forked from raminmh/CfC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
irregular_sampled_datasets.py
595 lines (493 loc) · 20.7 KB
/
irregular_sampled_datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
# Copyright 2021 The ODE-LSTM Authors. All Rights Reserved.
import numpy as np
import os
import tensorflow as tf
from tqdm import tqdm
class Walker2dImitationData:
def __init__(self, seq_len):
self.seq_len = seq_len
os.makedirs("data", exist_ok=True)
if not os.path.isfile("data/walker/rollout_000.npy"):
os.system("wget https://pub.ist.ac.at/~mlechner/datasets/walker.zip")
os.system("unzip walker.zip -d data/")
all_files = sorted(
[
os.path.join("data/walker", d)
for d in os.listdir("data/walker")
if d.endswith(".npy")
]
)
self.rng = np.random.RandomState(891374)
np.random.RandomState(125487).shuffle(all_files)
# 15% test set, 10% validation set, the rest is for training
test_n = int(0.15 * len(all_files))
valid_n = int((0.15 + 0.1) * len(all_files))
test_files = all_files[:test_n]
valid_files = all_files[test_n:valid_n]
train_files = all_files[valid_n:]
train_x, train_t, train_y = self._load_files(train_files)
valid_x, valid_t, valid_y = self._load_files(valid_files)
test_x, test_t, test_y = self._load_files(test_files)
train_x, train_t, train_y = self.perturb_sequences(train_x, train_t, train_y)
valid_x, valid_t, valid_y = self.perturb_sequences(valid_x, valid_t, valid_y)
test_x, test_t, test_y = self.perturb_sequences(test_x, test_t, test_y)
self.train_x, self.train_times, self.train_y = self.align_sequences(
train_x, train_t, train_y
)
self.valid_x, self.valid_times, self.valid_y = self.align_sequences(
valid_x, valid_t, valid_y
)
self.test_x, self.test_times, self.test_y = self.align_sequences(
test_x, test_t, test_y
)
self.input_size = self.train_x.shape[-1]
# print("train_times: ", str(self.train_times.shape))
# print("train_x: ", str(self.train_x.shape))
# print("train_y: ", str(self.train_y.shape))
def align_sequences(self, set_x, set_t, set_y):
times = []
x = []
y = []
for i in range(len(set_y)):
seq_x = set_x[i]
seq_t = set_t[i]
seq_y = set_y[i]
for t in range(0, seq_y.shape[0] - self.seq_len, self.seq_len // 4):
x.append(seq_x[t : t + self.seq_len])
times.append(seq_t[t : t + self.seq_len])
y.append(seq_y[t : t + self.seq_len])
return (
np.stack(x, axis=0),
np.expand_dims(np.stack(times, axis=0), axis=-1),
np.stack(y, axis=0),
)
def perturb_sequences(self, set_x, set_t, set_y):
x = []
times = []
y = []
for i in range(len(set_y)):
seq_x = set_x[i]
seq_y = set_y[i]
new_x, new_times = [], []
new_y = []
skip = 0
for t in range(seq_y.shape[0]):
skip += 1
if self.rng.rand() < 0.9:
new_x.append(seq_x[t])
new_times.append(skip)
new_y.append(seq_y[t])
skip = 0
x.append(np.stack(new_x, axis=0))
times.append(np.stack(new_times, axis=0))
y.append(np.stack(new_y, axis=0))
return x, times, y
def _load_files(self, files):
all_x = []
all_t = []
all_y = []
for f in files:
arr = np.load(f)
x_state = arr[:-1, :].astype(np.float32)
y = arr[1:, :].astype(np.float32)
x_times = np.ones(x_state.shape[0])
all_x.append(x_state)
all_t.append(x_times)
all_y.append(y)
# print("Loaded file '{}' of length {:d}".format(f, x_state.shape[0]))
return all_x, all_t, all_y
class ETSMnistData:
def __init__(self, time_major, pad_size=256):
self.threshold = 128
self.pad_size = pad_size
if not self.load_from_cache():
self.create_dataset()
self.train_elapsed /= self.pad_size
self.test_elapsed /= self.pad_size
def load_from_cache(self):
if os.path.isfile("dataset/test_mask.npy"):
self.train_events = np.load("dataset/train_events.npy")
self.train_elapsed = np.load("dataset/train_elapsed.npy")
self.train_mask = np.load("dataset/train_mask.npy")
self.train_y = np.load("dataset/train_y.npy")
self.test_events = np.load("dataset/test_events.npy")
self.test_elapsed = np.load("dataset/test_elapsed.npy")
self.test_mask = np.load("dataset/test_mask.npy")
self.test_y = np.load("dataset/test_y.npy")
print("train_events.shape: ", str(self.train_events.shape))
print("train_elapsed.shape: ", str(self.train_elapsed.shape))
print("train_mask.shape: ", str(self.train_mask.shape))
print("train_y.shape: ", str(self.train_y.shape))
print("test_events.shape: ", str(self.test_events.shape))
print("test_elapsed.shape: ", str(self.test_elapsed.shape))
print("test_mask.shape: ", str(self.test_mask.shape))
print("test_y.shape: ", str(self.test_y.shape))
return True
return False
def transform_sample(self, x):
x = x.flatten()
events = np.zeros([self.pad_size, 1], dtype=np.float32)
elapsed = np.zeros([self.pad_size, 1], dtype=np.float32)
mask = np.zeros([self.pad_size], dtype=np.bool)
last_char = -1
write_index = 0
elapsed_counter = 0
for i in range(x.shape[0]):
elapsed_counter += 1
char = int(x[i] > self.threshold)
if last_char != char:
events[write_index] = char
elapsed[write_index] = elapsed_counter
mask[write_index] = True
write_index += 1
if write_index >= self.pad_size:
# Enough 1s in this sample, abort
self._abort_counter += 1
break
elapsed_counter = 0
last_char = char
self._all_lenghts.append(write_index)
return events, elapsed, mask
def transform_array(self, x):
events_list = []
elapsed_list = []
mask_list = []
for i in tqdm(range(x.shape[0])):
events, elapsed, mask = self.transform_sample(x[i])
events_list.append(events)
elapsed_list.append(elapsed)
mask_list.append(mask)
return (
np.stack(events_list, axis=0),
np.stack(elapsed_list, axis=0),
np.stack(mask_list, axis=0),
)
def create_dataset(self):
(train_x, train_y), (test_x, test_y) = tf.keras.datasets.mnist.load_data()
self._all_lenghts = []
self._abort_counter = 0
train_x = train_x.reshape([-1, 28 * 28])
test_x = test_x.reshape([-1, 28 * 28])
self.train_y = train_y
self.test_y = test_y
print("Transforming training samples")
self.train_events, self.train_elapsed, self.train_mask = self.transform_array(
train_x
)
print("Transforming test samples")
self.test_events, self.test_elapsed, self.test_mask = self.transform_array(
test_x
)
print("Average time-series length: {:0.2f}".format(np.mean(self._all_lenghts)))
print("Abort counter: ", str(self._abort_counter))
os.makedirs("dataset", exist_ok=True)
np.save("dataset/train_events.npy", self.train_events)
np.save("dataset/train_elapsed.npy", self.train_elapsed)
np.save("dataset/train_mask.npy", self.train_mask)
np.save("dataset/train_y.npy", self.train_y)
np.save("dataset/test_events.npy", self.test_events)
np.save("dataset/test_elapsed.npy", self.test_elapsed)
np.save("dataset/test_mask.npy", self.test_mask)
np.save("dataset/test_y.npy", self.test_y)
class PersonData:
class_map = {
"lying down": 0,
"lying": 0,
"sitting down": 1,
"sitting": 1,
"standing up from lying": 2,
"standing up from sitting": 2,
"standing up from sitting on the ground": 2,
"walking": 3,
"falling": 4,
"on all fours": 5,
"sitting on the ground": 6,
}
sensor_ids = {
"010-000-024-033": 0,
"010-000-030-096": 1,
"020-000-033-111": 2,
"020-000-032-221": 3,
}
def __init__(self, seq_len=32):
self.seq_len = seq_len
self.num_classes = 7
all_x, all_t, all_y = self.load_crappy_formated_csv()
all_x, all_t, all_y = self.cut_in_sequences(
all_x, all_t, all_y, seq_len=seq_len, inc=seq_len // 2
)
print("all_x.shape: ", str(all_x.shape))
print("all_t.shape: ", str(all_t.shape))
print("all_y.shape: ", str(all_y.shape))
total_seqs = all_x.shape[0]
print("Total number of sequences: {}".format(total_seqs))
permutation = np.random.RandomState(98841).permutation(total_seqs)
test_size = int(0.2 * total_seqs)
self.test_x = all_x[permutation[:test_size]]
self.test_y = all_y[permutation[:test_size]]
self.test_t = all_t[permutation[:test_size]]
self.train_x = all_x[permutation[test_size:]]
self.train_t = all_t[permutation[test_size:]]
self.train_y = all_y[permutation[test_size:]]
self.feature_size = int(self.train_x.shape[-1])
print("train_x.shape: ", str(self.train_x.shape))
print("train_t.shape: ", str(self.train_t.shape))
print("train_y.shape: ", str(self.train_y.shape))
print("Total number of train sequences: {}".format(self.train_x.shape[0]))
print("Total number of test sequences: {}".format(self.test_x.shape[0]))
def load_crappy_formated_csv(self):
all_x = []
all_y = []
all_t = []
series_x = []
series_t = []
series_y = []
last_millis = None
if not os.path.isfile("data/person/ConfLongDemo_JSI.txt"):
print("ERROR: File 'data/person/ConfLongDemo_JSI.txt' not found")
print("Please execute the command")
print("source download_dataset.sh")
import sys
sys.exit(-1)
with open("data/person/ConfLongDemo_JSI.txt", "r") as f:
current_person = "A01"
for line in f:
arr = line.split(",")
if len(arr) < 6:
break
if arr[0] != current_person:
# Enqueue and reset
series_x = np.stack(series_x, axis=0)
series_t = np.stack(series_t, axis=0)
series_y = np.array(series_y, dtype=np.int32)
all_x.append(series_x)
all_t.append(series_t)
all_y.append(series_y)
last_millis = None
series_x = []
series_y = []
series_t = []
millis = np.int64(arr[2]) / (100 * 1000)
# 100ms will be normalized to 1.0
millis_mapped_to_1 = 10.0
if last_millis is None:
elapsed_sec = 0.05
else:
elapsed_sec = float(millis - last_millis) / 1000.0
elapsed = elapsed_sec * 1000 / millis_mapped_to_1
last_millis = millis
current_person = arr[0]
sensor_id = self.sensor_ids[arr[1]]
label_col = self.class_map[arr[7].replace("\n", "")]
feature_col_2 = np.array(arr[4:7], dtype=np.float32)
# Last 3 entries of the feature vector contain sensor value
# First 4 entries of the feature vector contain sensor ID
feature_col_1 = np.zeros(4, dtype=np.float32)
feature_col_1[sensor_id] = 1
feature_col = np.concatenate([feature_col_1, feature_col_2])
series_x.append(feature_col)
series_t.append(elapsed)
series_y.append(label_col)
return all_x, all_t, all_y
def cut_in_sequences(self, all_x, all_t, all_y, seq_len, inc=1):
sequences_x = []
sequences_t = []
sequences_y = []
for i in range(len(all_x)):
x, t, y = all_x[i], all_t[i], all_y[i]
for s in range(0, x.shape[0] - seq_len, inc):
start = s
end = start + seq_len
sequences_x.append(x[start:end])
sequences_t.append(t[start:end])
sequences_y.append(y[start:end])
return (
np.stack(sequences_x, axis=0),
np.stack(sequences_t, axis=0).reshape([-1, seq_len, 1]),
np.stack(sequences_y, axis=0),
)
class XORData:
def __init__(self, time_major, event_based=True, pad_size=24):
self.pad_size = pad_size
self.event_based = event_based
self._abort_counter = 0
if not self.load_from_cache():
self.create_dataset()
self.train_elapsed /= self.pad_size
self.test_elapsed /= self.pad_size
def load_from_cache(self):
if os.path.isfile("dataset/xor_test_y.npy"):
self.train_events = np.load("dataset/xor_train_events.npy")
self.train_elapsed = np.load("dataset/xor_train_elapsed.npy")
self.train_mask = np.load("dataset/xor_train_mask.npy")
self.train_y = np.load("dataset/xor_train_y.npy")
self.test_events = np.load("dataset/xor_test_events.npy")
self.test_elapsed = np.load("dataset/xor_test_elapsed.npy")
self.test_mask = np.load("dataset/xor_test_mask.npy")
self.test_y = np.load("dataset/xor_test_y.npy")
print("train_events.shape: ", str(self.train_events.shape))
print("train_elapsed.shape: ", str(self.train_elapsed.shape))
print("train_mask.shape: ", str(self.train_mask.shape))
print("train_y.shape: ", str(self.train_y.shape))
print("test_events.shape: ", str(self.test_events.shape))
print("test_elapsed.shape: ", str(self.test_elapsed.shape))
print("test_mask.shape: ", str(self.test_mask.shape))
print("test_y.shape: ", str(self.test_y.shape))
return True
return False
def create_event_based_sample(self, rng):
label = 0
events = np.zeros([self.pad_size, 1], dtype=np.float32)
elapsed = np.zeros([self.pad_size, 1], dtype=np.float32)
mask = np.zeros([self.pad_size], dtype=np.bool)
last_char = -1
write_index = 0
elapsed_counter = 0
length = rng.randint(low=2, high=self.pad_size)
for i in range(length):
elapsed_counter += 1
char = int(rng.randint(low=0, high=2))
label += char
if last_char != char:
events[write_index] = char
elapsed[write_index] = elapsed_counter
mask[write_index] = True
write_index += 1
elapsed_counter = 0
if write_index >= self.pad_size - 1:
# Enough 1s in this sample, abort
self._abort_counter += 1
break
last_char = char
if elapsed_counter > 0:
events[write_index] = char
elapsed[write_index] = elapsed_counter
mask[write_index] = True
label = label % 2
return events, elapsed, mask, label
def create_dense_sample(self, rng):
label = 0
events = np.zeros([self.pad_size, 1], dtype=np.float32)
elapsed = np.zeros([self.pad_size, 1], dtype=np.float32)
mask = np.zeros([self.pad_size], dtype=np.bool)
last_char = -1
write_index = 0
elapsed_counter = 0
length = rng.randint(low=2, high=self.pad_size)
for i in range(length):
elapsed_counter += 1
char = int(rng.randint(low=0, high=2))
label += char
events[write_index] = char
elapsed[write_index] = elapsed_counter
mask[write_index] = True
write_index += 1
elapsed_counter = 0
label = label % 2
label2 = int(np.sum(events)) % 2
assert label == label2
return events, elapsed, mask, label
def create_set(self, size, seed):
rng = np.random.RandomState(seed)
events_list = []
elapsed_list = []
mask_list = []
label_list = []
for i in tqdm(range(size)):
if self.event_based:
events, elapsed, mask, label = self.create_event_based_sample(rng)
else:
events, elapsed, mask, label = self.create_dense_sample(rng)
events_list.append(events)
elapsed_list.append(elapsed)
mask_list.append(mask)
label_list.append(label)
return (
np.stack(events_list, axis=0),
np.stack(elapsed_list, axis=0),
np.stack(mask_list, axis=0),
np.stack(label_list, axis=0),
)
def create_dataset(self):
print("Transforming training samples")
(
self.train_events,
self.train_elapsed,
self.train_mask,
self.train_y,
) = self.create_set(100000, 1234984)
print("Transforming test samples")
(
self.test_events,
self.test_elapsed,
self.test_mask,
self.test_y,
) = self.create_set(10000, 48736)
print("train_events.shape: ", str(self.train_events.shape))
print("train_elapsed.shape: ", str(self.train_elapsed.shape))
print("train_mask.shape: ", str(self.train_mask.shape))
print("train_y.shape: ", str(self.train_y.shape))
print("test_events.shape: ", str(self.test_events.shape))
print("test_elapsed.shape: ", str(self.test_elapsed.shape))
print("test_mask.shape: ", str(self.test_mask.shape))
print("test_y.shape: ", str(self.test_y.shape))
print("Abort counter: ", str(self._abort_counter))
os.makedirs("dataset", exist_ok=True)
np.save("dataset/xor_train_events.npy", self.train_events)
np.save("dataset/xor_train_elapsed.npy", self.train_elapsed)
np.save("dataset/xor_train_mask.npy", self.train_mask)
np.save("dataset/xor_train_y.npy", self.train_y)
np.save("dataset/xor_test_events.npy", self.test_events)
np.save("dataset/xor_test_elapsed.npy", self.test_elapsed)
np.save("dataset/xor_test_mask.npy", self.test_mask)
np.save("dataset/xor_test_y.npy", self.test_y)
class NBodyData:
def __init__(self, seq_len, mask_len):
self.seq_len = seq_len
self.mask_len = mask_len
(
self.train_x,
self.train_elapsed,
self.train_mask,
self.train_y,
) = self.load_file("data/nbody/train.npz")
(
self.valid_x,
self.valid_elapsed,
self.valid_mask,
self.valid_y,
) = self.load_file("data/nbody/valid.npz")
self.test_x, self.test_elapsed, self.test_mask, self.test_y = self.load_file(
"data/nbody/test.npz"
)
self.input_size = self.train_x.shape[-1]
print("train_elapsed ", str(self.train_elapsed.shape))
print("train_x: ", str(self.train_x.shape))
print("train_y: ", str(self.train_y.shape))
print("train_mask: ", str(self.train_mask.shape))
def load_file(self, filename):
arr = np.load(filename)
x = arr["x"]
t = arr["t"]
x = x.reshape((t.shape[0], t.shape[1], -1))
all_x = []
all_y = []
all_elapsed = []
for i in range(0, x.shape[1] - self.seq_len - 1, self.seq_len // 2):
all_elapsed.append(
t[:, i + 1 : i + self.seq_len + 1] - t[:, i : i + self.seq_len]
)
all_x.append(x[:, i : i + self.seq_len])
# Predict relative change
all_y.append(
x[:, i + 1 : i + self.seq_len + 1] - x[:, i : i + self.seq_len]
)
all_x = np.concatenate(all_x, axis=0)
all_y = np.concatenate(all_y, axis=0)
all_elapsed = np.concatenate(all_elapsed, axis=0)
all_elapsed = np.expand_dims(all_elapsed, axis=-1)
all_mask = np.zeros((all_x.shape[0], self.seq_len), np.bool)
all_mask[:, self.mask_len :] = 1
all_mask = np.expand_dims(all_mask, axis=-1)
all_y = all_y * all_mask.astype(np.float32)
return all_x, all_elapsed, all_mask, all_y