forked from OSGeo/gdal
-
Notifications
You must be signed in to change notification settings - Fork 0
/
thinplatespline.cpp
719 lines (643 loc) · 21.6 KB
/
thinplatespline.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
/******************************************************************************
*
* Project: GDAL Warp API
* Purpose: Implemenentation of 2D Thin Plate Spline transformer.
* Author: VIZRT Development Team.
*
* This code was provided by Gilad Ronnen (gro at visrt dot com) with
* permission to reuse under the following license.
*
******************************************************************************
* Copyright (c) 2004, VIZRT Inc.
* Copyright (c) 2008-2014, Even Rouault <even dot rouault at spatialys.com>
*
* SPDX-License-Identifier: MIT
****************************************************************************/
/*! @cond Doxygen_Suppress */
#include "cpl_port.h"
#include "thinplatespline.h"
#include "gdallinearsystem.h"
#include <climits>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <limits>
#include <utility>
#include "cpl_error.h"
#include "cpl_vsi.h"
//////////////////////////////////////////////////////////////////////////////
//// vizGeorefSpline2D
//////////////////////////////////////////////////////////////////////////////
// #define VIZ_GEOREF_SPLINE_DEBUG 0
bool VizGeorefSpline2D::grow_points()
{
const int new_max = _max_nof_points * 2 + 2 + 3;
double *new_x =
static_cast<double *>(VSI_REALLOC_VERBOSE(x, sizeof(double) * new_max));
if (!new_x)
return false;
x = new_x;
double *new_y =
static_cast<double *>(VSI_REALLOC_VERBOSE(y, sizeof(double) * new_max));
if (!new_y)
return false;
y = new_y;
double *new_u =
static_cast<double *>(VSI_REALLOC_VERBOSE(u, sizeof(double) * new_max));
if (!new_u)
return false;
u = new_u;
int *new_unused =
static_cast<int *>(VSI_REALLOC_VERBOSE(unused, sizeof(int) * new_max));
if (!new_unused)
return false;
unused = new_unused;
int *new_index =
static_cast<int *>(VSI_REALLOC_VERBOSE(index, sizeof(int) * new_max));
if (!new_index)
return false;
index = new_index;
for (int i = 0; i < _nof_vars; i++)
{
double *rhs_i_new = static_cast<double *>(
VSI_REALLOC_VERBOSE(rhs[i], sizeof(double) * new_max));
if (!rhs_i_new)
return false;
rhs[i] = rhs_i_new;
double *coef_i_new = static_cast<double *>(
VSI_REALLOC_VERBOSE(coef[i], sizeof(double) * new_max));
if (!coef_i_new)
return false;
coef[i] = coef_i_new;
if (_max_nof_points == 0)
{
memset(rhs[i], 0, 3 * sizeof(double));
memset(coef[i], 0, 3 * sizeof(double));
}
}
_max_nof_points = new_max - 3;
return true;
}
bool VizGeorefSpline2D::add_point(const double Px, const double Py,
const double *Pvars)
{
type = VIZ_GEOREF_SPLINE_POINT_WAS_ADDED;
int i;
if (_nof_points == _max_nof_points)
{
if (!grow_points())
return false;
}
i = _nof_points;
// A new point is added.
x[i] = Px;
y[i] = Py;
for (int j = 0; j < _nof_vars; j++)
rhs[j][i + 3] = Pvars[j];
_nof_points++;
return true;
}
#if 0
bool VizGeorefSpline2D::change_point( int index, double Px, double Py,
double* Pvars )
{
if( index < _nof_points )
{
int i = index;
x[i] = Px;
y[i] = Py;
for( int j = 0; j < _nof_vars; j++ )
rhs[j][i+3] = Pvars[j];
}
return true;
}
bool VizGeorefSpline2D::get_xy( int index, double& outX, double& outY )
{
if( index < _nof_points )
{
ok = true;
outX = x[index];
outY = y[index];
return true;
}
outX = 0.0;
outY = 0.0;
return false;
}
int VizGeorefSpline2D::delete_point( const double Px, const double Py )
{
for( int i = 0; i < _nof_points; i++ )
{
if( ( fabs(Px - x[i]) <= _tx ) && ( fabs(Py - y[i]) <= _ty ) )
{
for( int j = i; j < _nof_points - 1; j++ )
{
x[j] = x[j+1];
y[j] = y[j+1];
for( int k = 0; k < _nof_vars; k++ )
rhs[k][j+3] = rhs[k][j+3+1];
}
_nof_points--;
type = VIZ_GEOREF_SPLINE_POINT_WAS_DELETED;
return 1;
}
}
return 0;
}
#endif
template <typename T> static inline T SQ(const T &x)
{
return x * x;
}
static inline double VizGeorefSpline2DBase_func(const double x1,
const double y1,
const double x2,
const double y2)
{
const double dist = SQ(x2 - x1) + SQ(y2 - y1);
return dist != 0.0 ? dist * log(dist) : 0.0;
}
#if defined(__GNUC__) && defined(__x86_64__)
/* Some versions of ICC fail to compile VizGeorefSpline2DBase_func4 (#6350) */
#if defined(__INTEL_COMPILER)
#if __INTEL_COMPILER >= 1500
#define USE_OPTIMIZED_VizGeorefSpline2DBase_func4
#else
#if (__INTEL_COMPILER == 1200) || (__INTEL_COMPILER == 1210)
#define USE_OPTIMIZED_VizGeorefSpline2DBase_func4
#else
#undef USE_OPTIMIZED_VizGeorefSpline2DBase_func4
#endif
#endif
#else // defined(__INTEL_COMPILER)
#define USE_OPTIMIZED_VizGeorefSpline2DBase_func4
#endif // defined(__INTEL_COMPILER)
#endif
#if defined(USE_OPTIMIZED_VizGeorefSpline2DBase_func4) && !defined(CPPCHECK)
/* Derived and adapted from code originating from: */
/* @(#)e_log.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_log(x)
* Return the logarithm of x
*
* Method:
* 1. Argument Reduction: find k and f such that
* x = 2^k * (1+f),
* where sqrt(2)/2 < 1+f < sqrt(2) .
*
* 2. Approximation of log(1+f).
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
* = 2s + s*R
* We use a special Reme algorithm on [0,0.1716] to generate
* a polynomial of degree 14 to approximate R The maximum error
* of this polynomial approximation is bounded by 2**-58.45. In
* other words,
* 2 4 6 8 10 12 14
* R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
* (the values of Lg1 to Lg7 are listed in the program)
* and
* | 2 14 | -58.45
* | Lg1*s +...+Lg7*s - R(z) | <= 2
* | |
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
* In order to guarantee error in log below 1ulp, we compute log
* by
* log(1+f) = f - s*(f - R) (if f is not too large)
* log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
*
* 3. Finally, log(x) = k*ln2 + log(1+f).
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
* Here ln2 is split into two floating point number:
* ln2_hi + ln2_lo,
* where n*ln2_hi is always exact for |n| < 2000.
*
* Special cases:
* log(x) is NaN with signal if x < 0 (including -INF) ;
* log(+INF) is +INF; log(0) is -INF with signal;
* log(NaN) is that NaN with no signal.
*
* Accuracy:
* according to an error analysis, the error is always less than
* 1 ulp (unit in the last place).
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
typedef double V2DF __attribute__((__vector_size__(16)));
typedef union
{
V2DF v2;
double d[2];
} v2dfunion;
typedef union
{
int i[2];
long long li;
} i64union;
static const V2DF v2_ln2_div_2pow20 = {6.93147180559945286e-01 / 1048576,
6.93147180559945286e-01 / 1048576};
static const V2DF v2_Lg1 = {6.666666666666735130e-01, 6.666666666666735130e-01};
static const V2DF v2_Lg2 = {3.999999999940941908e-01, 3.999999999940941908e-01};
static const V2DF v2_Lg3 = {2.857142874366239149e-01, 2.857142874366239149e-01};
static const V2DF v2_Lg4 = {2.222219843214978396e-01, 2.222219843214978396e-01};
static const V2DF v2_Lg5 = {1.818357216161805012e-01, 1.818357216161805012e-01};
static const V2DF v2_Lg6 = {1.531383769920937332e-01, 1.531383769920937332e-01};
/*v2_Lg7 = {1.479819860511658591e-01, 1.479819860511658591e-01}, */
static const V2DF v2_one = {1.0, 1.0};
static const V2DF v2_const1023_mul_2pow20 = {1023.0 * 1048576,
1023.0 * 1048576};
#define GET_HIGH_WORD(hx, x) memcpy(&hx, reinterpret_cast<char *>(&x) + 4, 4)
#define SET_HIGH_WORD(x, hx) memcpy(reinterpret_cast<char *>(&x) + 4, &hx, 4)
#define MAKE_WIDE_CST(x) (((static_cast<long long>(x)) << 32) | (x))
constexpr long long cst_expmask = MAKE_WIDE_CST(0xfff00000);
constexpr long long cst_0x95f64 = MAKE_WIDE_CST(0x00095f64);
constexpr long long cst_0x100000 = MAKE_WIDE_CST(0x00100000);
constexpr long long cst_0x3ff00000 = MAKE_WIDE_CST(0x3ff00000);
// Modified version of __ieee754_log(), less precise than log() but a bit
// faster, and computing 4 log() at a time. Assumes that the values are > 0.
static void FastApproxLog4Val(v2dfunion *x)
{
i64union hx[2] = {};
i64union k[2] = {};
i64union i[2] = {};
GET_HIGH_WORD(hx[0].i[0], x[0].d[0]);
GET_HIGH_WORD(hx[0].i[1], x[0].d[1]);
// coverity[uninit_use]
k[0].li = hx[0].li & cst_expmask;
hx[0].li &= ~cst_expmask;
i[0].li = (hx[0].li + cst_0x95f64) & cst_0x100000;
hx[0].li |= i[0].li ^ cst_0x3ff00000;
SET_HIGH_WORD(x[0].d[0], hx[0].i[0]); // Normalize x or x/2.
SET_HIGH_WORD(x[0].d[1], hx[0].i[1]); // Normalize x or x/2.
k[0].li += i[0].li;
v2dfunion dk[2] = {};
dk[0].d[0] = static_cast<double>(k[0].i[0]);
dk[0].d[1] = static_cast<double>(k[0].i[1]);
GET_HIGH_WORD(hx[1].i[0], x[1].d[0]);
GET_HIGH_WORD(hx[1].i[1], x[1].d[1]);
k[1].li = hx[1].li & cst_expmask;
hx[1].li &= ~cst_expmask;
i[1].li = (hx[1].li + cst_0x95f64) & cst_0x100000;
hx[1].li |= i[1].li ^ cst_0x3ff00000;
SET_HIGH_WORD(x[1].d[0], hx[1].i[0]); // Normalize x or x/2.
SET_HIGH_WORD(x[1].d[1], hx[1].i[1]); // Normalize x or x/2.
k[1].li += i[1].li;
dk[1].d[0] = static_cast<double>(k[1].i[0]);
dk[1].d[1] = static_cast<double>(k[1].i[1]);
V2DF f[2] = {};
f[0] = x[0].v2 - v2_one;
V2DF s[2] = {};
s[0] = f[0] / (x[0].v2 + v2_one);
V2DF z[2] = {};
z[0] = s[0] * s[0];
V2DF w[2] = {};
w[0] = z[0] * z[0];
V2DF t1[2] = {};
// coverity[ptr_arith]
t1[0] = w[0] * (v2_Lg2 + w[0] * (v2_Lg4 + w[0] * v2_Lg6));
V2DF t2[2] = {};
// coverity[ptr_arith]
t2[0] =
z[0] * (v2_Lg1 + w[0] * (v2_Lg3 + w[0] * (v2_Lg5 /*+w[0]*v2_Lg7*/)));
V2DF R[2] = {};
R[0] = t2[0] + t1[0];
x[0].v2 = (dk[0].v2 - v2_const1023_mul_2pow20) * v2_ln2_div_2pow20 -
(s[0] * (f[0] - R[0]) - f[0]);
f[1] = x[1].v2 - v2_one;
s[1] = f[1] / (x[1].v2 + v2_one);
z[1] = s[1] * s[1];
w[1] = z[1] * z[1];
// coverity[ptr_arith]
t1[1] = w[1] * (v2_Lg2 + w[1] * (v2_Lg4 + w[1] * v2_Lg6));
// coverity[ptr_arith]
t2[1] =
z[1] * (v2_Lg1 + w[1] * (v2_Lg3 + w[1] * (v2_Lg5 /*+w[1]*v2_Lg7*/)));
R[1] = t2[1] + t1[1];
x[1].v2 = (dk[1].v2 - v2_const1023_mul_2pow20) * v2_ln2_div_2pow20 -
(s[1] * (f[1] - R[1]) - f[1]);
}
static CPL_INLINE void VizGeorefSpline2DBase_func4(double *res,
const double *pxy,
const double *xr,
const double *yr)
{
v2dfunion xv[2] = {};
xv[0].d[0] = xr[0];
xv[0].d[1] = xr[1];
xv[1].d[0] = xr[2];
xv[1].d[1] = xr[3];
v2dfunion yv[2] = {};
yv[0].d[0] = yr[0];
yv[0].d[1] = yr[1];
yv[1].d[0] = yr[2];
yv[1].d[1] = yr[3];
v2dfunion x1v;
x1v.d[0] = pxy[0];
x1v.d[1] = pxy[0];
v2dfunion y1v;
y1v.d[0] = pxy[1];
y1v.d[1] = pxy[1];
v2dfunion dist[2] = {};
dist[0].v2 = SQ(xv[0].v2 - x1v.v2) + SQ(yv[0].v2 - y1v.v2);
dist[1].v2 = SQ(xv[1].v2 - x1v.v2) + SQ(yv[1].v2 - y1v.v2);
v2dfunion resv[2] = {dist[0], dist[1]};
FastApproxLog4Val(dist);
resv[0].v2 *= dist[0].v2;
resv[1].v2 *= dist[1].v2;
res[0] = resv[0].d[0];
res[1] = resv[0].d[1];
res[2] = resv[1].d[0];
res[3] = resv[1].d[1];
}
#else // defined(USE_OPTIMIZED_VizGeorefSpline2DBase_func4)
static void VizGeorefSpline2DBase_func4(double *res, const double *pxy,
const double *xr, const double *yr)
{
double dist0 = SQ(xr[0] - pxy[0]) + SQ(yr[0] - pxy[1]);
res[0] = dist0 != 0.0 ? dist0 * log(dist0) : 0.0;
double dist1 = SQ(xr[1] - pxy[0]) + SQ(yr[1] - pxy[1]);
res[1] = dist1 != 0.0 ? dist1 * log(dist1) : 0.0;
double dist2 = SQ(xr[2] - pxy[0]) + SQ(yr[2] - pxy[1]);
res[2] = dist2 != 0.0 ? dist2 * log(dist2) : 0.0;
double dist3 = SQ(xr[3] - pxy[0]) + SQ(yr[3] - pxy[1]);
res[3] = dist3 != 0.0 ? dist3 * log(dist3) : 0.0;
}
#endif // defined(USE_OPTIMIZED_VizGeorefSpline2DBase_func4)
int VizGeorefSpline2D::solve()
{
// No points at all.
if (_nof_points < 1)
{
type = VIZ_GEOREF_SPLINE_ZERO_POINTS;
return 0;
}
// Only one point.
if (_nof_points == 1)
{
type = VIZ_GEOREF_SPLINE_ONE_POINT;
return 1;
}
// Just 2 points - it is necessarily 1D case.
if (_nof_points == 2)
{
_dx = x[1] - x[0];
_dy = y[1] - y[0];
const double denom = _dx * _dx + _dy * _dy;
if (denom == 0.0)
return 0;
const double fact = 1.0 / denom;
_dx *= fact;
_dy *= fact;
type = VIZ_GEOREF_SPLINE_TWO_POINTS;
return 2;
}
// More than 2 points - first we have to check if it is 1D or 2D case
double xmax = x[0];
double xmin = x[0];
double ymax = y[0];
double ymin = y[0];
double sumx = 0.0;
double sumy = 0.0;
double sumx2 = 0.0;
double sumy2 = 0.0;
double sumxy = 0.0;
for (int p = 0; p < _nof_points; p++)
{
const double xx = x[p];
const double yy = y[p];
xmax = std::max(xmax, xx);
xmin = std::min(xmin, xx);
ymax = std::max(ymax, yy);
ymin = std::min(ymin, yy);
sumx += xx;
sumx2 += xx * xx;
sumy += yy;
sumy2 += yy * yy;
sumxy += xx * yy;
}
const double delx = xmax - xmin;
const double dely = ymax - ymin;
const double SSxx = sumx2 - sumx * sumx / _nof_points;
const double SSyy = sumy2 - sumy * sumy / _nof_points;
const double SSxy = sumxy - sumx * sumy / _nof_points;
if (SSxx * SSyy == 0.0)
{
CPLError(CE_Failure, CPLE_AppDefined,
"Degenerate system. Computation aborted.");
return 0;
}
if (delx < 0.001 * dely || dely < 0.001 * delx ||
fabs(SSxy * SSxy / (SSxx * SSyy)) > 0.99)
{
type = VIZ_GEOREF_SPLINE_ONE_DIMENSIONAL;
_dx = _nof_points * sumx2 - sumx * sumx;
_dy = _nof_points * sumy2 - sumy * sumy;
const double fact = 1.0 / sqrt(_dx * _dx + _dy * _dy);
_dx *= fact;
_dy *= fact;
for (int p = 0; p < _nof_points; p++)
{
const double dxp = x[p] - x[0];
const double dyp = y[p] - y[0];
u[p] = _dx * dxp + _dy * dyp;
unused[p] = 1;
}
for (int p = 0; p < _nof_points; p++)
{
int min_index = -1;
double min_u = 0.0;
for (int p1 = 0; p1 < _nof_points; p1++)
{
if (unused[p1])
{
if (min_index < 0 || u[p1] < min_u)
{
min_index = p1;
min_u = u[p1];
}
}
}
index[p] = min_index;
unused[min_index] = 0;
}
return 3;
}
type = VIZ_GEOREF_SPLINE_FULL;
// Make the necessary memory allocations.
_nof_eqs = _nof_points + 3;
if (_nof_eqs > std::numeric_limits<int>::max() / _nof_eqs)
{
CPLError(CE_Failure, CPLE_AppDefined,
"Too many coefficients. Computation aborted.");
return 0;
}
GDALMatrix A(_nof_eqs, _nof_eqs);
x_mean = 0;
y_mean = 0;
for (int c = 0; c < _nof_points; c++)
{
x_mean += x[c];
y_mean += y[c];
}
x_mean /= _nof_points;
y_mean /= _nof_points;
for (int c = 0; c < _nof_points; c++)
{
x[c] -= x_mean;
y[c] -= y_mean;
A(0, c + 3) = 1.0;
A(1, c + 3) = x[c];
A(2, c + 3) = y[c];
A(c + 3, 0) = 1.0;
A(c + 3, 1) = x[c];
A(c + 3, 2) = y[c];
}
for (int r = 0; r < _nof_points; r++)
for (int c = r; c < _nof_points; c++)
{
A(r + 3, c + 3) =
VizGeorefSpline2DBase_func(x[r], y[r], x[c], y[c]);
if (r != c)
A(c + 3, r + 3) = A(r + 3, c + 3);
}
#if VIZ_GEOREF_SPLINE_DEBUG
for (r = 0; r < _nof_eqs; r++)
{
for (c = 0; c < _nof_eqs; c++)
fprintf(stderr, "%f", A(r, c)); /*ok*/
fprintf(stderr, "\n"); /*ok*/
}
#endif
GDALMatrix RHS(_nof_eqs, _nof_vars);
for (int iRHS = 0; iRHS < _nof_vars; iRHS++)
for (int iRow = 0; iRow < _nof_eqs; iRow++)
RHS(iRow, iRHS) = rhs[iRHS][iRow];
GDALMatrix Coef(_nof_eqs, _nof_vars);
if (!GDALLinearSystemSolve(A, RHS, Coef))
{
return 0;
}
for (int iRHS = 0; iRHS < _nof_vars; iRHS++)
for (int iRow = 0; iRow < _nof_eqs; iRow++)
coef[iRHS][iRow] = Coef(iRow, iRHS);
return 4;
}
int VizGeorefSpline2D::get_point(const double Px, const double Py, double *vars)
{
switch (type)
{
case VIZ_GEOREF_SPLINE_ZERO_POINTS:
{
for (int v = 0; v < _nof_vars; v++)
vars[v] = 0.0;
break;
}
case VIZ_GEOREF_SPLINE_ONE_POINT:
{
for (int v = 0; v < _nof_vars; v++)
vars[v] = rhs[v][3];
break;
}
case VIZ_GEOREF_SPLINE_TWO_POINTS:
{
const double fact = _dx * (Px - x[0]) + _dy * (Py - y[0]);
for (int v = 0; v < _nof_vars; v++)
vars[v] = (1 - fact) * rhs[v][3] + fact * rhs[v][4];
break;
}
case VIZ_GEOREF_SPLINE_ONE_DIMENSIONAL:
{
int leftP = 0;
int rightP = 0;
const double Pu = _dx * (Px - x[0]) + _dy * (Py - y[0]);
if (Pu <= u[index[0]])
{
leftP = index[0];
rightP = index[1];
}
else if (Pu >= u[index[_nof_points - 1]])
{
leftP = index[_nof_points - 2];
rightP = index[_nof_points - 1];
}
else
{
for (int r = 1; r < _nof_points; r++)
{
leftP = index[r - 1];
rightP = index[r];
if (Pu >= u[leftP] && Pu <= u[rightP])
break; // Found.
}
}
const double fact = (Pu - u[leftP]) / (u[rightP] - u[leftP]);
for (int v = 0; v < _nof_vars; v++)
vars[v] = (1.0 - fact) * rhs[v][leftP + 3] +
fact * rhs[v][rightP + 3];
break;
}
case VIZ_GEOREF_SPLINE_FULL:
{
const double Pxy[2] = {Px - x_mean, Py - y_mean};
for (int v = 0; v < _nof_vars; v++)
vars[v] =
coef[v][0] + coef[v][1] * Pxy[0] + coef[v][2] * Pxy[1];
int r = 0; // Used after for.
for (; r < (_nof_points & (~3)); r += 4)
{
double dfTmp[4] = {};
VizGeorefSpline2DBase_func4(dfTmp, Pxy, &x[r], &y[r]);
for (int v = 0; v < _nof_vars; v++)
vars[v] += coef[v][r + 3] * dfTmp[0] +
coef[v][r + 3 + 1] * dfTmp[1] +
coef[v][r + 3 + 2] * dfTmp[2] +
coef[v][r + 3 + 3] * dfTmp[3];
}
for (; r < _nof_points; r++)
{
const double tmp =
VizGeorefSpline2DBase_func(Pxy[0], Pxy[1], x[r], y[r]);
for (int v = 0; v < _nof_vars; v++)
vars[v] += coef[v][r + 3] * tmp;
}
break;
}
case VIZ_GEOREF_SPLINE_POINT_WAS_ADDED:
{
CPLError(CE_Failure, CPLE_AppDefined,
"A point was added after the last solve."
" NO interpolation - return values are zero");
for (int v = 0; v < _nof_vars; v++)
vars[v] = 0.0;
return 0;
}
case VIZ_GEOREF_SPLINE_POINT_WAS_DELETED:
{
CPLError(CE_Failure, CPLE_AppDefined,
"A point was deleted after the last solve."
" NO interpolation - return values are zero");
for (int v = 0; v < _nof_vars; v++)
vars[v] = 0.0;
return 0;
}
default:
{
return 0;
}
}
return 1;
}
/*! @endcond */