Mohó algoritmus
Megjelenés
A mohó algoritmus vagy greedy algoritmus az a problémamegoldó algoritmus, amely helyi optimumok megvalósításával próbálja megtalálni a globális optimumot. Ez például az utazó ügynök problémájaként ismert feladatban azt jelenti, hogy minden állomásról a legközelebbi, addig még nem látogatott városba fog utazni az ügynök.
Általánosan öt pillérre támaszkodik:
- egy halmazból veszi a jelölteket, amelyekkel felállítja a megoldáshalmazt
- egy kiválasztó függvény, amely a legjobb jelöltet választja ki a megoldás reményében
- egy lehetőségvizsgáló függvény, amely megnézi, hogy egy jelölt alkalmas-e a megoldásra
- egy célfüggvény, amely egy értéket megoldásnak, vagy részleges megoldásnak jelöl
- egy megoldásfüggvény, amely jelzi, ha megtaláltuk a teljes megoldást.
A módszer jól alkalmazható néhány matematikai probléma megoldásában, de nem garantálja sok probléma megoldását.
Példák
[szerkesztés]- Az utazó ügynök problémájaként ismert feladat: Minden állomásról a legközelebbi, addig még nem látogatott városba utazva bejárni a városokat a legrövidebb útvonalon.
- Kruskal-algoritmus: Egy összefüggő gráf éleihez hozzárendelnek egy szigorúan pozitív számot, az úgynevezett költséget. Meg kell határozni a minimális feszítőfát a csúcsok között.
- Dijkstra-algoritmus: egy mohó algoritmus, amivel irányított vagy irányítás nélküli gráfokban lehet megkeresni a legrövidebb utakat egy adott csúcspontból kiindulva.
Alkalmazásai
[szerkesztés]A mohó algoritmusok igen jól teljesítenek ahol gyors és kis számítási kapacitású keresést kell megvalósítani, ellenben egyetlen megoldást adnak alternatívák nélkül. Bonyolult állapotterek esetén minimális javulást eredményezhetnek.
- Huffman-kódolás az adattömörítésben
- Erdős–Straus-sejtés a matematikában
Források
[szerkesztés]- Introduction to Algorithms (Cormen, Leiserson, and Rivest) 1990, 17. fejezet Greedy Algorithms 329. old.
- Introduction to Algorithms (Cormen, Leiserson, and Rivest) 2001, 16. fejezet Greedy Algorithms.
- G. Gutin, A. Yeo és A. Zverovich, Traveling salesman should not be greedy: domination analysis of greedy-type heuristics for the TSP. Discrete Applied Mathematics 117 (2002), 81-86.
- J. Bang-Jensen, G. Gutin and A. Yeo, When the greedy algorithm fails. Discrete Optimization 1 (2004), 121-127.
- G. Bendall and F. Margot, Greedy Type Resistance of Combinatorial Problems, Discrete Optimization 3 (2006), 288-298.
Fordítás
[szerkesztés]- Ez a szócikk részben vagy egészben a Greedy algorithm című angol Wikipédia-szócikk ezen változatának fordításán alapul. Az eredeti cikk szerkesztőit annak laptörténete sorolja fel. Ez a jelzés csupán a megfogalmazás eredetét és a szerzői jogokat jelzi, nem szolgál a cikkben szereplő információk forrásmegjelöléseként.