

Patch Similarity Aware Data-Free Quantization for Vision Transformers

Zhikai Li^{1,2}, Liping Ma¹, Mengjuan Chen¹, Junrui Xiao^{1,2}, and Qingyi Gu^{1*} ¹ Institute of Automation, Chinese Academy of Sciences ² School of Artificial Intelligence, University of Chinese Academy of Sciences

Code: https://github.com/zkkli/PSAQ-ViT

Motivation

- Quantization is important but suffers from **data privacy and security issues**.
 - > **Data-free quantization** is a potential and practice solution.
 - However, existing BN regularization-based methods are only designed for
 CNNs and inapplicable to ViTs.
- In this paper, we perform a first attempt at data-free quantization for ViTs, with the following contributions:
 - A general difference in self-attention module's processing of Gaussian noise and real images, *i.e.*, patch similarity.
 - A relative value metric to optimize the Gaussian image to approximate the real images.

Patch Similarity Aware Sample Generation

 Our generated image can potentially represent the real-image features, producing diverse patch similarity and a bimodal kernel density curve, where the left and right peaks describe inter- and intra-category similarity, respectively.

1. Calculate the cosine similarity between each subspace vector in the patch dimension, specifying the data range at [-1, 1], as follows:

$$\Gamma_l(u_i, u_j) = \frac{u_i \cdot u_j}{\parallel u_i \parallel \parallel u_j \parallel}$$

2. Calculate the continuous probability density function of Γ_l using kernel density estimation as follows:

$$\hat{f}_h(x) = \frac{1}{M} \sum_{m=1}^M K_h(x - x_m) = \frac{1}{Mh} \sum_{m=1}^M K\left(\frac{x - x_m}{h}\right)$$

3. Calculate the differential entropy to measure the diversity of patch similarity as follows:

$$H_l = -\int \hat{f}_h(x) \cdot \log[\hat{f}_h(x)] dx$$

4. Sum the differential entropy of each layer to account for the diversity of patch similarity across all layers as follows:

$$\mathcal{L}_{PSE} = -\sum_{l=1}^{L} H_l$$

Experimental Results

 PSAQ-ViT consistently achieves superior results on various models, even better than the real-data-driven Standard.

Model	Method	No Data	Prec.	Top-1(%)	Prec.	Top-1(%)
ViT-S (81.39)	Standard Gaussian noise PSAQ-ViT(ours)	× ✓ ✓	W4/A8 W4/A8 W4/A8	19.91 15.60 20.84	W8/A8 W8/A8 W8/A8	30.28 25.22 31.45
ViT-B (84.53)	Standard Gaussian noise PSAQ-ViT(ours)	× ✓ ✓	W4/A8 W4/A8 W4/A8	24.76 19.45 25.34	W8/A8 W8/A8 W8/A8	36.65 31.63 37.36
DeiT-T (72.21)	Standard Gaussian noise PSAQ-ViT(ours)	× ✓ ✓	W4/A8 W4/A8 W4/A8	65.20 7.80 65.57	W8/A8 W8/A8 W8/A8	71.27 10.55 71.56
DeiT-S (79.85)	Standard Gaussian noise PSAQ-ViT(ours)	× ✓ ✓	W4/A8 W4/A8 W4/A8	72.10 13.30 73.23	W8/A8 W8/A8 W8/A8	76.00 18.16 76.92
DeiT-B (81.85)	Standard Gaussian noise PSAQ-ViT(ours)	× ✓ ✓	W4/A8 W4/A8 W4/A8	76.25 11.09 77.05	W8/A8 W8/A8 W8/A8	78.61 14.72 79.10
Swin-T (81.35)	Standard Gaussian noise PSAQ-ViT(ours)	×	W4/A8 W4/A8 W4/A8	70.16 0.52 71.79	W8/A8 W8/A8 W8/A8	74.22 0.62 75.35
Swin-S (83.20)	Standard Gaussian noise PSAQ-ViT(ours)	×	W4/A8 W4/A8 W4/A8	73.33 5.43 75.14	W8/A8 W8/A8 W8/A8	75.19 5.66 76.64

Table 1. Quantization results on ImageNet dataset.

Fig. 2. Generated class-conditional samples (224×224 pixels), given only a pre-trained ViT-B model.

Fig. 3. Comparison of the kernel density curves of the patch similarity for each layer

Conclusions

- We propose PSAQ-ViT, a Patch Similarity Aware data-free Quantization framework for Vision Transformers.
 - PSAQ-ViT achieves high accuracy without any access to training/testing data during the quantization process.
 - Thanks to the positive feedback effect of the generated images, PSAQ-ViT can even outperform the real-data-driven methods at the same settings.
- An enhanced version has made it more accurate (8-bit lossless compression) and general (detection and segmentation applications), see [1] for further details.

[1] Li zhikai, et al. PSAQ-ViT V2: Towards Accurate and General Data-Free Quantization for Vision Transformers. arXiv preprint arXiv:2209.05687 (2022).

Patch Similarity Aware Data-Free Quantization for Vision Transformers

Thank you !

