https://huggingface.co/Xwin-LM

\n","updatedAt":"2024-06-02T19:00:26.970Z","author":{"avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/63a369d98c0c89dcae3b8329/6OUJ7Hc9T1jXynYH3FGaf.png","fullname":"Adina Yakefu","name":"AdinaY","type":"user","isPro":false,"isHf":true,"isMod":false,"followerCount":212}},"numEdits":0,"identifiedLanguage":{"language":"en","probability":0.46581920981407166},"editors":["AdinaY"],"reactions":[],"isReport":false}}],"primaryEmailConfirmed":false,"paper":{"id":"2405.20335","authors":[{"_id":"66594d86f1b4f073d80378d2","user":{"_id":"642149592cc2b3c39e7ef6c9","avatarUrl":"/avatars/fed5d447375cd8c3b2bc9e096fe681de.svg","isPro":false,"fullname":"Bolin Ni","user":"nbl97","type":"user"},"name":"Bolin Ni","status":"admin_assigned","statusLastChangedAt":"2024-05-31T09:52:41.072Z","hidden":false},{"_id":"66594d86f1b4f073d80378d3","user":{"_id":"625026b7d2d191ac43320c5e","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/625026b7d2d191ac43320c5e/K-Fn3v2KwNyg9QzhKB4vH.jpeg","isPro":false,"fullname":"Jingcheng Hu","user":"reign12","type":"user"},"name":"JingCheng Hu","status":"admin_assigned","statusLastChangedAt":"2024-05-31T09:52:47.834Z","hidden":false},{"_id":"66594d86f1b4f073d80378d4","user":{"_id":"640efe54a92fedb0e84ee598","avatarUrl":"/avatars/cb1c6720525bfdbf59a9d3eac93a879e.svg","isPro":false,"fullname":"Yixuan Wei","user":"EasonWei","type":"user"},"name":"Yixuan Wei","status":"admin_assigned","statusLastChangedAt":"2024-05-31T09:53:01.864Z","hidden":false},{"_id":"66594d86f1b4f073d80378d5","user":{"_id":"631952b6f18d0b5d999ca397","avatarUrl":"/avatars/eb87dfc142a7602f8fb888f7b7b60d38.svg","isPro":false,"fullname":"Peng","user":"Houwen","type":"user"},"name":"Houwen Peng","status":"admin_assigned","statusLastChangedAt":"2024-05-31T09:53:10.851Z","hidden":false},{"_id":"66594d86f1b4f073d80378d6","name":"Zheng Zhang","hidden":false},{"_id":"66594d86f1b4f073d80378d7","name":"Gaofeng Meng","hidden":false},{"_id":"66594d86f1b4f073d80378d8","name":"Han Hu","hidden":false}],"publishedAt":"2024-05-30T17:59:31.000Z","submittedOnDailyAt":"2024-05-31T02:39:44.509Z","title":"Xwin-LM: Strong and Scalable Alignment Practice for LLMs","submittedOnDailyBy":{"_id":"60f1abe7544c2adfd699860c","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1674929746905-60f1abe7544c2adfd699860c.jpeg","isPro":false,"fullname":"AK","user":"akhaliq","type":"user"},"summary":"In this work, we present Xwin-LM, a comprehensive suite of alignment\nmethodologies for large language models (LLMs). This suite encompasses several\nkey techniques, including supervised finetuning (SFT), reward modeling (RM),\nrejection sampling finetuning (RS), and direct preference optimization (DPO).\nThe key components are as follows: (1) Xwin-LM-SFT, models initially finetuned\nwith high-quality instruction data; (2) Xwin-Pair, a large-scale, multi-turn\npreference dataset meticulously annotated using GPT-4; (3) Xwin-RM, reward\nmodels trained on Xwin-Pair, developed at scales of 7B, 13B, and 70B\nparameters; (4) Xwin-Set, a multiwise preference dataset in which each prompt\nis linked to 64 unique responses generated by Xwin-LM-SFT and scored by\nXwin-RM; (5) Xwin-LM-RS, models finetuned with the highest-scoring responses\nfrom Xwin-Set; (6) Xwin-LM-DPO, models further optimized on Xwin-Set using the\nDPO algorithm. Our evaluations on AlpacaEval and MT-bench demonstrate\nconsistent and significant improvements across the pipeline, demonstrating the\nstrength and scalability of Xwin-LM. The repository\nhttps://github.com/Xwin-LM/Xwin-LM will be continually updated to foster\ncommunity research.","upvotes":17,"discussionId":"66594d88f1b4f073d803798f"},"canReadDatabase":false,"canManageCommunity":false,"canSubmit":false,"hasHfLevelAccess":false,"upvoted":false,"upvoters":[{"_id":"6039478ab3ecf716b1a5fd4d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6039478ab3ecf716b1a5fd4d/uc2Q5G2HKphTD0TbOsYiC.jpeg","isPro":true,"fullname":"taesiri","user":"taesiri","type":"user"},{"_id":"620783f24e28382272337ba4","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/620783f24e28382272337ba4/zkUveQPNiDfYjgGhuFErj.jpeg","isPro":false,"fullname":"GuoLiangTang","user":"Tommy930","type":"user"},{"_id":"655ac762cb17ec19ef82719b","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/655ac762cb17ec19ef82719b/1kDncYrGLYS_2SR8cNdAL.png","isPro":false,"fullname":"Welcome to matlok","user":"matlok","type":"user"},{"_id":"648eb1eb59c4e5c87dc116e0","avatarUrl":"/avatars/c636cea39c2c0937f01398c94ead5dad.svg","isPro":false,"fullname":"fdsqefsgergd","user":"T-representer","type":"user"},{"_id":"642149592cc2b3c39e7ef6c9","avatarUrl":"/avatars/fed5d447375cd8c3b2bc9e096fe681de.svg","isPro":false,"fullname":"Bolin Ni","user":"nbl97","type":"user"},{"_id":"63a369d98c0c89dcae3b8329","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/63a369d98c0c89dcae3b8329/6OUJ7Hc9T1jXynYH3FGaf.png","isPro":false,"fullname":"Adina Yakefu","user":"AdinaY","type":"user"},{"_id":"65ba471ad88a65abb9328ee2","avatarUrl":"/avatars/956238ce5034091e64d026b0272c4400.svg","isPro":false,"fullname":"Dazhi Jiang","user":"thuzhizhi","type":"user"},{"_id":"641b754d1911d3be6745cce9","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/641b754d1911d3be6745cce9/GXN8mEmaq3rfITRrw7GeZ.jpeg","isPro":false,"fullname":"atayloraerospace","user":"Taylor658","type":"user"},{"_id":"646e789d98e8f749fc5f85fa","avatarUrl":"/avatars/5e9316f03e68d11604584bb2ffe7eb28.svg","isPro":false,"fullname":"Barbara ","user":"Babl21","type":"user"},{"_id":"657217faabb25ed8aedd5e48","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/657217faabb25ed8aedd5e48/UUHAXeGtOnQBXFD3nYtf2.jpeg","isPro":false,"fullname":"Vlad Bogolin","user":"vladbogo","type":"user"},{"_id":"64a84de2eb47b3552285ef74","avatarUrl":"/avatars/114e0cc393d0aea9680f3af6d84d6f46.svg","isPro":false,"fullname":"Eni Grand","user":"Enigrand","type":"user"},{"_id":"625026b7d2d191ac43320c5e","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/625026b7d2d191ac43320c5e/K-Fn3v2KwNyg9QzhKB4vH.jpeg","isPro":false,"fullname":"Jingcheng Hu","user":"reign12","type":"user"}],"acceptLanguages":["*"],"dailyPaperRank":0}">
Papers
arxiv:2405.20335

Xwin-LM: Strong and Scalable Alignment Practice for LLMs

Published on May 30
· Submitted by akhaliq on May 31
Authors:
,
,

Abstract

In this work, we present Xwin-LM, a comprehensive suite of alignment methodologies for large language models (LLMs). This suite encompasses several key techniques, including supervised finetuning (SFT), reward modeling (RM), rejection sampling finetuning (RS), and direct preference optimization (DPO). The key components are as follows: (1) Xwin-LM-SFT, models initially finetuned with high-quality instruction data; (2) Xwin-Pair, a large-scale, multi-turn preference dataset meticulously annotated using GPT-4; (3) Xwin-RM, reward models trained on Xwin-Pair, developed at scales of 7B, 13B, and 70B parameters; (4) Xwin-Set, a multiwise preference dataset in which each prompt is linked to 64 unique responses generated by Xwin-LM-SFT and scored by Xwin-RM; (5) Xwin-LM-RS, models finetuned with the highest-scoring responses from Xwin-Set; (6) Xwin-LM-DPO, models further optimized on Xwin-Set using the DPO algorithm. Our evaluations on AlpacaEval and MT-bench demonstrate consistent and significant improvements across the pipeline, demonstrating the strength and scalability of Xwin-LM. The repository https://github.com/Xwin-LM/Xwin-LM will be continually updated to foster community research.

Community

Sign up or log in to comment

Models citing this paper 1

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2405.20335 in a dataset README.md to link it from this page.

Spaces citing this paper 1

Collections including this paper 6