forked from apache/superset
-
Notifications
You must be signed in to change notification settings - Fork 0
/
viz.py
executable file
·1601 lines (1318 loc) · 50.9 KB
/
viz.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""This module contains the "Viz" objects
These objects represent the backend of all the visualizations that
Superset can render.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import copy
import hashlib
import logging
import traceback
import uuid
import zlib
from collections import OrderedDict, defaultdict
from datetime import datetime, timedelta
import pandas as pd
import numpy as np
from flask import request
from flask_babel import lazy_gettext as _
from markdown import markdown
import simplejson as json
from six import string_types, PY3
from werkzeug.datastructures import ImmutableMultiDict, MultiDict
from werkzeug.urls import Href
from dateutil import relativedelta as rdelta
from superset import app, utils, cache
from superset.utils import DTTM_ALIAS
config = app.config
class BaseViz(object):
"""All visualizations derive this base class"""
viz_type = None
verbose_name = "Base Viz"
credits = ""
is_timeseries = False
def __init__(self, datasource, form_data, slice_=None):
self.orig_form_data = form_data
if not datasource:
raise Exception("Viz is missing a datasource")
self.datasource = datasource
self.request = request
self.viz_type = form_data.get("viz_type")
self.slice = slice_
self.form_data = form_data
self.query = ""
self.token = self.form_data.get(
'token', 'token_' + uuid.uuid4().hex[:8])
self.metrics = self.form_data.get('metrics') or []
self.groupby = self.form_data.get('groupby') or []
self.status = None
self.error_message = None
def get_filter_url(self):
"""Returns the URL to retrieve column values used in the filter"""
data = self.orig_form_data.copy()
# Remove unchecked checkboxes because HTML is weird like that
ordered_data = MultiDict()
for key in sorted(data.keys()):
# if MultiDict is initialized with MD({key:[emptyarray]}),
# key is included in d.keys() but accessing it throws
try:
if data[key] is False:
del data[key]
continue
except IndexError:
pass
if isinstance(data, (MultiDict, ImmutableMultiDict)):
v = data.getlist(key)
else:
v = data.get(key)
if not isinstance(v, list):
v = [v]
for item in v:
ordered_data.add(key, item)
href = Href(
'/superset/filter/{self.datasource.type}/'
'{self.datasource.id}/'.format(**locals()))
return href(ordered_data)
def get_df(self, query_obj=None):
"""Returns a pandas dataframe based on the query object"""
if not query_obj:
query_obj = self.query_obj()
self.error_msg = ""
self.results = None
timestamp_format = None
if self.datasource.type == 'table':
dttm_col = self.datasource.get_col(query_obj['granularity'])
if dttm_col:
timestamp_format = dttm_col.python_date_format
# The datasource here can be different backend but the interface is common
self.results = self.datasource.query(query_obj)
self.query = self.results.query
self.status = self.results.status
self.error_message = self.results.error_message
df = self.results.df
# Transform the timestamp we received from database to pandas supported
# datetime format. If no python_date_format is specified, the pattern will
# be considered as the default ISO date format
# If the datetime format is unix, the parse will use the corresponding
# parsing logic.
if df is None or df.empty:
self.status = utils.QueryStatus.FAILED
self.error_message = "No data."
return pd.DataFrame()
else:
if DTTM_ALIAS in df.columns:
if timestamp_format in ("epoch_s", "epoch_ms"):
df[DTTM_ALIAS] = pd.to_datetime(df[DTTM_ALIAS], utc=False)
else:
df[DTTM_ALIAS] = pd.to_datetime(
df[DTTM_ALIAS], utc=False, format=timestamp_format)
if self.datasource.offset:
df[DTTM_ALIAS] += timedelta(hours=self.datasource.offset)
df.replace([np.inf, -np.inf], np.nan)
df = df.fillna(0)
return df
def get_extra_filters(self):
extra_filters = self.form_data.get('extra_filters')
if not extra_filters:
return {}
return json.loads(extra_filters)
def query_obj(self):
"""Building a query object"""
form_data = self.form_data
groupby = form_data.get("groupby") or []
metrics = form_data.get("metrics") or ['count']
extra_filters = self.get_extra_filters()
granularity = (
form_data.get("granularity") or form_data.get("granularity_sqla")
)
limit = int(form_data.get("limit") or 0)
timeseries_limit_metric = form_data.get("timeseries_limit_metric")
row_limit = int(
form_data.get("row_limit") or config.get("ROW_LIMIT"))
since = (
extra_filters.get('__from') or form_data.get("since", "1 year ago")
)
from_dttm = utils.parse_human_datetime(since)
now = datetime.now()
if from_dttm > now:
from_dttm = now - (from_dttm - now)
until = extra_filters.get('__to') or form_data.get("until", "now")
to_dttm = utils.parse_human_datetime(until)
if from_dttm > to_dttm:
raise Exception("From date cannot be larger than to date")
# extras are used to query elements specific to a datasource type
# for instance the extra where clause that applies only to Tables
extras = {
'where': form_data.get("where", ''),
'having': form_data.get("having", ''),
'having_druid': form_data.get('having_filters') \
if 'having_filters' in form_data else [],
'time_grain_sqla': form_data.get("time_grain_sqla", ''),
'druid_time_origin': form_data.get("druid_time_origin", ''),
}
filters = form_data['filters'] if 'filters' in form_data \
else []
for col, vals in self.get_extra_filters().items():
if not (col and vals):
continue
elif col in self.datasource.filterable_column_names:
# Quote values with comma to avoid conflict
vals = ["'{}'".format(x) if "," in x else x for x in vals]
filters += [{
'col': col,
'op': 'in',
'val': ",".join(vals),
}]
d = {
'granularity': granularity,
'from_dttm': from_dttm,
'to_dttm': to_dttm,
'is_timeseries': self.is_timeseries,
'groupby': groupby,
'metrics': metrics,
'row_limit': row_limit,
'filter': filters,
'timeseries_limit': limit,
'extras': extras,
'timeseries_limit_metric': timeseries_limit_metric,
}
return d
@property
def cache_timeout(self):
if self.slice and self.slice.cache_timeout:
return self.slice.cache_timeout
if self.datasource.cache_timeout:
return self.datasource.cache_timeout
if (
hasattr(self.datasource, 'database') and
self.datasource.database.cache_timeout):
return self.datasource.database.cache_timeout
return config.get("CACHE_DEFAULT_TIMEOUT")
def get_json(self, force=False):
return json.dumps(
self.get_payload(force),
default=utils.json_int_dttm_ser, ignore_nan=True)
@property
def cache_key(self):
s = str([(k, self.form_data[k]) for k in sorted(self.form_data.keys())])
return hashlib.md5(s.encode('utf-8')).hexdigest()
def get_payload(self, force=False):
"""Handles caching around the json payload retrieval"""
cache_key = self.cache_key
payload = None
force = force if force else self.form_data.get('force') == 'true'
if not force and cache:
payload = cache.get(cache_key)
if payload:
is_cached = True
try:
cached_data = zlib.decompress(payload)
if PY3:
cached_data = cached_data.decode('utf-8')
payload = json.loads(cached_data)
except Exception as e:
logging.error("Error reading cache: " +
utils.error_msg_from_exception(e))
payload = None
logging.info("Serving from cache")
if not payload:
data = None
is_cached = False
cache_timeout = self.cache_timeout
stacktrace = None
try:
df = self.get_df()
if not self.error_message:
data = self.get_data(df)
except Exception as e:
logging.exception(e)
if not self.error_message:
self.error_message = str(e)
self.status = utils.QueryStatus.FAILED
data = None
stacktrace = traceback.format_exc()
payload = {
'cache_key': cache_key,
'cache_timeout': cache_timeout,
'data': data,
'error': self.error_message,
'filter_endpoint': self.filter_endpoint,
'form_data': self.form_data,
'query': self.query,
'status': self.status,
'stacktrace': stacktrace,
}
payload['cached_dttm'] = datetime.now().isoformat().split('.')[0]
logging.info("Caching for the next {} seconds".format(
cache_timeout))
data = self.json_dumps(payload)
if PY3:
data = bytes(data, 'utf-8')
if cache and self.status != utils.QueryStatus.FAILED:
try:
cache.set(
cache_key,
zlib.compress(data),
timeout=cache_timeout)
except Exception as e:
# cache.set call can fail if the backend is down or if
# the key is too large or whatever other reasons
logging.warning("Could not cache key {}".format(cache_key))
logging.exception(e)
cache.delete(cache_key)
payload['is_cached'] = is_cached
return payload
def json_dumps(self, obj):
return json.dumps(obj, default=utils.json_int_dttm_ser, ignore_nan=True)
@property
def data(self):
"""This is the data object serialized to the js layer"""
content = {
'form_data': self.form_data,
'filter_endpoint': self.filter_endpoint,
'token': self.token,
'viz_name': self.viz_type,
'filter_select_enabled': self.datasource.filter_select_enabled,
}
return content
def get_csv(self):
df = self.get_df()
include_index = not isinstance(df.index, pd.RangeIndex)
return df.to_csv(index=include_index, encoding="utf-8")
def get_values_for_column(self, column):
"""
Retrieves values for a column to be used by the filter dropdown.
:param column: column name
:return: JSON containing the some values for a column
"""
form_data = self.form_data
since = form_data.get("since", "1 year ago")
from_dttm = utils.parse_human_datetime(since)
now = datetime.now()
if from_dttm > now:
from_dttm = now - (from_dttm - now)
until = form_data.get("until", "now")
to_dttm = utils.parse_human_datetime(until)
if from_dttm > to_dttm:
raise Exception("From date cannot be larger than to date")
kwargs = dict(
column_name=column,
from_dttm=from_dttm,
to_dttm=to_dttm,
)
df = self.datasource.values_for_column(**kwargs)
return df[column].to_json()
def get_data(self, df):
return []
@property
def filter_endpoint(self):
return self.get_filter_url()
@property
def json_data(self):
return json.dumps(self.data)
class TableViz(BaseViz):
"""A basic html table that is sortable and searchable"""
viz_type = "table"
verbose_name = _("Table View")
credits = 'a <a href="https://github.com/airbnb/superset">Superset</a> original'
is_timeseries = False
def should_be_timeseries(self):
fd = self.form_data
# TODO handle datasource-type-specific code in datasource
conditions_met = (
(fd.get('granularity') and fd.get('granularity') != 'all') or
(fd.get('granularity_sqla') and fd.get('time_grain_sqla'))
)
if fd.get('include_time') and not conditions_met:
raise Exception(
"Pick a granularity in the Time section or "
"uncheck 'Include Time'")
return fd.get('include_time')
def query_obj(self):
d = super(TableViz, self).query_obj()
fd = self.form_data
if fd.get('all_columns') and (fd.get('groupby') or fd.get('metrics')):
raise Exception(
"Choose either fields to [Group By] and [Metrics] or "
"[Columns], not both")
if fd.get('all_columns'):
d['columns'] = fd.get('all_columns')
d['groupby'] = []
order_by_cols = fd.get('order_by_cols') or []
d['orderby'] = [json.loads(t) for t in order_by_cols]
d['is_timeseries'] = self.should_be_timeseries()
return d
def get_data(self, df):
if not self.should_be_timeseries() and DTTM_ALIAS in df:
del df[DTTM_ALIAS]
return dict(
records=df.to_dict(orient="records"),
columns=list(df.columns),
)
def json_dumps(self, obj):
return json.dumps(obj, default=utils.json_iso_dttm_ser)
class PivotTableViz(BaseViz):
"""A pivot table view, define your rows, columns and metrics"""
viz_type = "pivot_table"
verbose_name = _("Pivot Table")
credits = 'a <a href="https://github.com/airbnb/superset">Superset</a> original'
is_timeseries = False
def query_obj(self):
d = super(PivotTableViz, self).query_obj()
groupby = self.form_data.get('groupby')
columns = self.form_data.get('columns')
metrics = self.form_data.get('metrics')
if not columns:
columns = []
if not groupby:
groupby = []
if not groupby:
raise Exception("Please choose at least one \"Group by\" field ")
if not metrics:
raise Exception("Please choose at least one metric")
if (
any(v in groupby for v in columns) or
any(v in columns for v in groupby)):
raise Exception("groupby and columns can't overlap")
d['groupby'] = list(set(groupby) | set(columns))
return d
def get_data(self, df):
if (
self.form_data.get("granularity") == "all" and
DTTM_ALIAS in df):
del df[DTTM_ALIAS]
df = df.pivot_table(
index=self.form_data.get('groupby'),
columns=self.form_data.get('columns'),
values=self.form_data.get('metrics'),
aggfunc=self.form_data.get('pandas_aggfunc'),
margins=True,
)
return df.to_html(
na_rep='',
classes=(
"dataframe table table-striped table-bordered "
"table-condensed table-hover").split(" "))
class MarkupViz(BaseViz):
"""Use html or markdown to create a free form widget"""
viz_type = "markup"
verbose_name = _("Markup")
is_timeseries = False
def get_df(self):
return True
def get_data(self, df):
markup_type = self.form_data.get("markup_type")
code = self.form_data.get("code", '')
if markup_type == "markdown":
code = markdown(code)
return dict(html=code)
class SeparatorViz(MarkupViz):
"""Use to create section headers in a dashboard, similar to `Markup`"""
viz_type = "separator"
verbose_name = _("Separator")
def get_data(self, df):
code = markdown(self.form_data.get("code", ''))
return dict(html=code)
class WordCloudViz(BaseViz):
"""Build a colorful word cloud
Uses the nice library at:
https://github.com/jasondavies/d3-cloud
"""
viz_type = "word_cloud"
verbose_name = _("Word Cloud")
is_timeseries = False
def query_obj(self):
d = super(WordCloudViz, self).query_obj()
d['metrics'] = [self.form_data.get('metric')]
d['groupby'] = [self.form_data.get('series')]
return d
def get_data(self, df):
# Ordering the columns
df = df[[self.form_data.get('series'), self.form_data.get('metric')]]
# Labeling the columns for uniform json schema
df.columns = ['text', 'size']
return df.to_dict(orient="records")
class TreemapViz(BaseViz):
"""Tree map visualisation for hierarchical data."""
viz_type = "treemap"
verbose_name = _("Treemap")
credits = '<a href="https://d3js.org">d3.js</a>'
is_timeseries = False
def _nest(self, metric, df):
nlevels = df.index.nlevels
if nlevels == 1:
result = [{"name": n, "value": v}
for n, v in zip(df.index, df[metric])]
else:
result = [{"name": l, "children": self._nest(metric, df.loc[l])}
for l in df.index.levels[0]]
return result
def get_data(self, df):
df = df.set_index(self.form_data.get("groupby"))
chart_data = [{"name": metric, "children": self._nest(metric, df)}
for metric in df.columns]
return chart_data
class CalHeatmapViz(BaseViz):
"""Calendar heatmap."""
viz_type = "cal_heatmap"
verbose_name = _("Calendar Heatmap")
credits = (
'<a href=https://github.com/wa0x6e/cal-heatmap>cal-heatmap</a>')
is_timeseries = True
def get_data(self, df):
form_data = self.form_data
df.columns = ["timestamp", "metric"]
timestamps = {str(obj["timestamp"].value / 10**9):
obj.get("metric") for obj in df.to_dict("records")}
start = utils.parse_human_datetime(form_data.get("since"))
end = utils.parse_human_datetime(form_data.get("until"))
domain = form_data.get("domain_granularity")
diff_delta = rdelta.relativedelta(end, start)
diff_secs = (end - start).total_seconds()
if domain == "year":
range_ = diff_delta.years + 1
elif domain == "month":
range_ = diff_delta.years * 12 + diff_delta.months + 1
elif domain == "week":
range_ = diff_delta.years * 53 + diff_delta.weeks + 1
elif domain == "day":
range_ = diff_secs // (24*60*60) + 1
else:
range_ = diff_secs // (60*60) + 1
return {
"timestamps": timestamps,
"start": start,
"domain": domain,
"subdomain": form_data.get("subdomain_granularity"),
"range": range_,
}
def query_obj(self):
qry = super(CalHeatmapViz, self).query_obj()
qry["metrics"] = [self.form_data["metric"]]
return qry
class NVD3Viz(BaseViz):
"""Base class for all nvd3 vizs"""
credits = '<a href="http://nvd3.org/">NVD3.org</a>'
viz_type = None
verbose_name = "Base NVD3 Viz"
is_timeseries = False
class BoxPlotViz(NVD3Viz):
"""Box plot viz from ND3"""
viz_type = "box_plot"
verbose_name = _("Box Plot")
sort_series = False
is_timeseries = True
def to_series(self, df, classed='', title_suffix=''):
label_sep = " - "
chart_data = []
for index_value, row in zip(df.index, df.to_dict(orient="records")):
if isinstance(index_value, tuple):
index_value = label_sep.join(index_value)
boxes = defaultdict(dict)
for (label, key), value in row.items():
if key == "median":
key = "Q2"
boxes[label][key] = value
for label, box in boxes.items():
if len(self.form_data.get("metrics")) > 1:
# need to render data labels with metrics
chart_label = label_sep.join([index_value, label])
else:
chart_label = index_value
chart_data.append({
"label": chart_label,
"values": box,
})
return chart_data
def get_data(self, df):
form_data = self.form_data
df = df.fillna(0)
# conform to NVD3 names
def Q1(series): # need to be named functions - can't use lambdas
return np.percentile(series, 25)
def Q3(series):
return np.percentile(series, 75)
whisker_type = form_data.get('whisker_options')
if whisker_type == "Tukey":
def whisker_high(series):
upper_outer_lim = Q3(series) + 1.5 * (Q3(series) - Q1(series))
series = series[series <= upper_outer_lim]
return series[np.abs(series - upper_outer_lim).argmin()]
def whisker_low(series):
lower_outer_lim = Q1(series) - 1.5 * (Q3(series) - Q1(series))
# find the closest value above the lower outer limit
series = series[series >= lower_outer_lim]
return series[np.abs(series - lower_outer_lim).argmin()]
elif whisker_type == "Min/max (no outliers)":
def whisker_high(series):
return series.max()
def whisker_low(series):
return series.min()
elif " percentiles" in whisker_type:
low, high = whisker_type.replace(" percentiles", "").split("/")
def whisker_high(series):
return np.percentile(series, int(high))
def whisker_low(series):
return np.percentile(series, int(low))
else:
raise ValueError("Unknown whisker type: {}".format(whisker_type))
def outliers(series):
above = series[series > whisker_high(series)]
below = series[series < whisker_low(series)]
# pandas sometimes doesn't like getting lists back here
return set(above.tolist() + below.tolist())
aggregate = [Q1, np.median, Q3, whisker_high, whisker_low, outliers]
df = df.groupby(form_data.get('groupby')).agg(aggregate)
chart_data = self.to_series(df)
return chart_data
class BubbleViz(NVD3Viz):
"""Based on the NVD3 bubble chart"""
viz_type = "bubble"
verbose_name = _("Bubble Chart")
is_timeseries = False
def query_obj(self):
form_data = self.form_data
d = super(BubbleViz, self).query_obj()
d['groupby'] = list({
form_data.get('series'),
form_data.get('entity')
})
self.x_metric = form_data.get('x')
self.y_metric = form_data.get('y')
self.z_metric = form_data.get('size')
self.entity = form_data.get('entity')
self.series = form_data.get('series')
d['metrics'] = [
self.z_metric,
self.x_metric,
self.y_metric,
]
if not all(d['metrics'] + [self.entity, self.series]):
raise Exception("Pick a metric for x, y and size")
return d
def get_data(self, df):
df['x'] = df[[self.x_metric]]
df['y'] = df[[self.y_metric]]
df['size'] = df[[self.z_metric]]
df['shape'] = 'circle'
df['group'] = df[[self.series]]
series = defaultdict(list)
for row in df.to_dict(orient='records'):
series[row['group']].append(row)
chart_data = []
for k, v in series.items():
chart_data.append({
'key': k,
'values': v})
return chart_data
class BulletViz(NVD3Viz):
"""Based on the NVD3 bullet chart"""
viz_type = "bullet"
verbose_name = _("Bullet Chart")
is_timeseries = False
def query_obj(self):
form_data = self.form_data
d = super(BulletViz, self).query_obj()
self.metric = form_data.get('metric')
def as_strings(field):
value = form_data.get(field)
return value.split(',') if value else []
def as_floats(field):
return [float(x) for x in as_strings(field)]
self.ranges = as_floats('ranges')
self.range_labels = as_strings('range_labels')
self.markers = as_floats('markers')
self.marker_labels = as_strings('marker_labels')
self.marker_lines = as_floats('marker_lines')
self.marker_line_labels = as_strings('marker_line_labels')
d['metrics'] = [
self.metric,
]
if not self.metric:
raise Exception("Pick a metric to display")
return d
def get_data(self, df):
df = df.fillna(0)
df['metric'] = df[[self.metric]]
values = df['metric'].values
return {
'measures': values.tolist(),
'ranges': self.ranges or [0, values.max() * 1.1],
'rangeLabels': self.range_labels or None,
'markers': self.markers or None,
'markerLabels': self.marker_labels or None,
'markerLines': self.marker_lines or None,
'markerLineLabels': self.marker_line_labels or None,
}
class BigNumberViz(BaseViz):
"""Put emphasis on a single metric with this big number viz"""
viz_type = "big_number"
verbose_name = _("Big Number with Trendline")
credits = 'a <a href="https://github.com/airbnb/superset">Superset</a> original'
is_timeseries = True
def query_obj(self):
d = super(BigNumberViz, self).query_obj()
metric = self.form_data.get('metric')
if not metric:
raise Exception("Pick a metric!")
d['metrics'] = [self.form_data.get('metric')]
self.form_data['metric'] = metric
return d
def get_data(self, df):
form_data = self.form_data
df.sort_values(by=df.columns[0], inplace=True)
compare_lag = form_data.get("compare_lag")
return {
'data': df.values.tolist(),
'compare_lag': compare_lag,
'compare_suffix': form_data.get('compare_suffix', ''),
}
class BigNumberTotalViz(BaseViz):
"""Put emphasis on a single metric with this big number viz"""
viz_type = "big_number_total"
verbose_name = _("Big Number")
credits = 'a <a href="https://github.com/airbnb/superset">Superset</a> original'
is_timeseries = False
def query_obj(self):
d = super(BigNumberTotalViz, self).query_obj()
metric = self.form_data.get('metric')
if not metric:
raise Exception("Pick a metric!")
d['metrics'] = [self.form_data.get('metric')]
self.form_data['metric'] = metric
return d
def get_data(self, df):
form_data = self.form_data
df.sort_values(by=df.columns[0], inplace=True)
return {
'data': df.values.tolist(),
'subheader': form_data.get('subheader', ''),
}
class NVD3TimeSeriesViz(NVD3Viz):
"""A rich line chart component with tons of options"""
viz_type = "line"
verbose_name = _("Time Series - Line Chart")
sort_series = False
is_timeseries = True
def to_series(self, df, classed='', title_suffix=''):
cols = []
for col in df.columns:
if col == '':
cols.append('N/A')
elif col is None:
cols.append('NULL')
else:
cols.append(col)
df.columns = cols
series = df.to_dict('series')
chart_data = []
for name in df.T.index.tolist():
ys = series[name]
if df[name].dtype.kind not in "biufc":
continue
if isinstance(name, string_types):
series_title = name
else:
name = ["{}".format(s) for s in name]
if len(self.form_data.get('metrics')) > 1:
series_title = ", ".join(name)
else:
series_title = ", ".join(name[1:])
if title_suffix:
series_title += title_suffix
d = {
"key": series_title,
"classed": classed,
"values": [
{'x': ds, 'y': ys[ds] if ds in ys else None}
for ds in df.index
],
}
chart_data.append(d)
return chart_data
def get_data(self, df):
fd = self.form_data
df = df.fillna(0)
if fd.get("granularity") == "all":
raise Exception("Pick a time granularity for your time series")
df = df.pivot_table(
index=DTTM_ALIAS,
columns=fd.get('groupby'),
values=fd.get('metrics'))
fm = fd.get("resample_fillmethod")
if not fm:
fm = None
how = fd.get("resample_how")
rule = fd.get("resample_rule")
if how and rule:
df = df.resample(rule, how=how, fill_method=fm)
if not fm:
df = df.fillna(0)
if self.sort_series:
dfs = df.sum()
dfs.sort_values(ascending=False, inplace=True)
df = df[dfs.index]
if fd.get("contribution"):
dft = df.T
df = (dft / dft.sum()).T
rolling_periods = fd.get("rolling_periods")
rolling_type = fd.get("rolling_type")
if rolling_type in ('mean', 'std', 'sum') and rolling_periods:
if rolling_type == 'mean':
df = pd.rolling_mean(df, int(rolling_periods), min_periods=0)
elif rolling_type == 'std':
df = pd.rolling_std(df, int(rolling_periods), min_periods=0)
elif rolling_type == 'sum':
df = pd.rolling_sum(df, int(rolling_periods), min_periods=0)
elif rolling_type == 'cumsum':
df = df.cumsum()
num_period_compare = fd.get("num_period_compare")
if num_period_compare:
num_period_compare = int(num_period_compare)
prt = fd.get('period_ratio_type')
if prt and prt == 'growth':
df = (df / df.shift(num_period_compare)) - 1
elif prt and prt == 'value':
df = df - df.shift(num_period_compare)
else:
df = df / df.shift(num_period_compare)
df = df[num_period_compare:]
chart_data = self.to_series(df)
time_compare = fd.get('time_compare')
if time_compare:
query_object = self.query_obj()
delta = utils.parse_human_timedelta(time_compare)
query_object['inner_from_dttm'] = query_object['from_dttm']
query_object['inner_to_dttm'] = query_object['to_dttm']
query_object['from_dttm'] -= delta
query_object['to_dttm'] -= delta
df2 = self.get_df(query_object)
df2[DTTM_ALIAS] += delta
df2 = df2.pivot_table(
index=DTTM_ALIAS,
columns=fd.get('groupby'),
values=fd.get('metrics'))
chart_data += self.to_series(
df2, classed='superset', title_suffix="---")
chart_data = sorted(chart_data, key=lambda x: x['key'])
return chart_data
class NVD3DualLineViz(NVD3Viz):
"""A rich line chart with dual axis"""
viz_type = "dual_line"
verbose_name = _("Time Series - Dual Axis Line Chart")
sort_series = False
is_timeseries = True
def query_obj(self):
d = super(NVD3DualLineViz, self).query_obj()
m1 = self.form_data.get('metric')
m2 = self.form_data.get('metric_2')
d['metrics'] = [m1, m2]
if not m1:
raise Exception("Pick a metric for left axis!")
if not m2:
raise Exception("Pick a metric for right axis!")
if m1 == m2:
raise Exception("Please choose different metrics"
" on left and right axis")
return d
def to_series(self, df, classed=''):
cols = []
for col in df.columns:
if col == '':
cols.append('N/A')
elif col is None:
cols.append('NULL')
else: