This contains Dockerfile
s to make it easy to get up and running with
TensorFlow and scikit-learn via Docker.
General installation instructions are on the Docker site, but we give some quick links here:
Linux/MacOS:
$ mkdir /data
Windows:
$ mkdir c:\data
[Note] if you are useing 'Docker for Windows',you need to configuring Shared Drives
Linux/MacOS:
$ docker run -p 8888:8888 -p 6006:6006 -v /data:/notebooks -it --rm asashiho/ml-jupyter-python3
Windows:
$ docker run -p 8888:8888 -p 6006:6006 -v /c/data:/notebooks -it --rm asashiho/ml-jupyter-python3
This container setup:
- Python 3.7
- TensorFlow 1.13.1
- scikit-learn
- keras
- sklearn
- jupyter
- scipy
- simpy
- matplotlib
- numpy
- pandas
- plotly
- sympy
- mecab-python3
- librosa
- Pillow
- h5py
- google-api-python-client
This container is CPU Only.If you want to use GPU, rebuilding GPU images requires nvidia-docker.
Copy/paste this URL into your browser when you connect for the first time,
to login with a token:
http://localhost:8888/?token=<your token>
cd mnt/data/
git clone https://github.com/tensorflow/tensorflow
cd mnt/data/tensorflow
git clone https://github.com/tensorflow/models
cd mnt/data/
git clone https://github.com/cocodataset/cocoapi.git
- exec container
cd /notebooks/cocoapi/PythonAPI
make
cp -r pycocotools /notebooks/tensorflow/models
cd /notebooks/tensorflow/models/research
protoc object_detection/protos/*.proto --python_out=.