Skip to content
forked from tsb0601/EMP-SSL

This repository contains the implementation for the paper "EMP-SSL: Towards Self-Supervised Learning in One Training Epoch."

Notifications You must be signed in to change notification settings

kachayev/EMP-SSL

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

EMP-SSL: Towards Self-Supervised Learning in One Training Epoch

arXiv

Training Pipeline

Authors: Shengbang Tong*, Yubei Chen*, Yi Ma, Yann LeCun

Introduction

This repository contains the implementation for the paper "EMP-SSL: Towards Self-Supervised Learning in One Training Epoch." The paper introduces a simplistic but efficient self-supervised learning method called Extreme-Multi-Patch Self-Supervised-Learning (EMP-SSL). EMP-SSL significantly reduces the training epochs required for convergence by increasing the number of fix size image patches from each image instance.

Preparing Training Data

Cifar10 and Cifar100 can be downloaded automatically in the script. ImageNet100 is a special subset of ImageNet. Details can be found in this link.

Getting Started

Current code implementation supports Cifar10, Cifar100 and ImageNet100.

To get started with the EMP-SSL implementation, follow these instructions:

1. Clone this repository

git clone https://github.com/tsb0601/emp-ssl.git
cd emp-ssl

2. Install required packages

pip install -r requirements.txt

3. Training

Reproducing 1-epoch results

CIFAR-10
1 Epoch
CIFAR-100
1 Epoch
Tiny ImageNet
1 epochs
ImageNet-100
1 epochs
EMP-SSL (1 Epoch) 0.842 0.585 0.381 0.585

For CIFAR10 or CIFAR100

python main.py --data cifar10 --epoch 2 --patch_sim 200 --arch 'resnet18-cifar' --num_patches 20 --lr 0.3

For ImageNet100

python main.py --data imagenet100 --epoch 2 --patch_sim 200 --arch 'resnet18-imagenet' --num_patches 20 --lr 0.3

Reproducing multi epochs results

CIFAR-10
1 Epoch
CIFAR-10
10 Epochs
CIFAR-10
30 Epochs
CIFAR-10
1000 Epochs
CIFAR-100
1 Epoch
CIFAR-100
10 Epochs
CIFAR-100
30 Epochs
CIFAR-100
1000 Epochs
Tiny ImageNet
10 Epochs
Tiny ImageNet
1000 Epochs
ImageNet-100
10 Epochs
ImageNet-100
400 Epochs
SimCLR 0.282 0.565 0.663 0.910 0.054 0.185 0.341 0.662 - 0.488 - 0.776
BYOL 0.249 0.489 0.684 0.926 0.043 0.150 0.349 0.708 - 0.510 - 0.802
VICReg 0.406 0.697 0.781 0.921 0.079 0.319 0.479 0.685 - - - 0.792
SwAV 0.245 0.532 0.767 0.923 0.028 0.208 0.294 0.658 - - - 0.740
ReSSL 0.245 0.256 0.525 0.914 0.033 0.122 0.247 0.674 - - - 0.769
EMP-SSL (20 patches) 0.806 0.907 0.931 - 0.551 0.678 0.724 - - - - -
EMP-SSL (200 patches) 0.826* 0.915 0.934 - 0.577 0.701 0.733 - 0.515 - 0.789 -

* Here, we change learning rate schedule to decay in 30 epochs, so 1 epoch accuracy will be slightly lower than optimizing for 1-epoch training.

Change num_patches here to change the number of patches used in EMP-SSL training.

python main.py --data cifar10 --epoch 30 --patch_sim 200 --arch 'resnet18-cifar' --num_patches 20 --lr 0.3

4. Evaluating

Because our model is trained with only fixed size image patches. To evaluate the performance, we adopt bag-of-features model from intra-instance VICReg paper. Change test_patches here to adjust number of patches used in bag-of-feature model for different GPUs.

python evaluate.py --model_path 'path to your evaluated model' --test_patches 128

Acknowledgment

This repo is inspired by MCR2, solo-learn and NMCE repo.

Citation

If you find this repository useful, please consider giving a star ⭐ and citation:

@article{tong2023empssl,
title={EMP-SSL: Towards Self-Supervised Learning in One Training Epoch},
author={Shengbang Tong and Yubei Chen and Yi Ma and Yann Lecun},
journal={arXiv preprint arXiv:2304.03977},
year={2023}
}

About

This repository contains the implementation for the paper "EMP-SSL: Towards Self-Supervised Learning in One Training Epoch."

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%