-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
310 lines (252 loc) · 11 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
""" The main file to train a MixHop model using a full graph """
import argparse
import copy
import torch
import torch.optim as optim
import torch.nn as nn
import numpy as np
import random
import dgl
import dgl.function as fn
from dgl.data import CoraGraphDataset, CiteseerGraphDataset, PubmedGraphDataset
from tqdm import trange
class MixHopConv(nn.Module):
r"""
Description
-----------
MixHop Graph Convolutional layer from paper `MixHop: Higher-Order Graph Convolutional Architecturesvia Sparsified Neighborhood Mixing
<https://arxiv.org/pdf/1905.00067.pdf>`__.
.. math::
H^{(i+1)} =\underset{j \in P}{\Bigg\Vert} \sigma\left(\widehat{A}^j H^{(i)} W_j^{(i)}\right),
where :math:`\widehat{A}` denotes the symmetrically normalized adjacencymatrix with self-connections,
:math:`D_{ii} = \sum_{j=0} \widehat{A}_{ij}` its diagonal degree matrix,
:math:`W_j^{(i)}` denotes the trainable weight matrix of different MixHop layers.
Parameters
----------
in_dim : int
Input feature size. i.e, the number of dimensions of :math:`H^{(i)}`.
out_dim : int
Output feature size for each power.
p: list
List of powers of adjacency matrix. Defaults: ``[0, 1, 2]``.
dropout: float, optional
Dropout rate on node features. Defaults: ``0``.
activation: callable activation function/layer or None, optional
If not None, applies an activation function to the updated node features.
Default: ``None``.
batchnorm: bool, optional
If True, use batch normalization. Defaults: ``False``.
"""
def __init__(self,
in_dim,
out_dim,
p=[0, 1, 2],
dropout=0,
activation=None,
batchnorm=False):
super(MixHopConv, self).__init__()
self.in_dim = in_dim
self.out_dim = out_dim
self.p = p
self.activation = activation
self.batchnorm = batchnorm
# define dropout layer
self.dropout = nn.Dropout(dropout)
# define batch norm layer
if self.batchnorm:
self.bn = nn.BatchNorm1d(out_dim * len(p))
# define weight dict for each power j
self.weights = nn.ModuleDict({
str(j): nn.Linear(in_dim, out_dim, bias=False) for j in p
})
def forward(self, graph, feats):
with graph.local_scope():
# assume that the graphs are undirected and graph.in_degrees() is the same as graph.out_degrees()
degs = graph.in_degrees().float().clamp(min=1)
norm = torch.pow(degs, -0.5).to(feats.device).unsqueeze(1)
max_j = max(self.p) + 1
outputs = []
for j in range(max_j):
if j in self.p:
output = self.weights[str(j)](feats)
outputs.append(output)
feats = feats * norm
graph.ndata['h'] = feats
graph.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
feats = graph.ndata.pop('h')
feats = feats * norm
final = torch.cat(outputs, dim=1)
if self.batchnorm:
final = self.bn(final)
if self.activation is not None:
final = self.activation(final)
final = self.dropout(final)
return final
class MixHop(nn.Module):
def __init__(self,
in_dim,
hid_dim,
out_dim,
num_layers=2,
p=[0, 1, 2],
input_dropout=0.0,
layer_dropout=0.0,
activation=None,
batchnorm=False):
super(MixHop, self).__init__()
self.in_dim = in_dim
self.hid_dim = hid_dim
self.out_dim = out_dim
self.num_layers = num_layers
self.p = p
self.input_dropout = input_dropout
self.layer_dropout = layer_dropout
self.activation = activation
self.batchnorm = batchnorm
self.layers = nn.ModuleList()
self.dropout = nn.Dropout(self.input_dropout)
# Input layer
self.layers.append(MixHopConv(self.in_dim,
self.hid_dim,
p=self.p,
dropout=self.input_dropout,
activation=self.activation,
batchnorm=self.batchnorm))
# Hidden layers with n - 1 MixHopConv layers
for i in range(self.num_layers - 2):
self.layers.append(MixHopConv(self.hid_dim * len(args.p),
self.hid_dim,
p=self.p,
dropout=self.layer_dropout,
activation=self.activation,
batchnorm=self.batchnorm))
self.fc_layers = nn.Linear(self.hid_dim * len(args.p), self.out_dim, bias=False)
def forward(self, graph, feats):
feats = self.dropout(feats)
for layer in self.layers:
feats = layer(graph, feats)
feats = self.fc_layers(feats)
return feats
def main(args):
# Step 1: Prepare graph data and retrieve train/validation/test index ============================= #
# Load from DGL dataset
if args.dataset == 'Cora':
dataset = CoraGraphDataset()
elif args.dataset == 'Citeseer':
dataset = CiteseerGraphDataset()
elif args.dataset == 'Pubmed':
dataset = PubmedGraphDataset()
else:
raise ValueError('Dataset {} is invalid.'.format(args.dataset))
graph = dataset[0]
graph = dgl.add_self_loop(graph)
# check cuda
if args.gpu >= 0 and torch.cuda.is_available():
device = 'cuda:{}'.format(args.gpu)
else:
device = 'cpu'
# retrieve the number of classes
n_classes = dataset.num_classes
# retrieve labels of ground truth
labels = graph.ndata.pop('label').to(device).long()
# Extract node features
feats = graph.ndata.pop('feat').to(device)
n_features = feats.shape[-1]
# retrieve masks for train/validation/test
train_mask = graph.ndata.pop('train_mask')
val_mask = graph.ndata.pop('val_mask')
test_mask = graph.ndata.pop('test_mask')
train_idx = torch.nonzero(train_mask, as_tuple=False).squeeze().to(device)
val_idx = torch.nonzero(val_mask, as_tuple=False).squeeze().to(device)
test_idx = torch.nonzero(test_mask, as_tuple=False).squeeze().to(device)
graph = graph.to(device)
# Step 2: Create model =================================================================== #
model = MixHop(in_dim=n_features,
hid_dim=args.hid_dim,
out_dim=n_classes,
num_layers=args.num_layers,
p=args.p,
input_dropout=args.input_dropout,
layer_dropout=args.layer_dropout,
activation=torch.tanh,
batchnorm=True)
model = model.to(device)
best_model = copy.deepcopy(model)
# Step 3: Create training components ===================================================== #
loss_fn = nn.CrossEntropyLoss()
opt = optim.SGD(model.parameters(), lr=args.lr, weight_decay=args.lamb)
scheduler = optim.lr_scheduler.StepLR(opt, args.step_size, gamma=args.gamma)
# Step 4: training epoches =============================================================== #
acc = 0
no_improvement = 0
epochs = trange(args.epochs, desc='Accuracy & Loss')
for _ in epochs:
# Training using a full graph
model.train()
logits = model(graph, feats)
# compute loss
train_loss = loss_fn(logits[train_idx], labels[train_idx])
train_acc = torch.sum(logits[train_idx].argmax(dim=1) == labels[train_idx]).item() / len(train_idx)
# backward
opt.zero_grad()
train_loss.backward()
opt.step()
# Validation using a full graph
model.eval()
with torch.no_grad():
valid_loss = loss_fn(logits[val_idx], labels[val_idx])
valid_acc = torch.sum(logits[val_idx].argmax(dim=1) == labels[val_idx]).item() / len(val_idx)
# Print out performance
epochs.set_description('Train Acc {:.4f} | Train Loss {:.4f} | Val Acc {:.4f} | Val loss {:.4f}'.format(
train_acc, train_loss.item(), valid_acc, valid_loss.item()))
if valid_acc < acc:
no_improvement += 1
if no_improvement == args.early_stopping:
print('Early stop.')
break
else:
no_improvement = 0
acc = valid_acc
best_model = copy.deepcopy(model)
scheduler.step()
best_model.eval()
logits = best_model(graph, feats)
test_acc = torch.sum(logits[test_idx].argmax(dim=1) == labels[test_idx]).item() / len(test_idx)
print("Test Acc {:.4f}".format(test_acc))
return test_acc
if __name__ == "__main__":
"""
MixHop Model Hyperparameters
"""
parser = argparse.ArgumentParser(description='MixHop GCN')
# data source params
parser.add_argument('--dataset', type=str, default='Cora', help='Name of dataset.')
# cuda params
parser.add_argument('--gpu', type=int, default=-1, help='GPU index. Default: -1, using CPU.')
# training params
parser.add_argument('--epochs', type=int, default=2000, help='Training epochs.')
parser.add_argument('--early-stopping', type=int, default=200, help='Patient epochs to wait before early stopping.')
parser.add_argument('--lr', type=float, default=0.5, help='Learning rate.')
parser.add_argument('--lamb', type=float, default=5e-4, help='L2 reg.')
parser.add_argument('--step-size', type=int, default=40, help='Period of learning rate decay.')
parser.add_argument('--gamma', type=float, default=0.01, help='Multiplicative factor of learning rate decay.')
# model params
parser.add_argument("--hid-dim", type=int, default=60, help='Hidden layer dimensionalities.')
parser.add_argument("--num-layers", type=int, default=4, help='Number of GNN layers.')
parser.add_argument("--input-dropout", type=float, default=0.7, help='Dropout applied at input layer.')
parser.add_argument("--layer-dropout", type=float, default=0.9, help='Dropout applied at hidden layers.')
parser.add_argument('--p', nargs='+', type=int, help='List of powers of adjacency matrix.')
parser.set_defaults(p=[0, 1, 2])
args = parser.parse_args()
print(args)
acc_lists = []
for _ in range(100):
acc_lists.append(main(args))
acc_lists.sort()
acc_lists_top = np.array(acc_lists[50:])
mean = np.around(np.mean(acc_lists_top, axis=0), decimals=3)
std = np.around(np.std(acc_lists_top, axis=0), decimals=3)
print('Total acc: ', acc_lists)
print('Top 50 acc:', acc_lists_top)
print('mean', mean)
print('std', std)