindenbaum, Martin Kleppmann, and Szymon Kaliski.