Pebblo enables developers to safely load data and promote their Gen AI app to deployment without worrying about the organization’s compliance and security requirements. The project identifies semantic topics and entities found in the loaded data and summarizes them on the UI or a PDF report.
Pebblo has these components.
- Pebblo Server - a REST api application with topic-classifier, entity-classifier and reporting features
- Pebblo SafeLoader - a thin wrapper to Gen-AI framework's data loaders
- Pebblo SafeRetriever - a retrieval QA chain that enforces identity and semantic rules on Vector database retrieval before LLM inference
pip install pebblo --extra-index-url https://packages.daxa.ai/simple/
Alternatively, download and install the latest Pebblo python .whl
package from URL https://packages.daxa.ai/pebblo/0.1.13/pebblo-0.1.13-py3-none-any.whl
Example:
curl -LO "https://packages.daxa.ai/pebblo/0.1.13/pebblo-0.1.13-py3-none-any.whl"
pip install pebblo-0.1.13-py3-none-any.whl
pebblo
Pebblo Server now listens to localhost:8000
to accept Gen-AI application data snippets for inspection and reporting.
--config <file>
: specify a configuration file in yaml format.
See configuration guide for knobs to control Pebblo Server behavior like enabling snippet anonymization, selecting specific report renderer, etc.
docker run -p 8000:8000 docker.daxa.ai/daxaai/pebblo
Local UI can be accessed by pointing the browser to https://localhost:8000
.
See installation guide for details on how to pass custom config.yaml and accessing PDF reports in the host machine.
Refer to troubleshooting guide.
Pebblo SafeLoader
is natively supported in Langchain framework. It is available in Langchain versions >=0.1.7
Add PebbloSafeLoader
wrapper to the existing Langchain document loader(s) used in the RAG application. PebbloSafeLoader
is interface compatible with Langchain BaseLoader
. The application can continue to use load()
and lazy_load()
methods as it would on a Langchain document loader.
Here is the snippet of Langchain RAG application using CSVLoader
before enabling PebbloSafeLoader
.
from langchain_community.document_loaders import CSVLoader
loader = CSVLoader(file_path)
documents = loader.load()
vectordb = Chroma.from_documents(documents, OpenAIEmbeddings())
The Pebblo SafeLoader can be enabled with few lines of code change to the above snippet.
from langchain_community.document_loaders import CSVLoader
from langchain_community.document_loaders.pebblo import PebbloSafeLoader
loader = PebbloSafeLoader(
CSVLoader(file_path),
name="acme-corp-rag-1", # App name (Mandatory)
owner="Joe Smith", # Owner (Optional)
description="Support productivity RAG application", # Description (Optional)
)
documents = loader.load()
vectordb = Chroma.from_documents(documents, OpenAIEmbeddings())
See here for samples with Pebblo SafeLoader enabled RAG applications and this document for more details.
PebbloRetrievalQA chain uses a SafeRetrieval to enforce that the snippets used for in-context are retrieved only from the documents authorized for the user and semantically allowed for the Gen-AI application.
Here is a sample code for the PebbloRetrievalQA with authorized_identities
from the user accessing the RAG
application, passed in auth_context
.
from langchain_community.chains import PebbloRetrievalQA
from langchain_community.chains.pebblo_retrieval.models import AuthContext, ChainInput
safe_rag_chain = PebbloRetrievalQA.from_chain_type(
llm=llm,
app_name="pebblo-safe-retriever-demo",
owner="Joe Smith",
description="Safe RAG demo using Pebblo",
chain_type="stuff",
retriever=vectordb.as_retriever(),
verbose=True,
)
def ask(question: str, auth_context: dict):
auth_context_obj = AuthContext(**auth_context)
chain_input_obj = ChainInput(query=question, auth_context=auth_context_obj)
return safe_rag_chain.invoke(chain_input_obj.dict())
See here for samples with Pebblo SafeRetriever enabled RAG applications and this document for more details.
Pebblo is a open-source community project. If you want to contribute see Contributor Guidelines for more details.
Pebblo is released under the MIT License