< databricks

OAuth Integration guide for Cloud-Based Partners with
Databricks

Version V1.2.3 (Last updated on Jan 19,2024)
Table of Contents

OAuth Integration guide for Cloud-Based Partners with Databricks............ccccceeevuneiieecrrvneeceeccnnnne 1
T (oo 11 o3 1 o] o 2
Three-legged OAuth in cloud-based partners utilizing DBSQL drivers.................. 2
Two-legged OAuth in cloud-based partners utilizing DBSQL drivers..................... 3
WHY OAULN (OIDC) 2.ttt ettt et e e e ettt e e e sttt e e e st e e e esnabeeeeennnaeeeeansseeeeans 3
Different types of OAuth Databricks DBSOL APl SUPPOIt....ccuuueiiiiiiiiiiiiiiiie e 4
Databricks Support matrix 0N SErvICE SIdE......ceeiiiiiiiiiiieie et eeeeeeeeaeeenes 4
User-to-Machine OAuth in Cloud-based partner applications...........ccoveiiiiiiiiiiiiiiiiie e, 4
Registering an OAuth application for U2M in Databricks ACCOUNt.......coeeevvviiiiiiiiiieeeeeeeeeeeiieen, 4
Registering an OAuth application for U2ZM in Azure Databricks........ccuuueiiiiiiiiiiiiiiiiiiinnnee. 5
Registering an OAuth application for U2M in Databricks in AWS..........ceeiiiiiiiiiiiiiicene, 7
Configuration and endpoints fOr UZM.......ee oo 8
JDBC/ODBC Driver INTegration........uuueeieeeeeeieeeiiiiiiee e e e eeeeeeeiise s e e e e e eeeeareeeeeeeeeeeensennnnaeens 10
REFrESNING TOKEN. .. et e et N
Persistence/caching 0f the TOKENS.......uuuieiie e e e e e ee e 12
Machine-to-Machine OAuth in Cloud-based partner applications..........cooeeeieiiiiiiiiiineeieiiiiiiiinn, 12
Registering an OAuth application for M2M in Databricks ACCOUNT.........everieiiiiiiiiiiieree e, 12
Creating a Service Principal for Azure DatabriCKs...........oioiiiiiiiiiiiie e 12
Creating a Service Principal for Databricks in AWS.........ooiiiiiiiiiiiicieeee e 13
PrereqUISItes......cccciiiniiiiiiiiniiiiiiinnenincsnnnettiesssansessessssansesssssssansesssssssansessssssses 13
Login to your Databricks aCCOURNL...........ccccrveeeieecirrreeeeeccrrneeeesccssnneeesssssannesesssssenns 13
Create a service PrinCipal.......cccccocvviiiiiiiiinnneiiiinnnnnneiiieinssnsisssssssssesssssssensesssssssanns 14
Create a service prinCipal SECIet......... . eeeeeeeiiiiiiieieieieirrrrnnneeeeeeeeeeeeeeeeeesssssssssnnnns 16
Assign the service Principal to the workspace...........ccooooiiiiiiiiiiis 17
Native Support for Service Principal in JDOBC/ODBC driVersS.......ccuvueeeiiiiiieeeeiiiieeeeeeee e 17
Service Principal support without relying on Native supportin JOBC/ODBC...........ccccevvveeeen. 18
Tna] o] (=T aT=T0) €= 4 o] VPP TPUUPPRRt 18
Identify Databricks is in WhiCh Cloud...........cooviiiiiiiie e 18

< databricks

Use ServicePrincipal credentials to get @ toKeN......e oo, 19

Token Generation for DatabrickS iNAWS........oiioiii e 19

Token Generation for Databricks iN AZUre.........ooeeiviioeeeiiiiee e 20

Use the generated tOKEN.oouui et e et e e e eeaa e e eeeanns 21

Refreshing the TOKEN ... et e e 21

Appendix : OAuth Support in DBSQL Drivers for Cloud Partners...........cccccccvvvvviieiieeiiennnen. 22
Introduction

This document is a guide for OAuth Integration with ISV partners using DBSOL drivers. If you intend to
use DBSQL drivers and Databricks Rest APIs you can modify your scopes to authenticate once.

There are two main scenarios: three-legged OAuth and two-legged OAuth integration.

Three-legged OAuth in cloud-based partners utilizing DBSQL drivers:

This is also known as User-to-machine (U2M) authentication. For U2M OAuth in cloud-based partners,
opening a pop-up browser and redirecting due to security reasons must happen in the business logic
of the partner application. This guide explains best practices how to achieve that.

e Create an OAuth Application

The partner should provide the guide for registering an OAuth application to
Databricks+Partner joint customers. Customers will create an OAuth application in Databricks
(link)

O

e U2M code flow implementation: (hosting web server, browser pop up, etc) needs to be
implemented by the cloud-based partner in their business logic. Once partner business logic
acquired an access-token, it should pass the token to the DBSQL driver (link)

e Refresh token flow: refresh token flow must be implemented in the partner business logic.
Once a new token is acquired, the partner business logic must invoke the relevant DBSQL
driver api for refreshing access-token (link)

e Caching or persisting the token: Caching/persisting token has to happen in the partner
business logic, as a cloud based application may have many users, the token should be
cached/persisted for each user independently in user's session (databricks workspace host,
userid) (link)

We also have a sample python getting started guide for UZM OAuth desktop application for Databricks
on AWS:

< databricks

https://github.com/databricks/databricks-sdk-py/blob/main/examples/flask_app_with_oauth.py

Two-legged OAuth in cloud-based partners utilizing DBSQL drivers:

This is also known as Machine-to-machine (M2M) authentication.
Cloud based OAuth with M2M applications are not different from desktop application OAuth M2M, this
guide covers the M2M scenario for the sake of completeness:
e Create Service Principal
Joint customers of Databricks+Partner will create a service principal in their Databricks
account cloud (link to the guide)
o Azure Databricks: customer admin creates SP in AAD (link)
o Databricks in AWS: customer admin creates SP using Databricks Admin rest api (link)
e Partner business logic passed SP (Clientld and ClientSecret) to the DBSQL driver
e M2M code flow implementation: (link
o DBSQL driver internally will have implementation for the M2M flow.
o Opensource drivers will use M2M flow implemented by the DECO team
o Simba JDBC/ODBC drivers will use M2M flow implemented by simba

Why OAuth (0IDC)?

OAuth is preferred over personal access token (PAT)-based or username/password authentication in
many situations due to several key advantages it offers. These advantages include:

e Security: OAuth provides a more secure way of granting access to resources without sharing
the user's actual credentials (username and password) or PAT tokens. Instead, it utilizes
access tokens, which are short-live (less than and can be limited in scope, reducing the risk
of unauthorized access or data breaches.

e Standardization: OAuth is a widely-accepted industry standard for authorization, making it
easier for developers to implement and maintain.

e PATs have an expiration time and must be manually rotated before they expire. In contrast,

OAuth authentication doesn't have this issue, as it uses access tokens with refresh tokens to
maintain continuous access.

Different types of OAuth Databricks DBSQL API Support

We support User-to-Machine and Machine-to-Machine OAuth for SqlWarehouse APlIs:

e Three-legged OAuth with Databricks DBSQL API:

https://github.com/databricks/databricks-sdk-py/blob/main/examples/flask_app_with_oauth.py

< databricks

This is also known as User-to-machine (U2M) authentication.

U2M interactions in Databricks DBSQL API involve users working directly with the API to
perform tasks such as executing SQL queries, managing clusters, and creating or modifying
databases and tables. Users typically interact with the API through Bl Tools, programming
language libraries, or custom-built applications. U2M interactions are essential for data
scientists, engineers, and analysts who use the Databricks platform for data processing,
analysis, and machine learning tasks.

e Two-legged OAuth with Databricks DBSQL API:
This is also known as Machine-to-machine (M2M) authentication.
M2M interactions with the Databricks DBSQL APl involve automated systems, services, or
applications communicating with the Databricks platform without direct human intervention.
This typically includes tasks like automating data ingestion, triggering data processing
pipelines, or synchronizing data between systems. M2M interactions are commonly used in
scenarios where multiple systems or applications need to work together to achieve a desired
outcome, such as ETL pipelines, data monitoring, and orchestration of complex workflows.

Databricks Support matrix on Service side

Azure Databricks Databricks on AWS | Databricks on GCP
U2M OAuth GA GA Not supported yet
M2M OAuth GA GA Not supported yet

User-to-Machine OAuth in Cloud-based partner applications

User-to-Machine OAuth requires the application to open a browser pop up for users to interactively
log in. Hence the cloud-based partner application must implement UZM flow on their end because
Browser Pop up must be opened on the cloud partner application.

Registering an OAuth application for UZM in Databricks Account

Registering an OAuth application requires registering an OAuth client-id, redirect-url and optionally a
client-secret. You should determine what your OAuth redirect-url is and whether it needs a
client-secret or not.

< databricks

Registering an OAuth application for U2M in Databricks

Registering an OAuth application from Databricks Account Console

You can register an OAuth application for U2M in your account from Databricks Account Console.

Here are the steps:
1. Login to Databricks Account Console
o AWS: https://accounts.cloud.databricks.com
o GCP: https://accounts.gcp.databricks.com
o Azure: https://accounts.azuredatabricks.net
Goto Settings | App connections
Click “Add connection”
Enter the application name and redirect URLs, and leave other fields as default
Click “Add" to create your OAuth application
A dialog “Connection created” will popup, please copy the “Client ID” and “Client Secret’ in
the dialog and store them somewhere as you won't be able to see the “Client Secret’ again.

R R

Settings > App connections >

Add connection

Enter OAuth connection details to allow access to Databricks from other applications. Learn more

Application Name
Give the application a name to identity it

My demo app

Redirect URLs
Allowed OAuth redirect URLs (one per line)

https://example.com/oauth/callbacH

Access scopes
Which OAuth scopes should be assigned to the application?

sSQL®
All APIs ®

Client secret
Non-public (confidential) connections require a client secret for authentication.
Note: this can't be changed after the connection has been created.

Generate a client secret

Access token TTL (in minutes)
The time-to-live, in minutes, for the OAuth access token (5 - 1,440)

60

Refresh token TTL (in minutes)
The time-to-live, in minutes, for the OAuth refresh token (Access Token TTL - 129,600)

10080

Add Cancel

https://accounts.cloud.databricks.com/
https://accounts.gcp.databricks.com/
https://accounts.azuredatabricks.net/

< databricks

The following scopes are automatically granted to the application.
e openid, email, profile: Required to generate the ID token.
e offline_access: Required to generate refresh tokens.

Note: It only registers the application in your account. You have to ask customers to register your
application in their Databrick accounts if they want to use your application.

Registering on OAuth application by REST API

We also provide Admin rest API for registering an OAuth application:

To authenticate to the Account AP, you can use Databricks OAuth tokens for service principals or an
account admin’s username and password. Databricks strongly recommends that you use OAuth
tokens for service principals. A service principal is an identity that you create in Databricks for use
with automated tools, jobs, and applications. To create an OAuth token, see Authentication using
OAuth tokens for service principals.

Pass the OAuth token in the header using Bearer authentication. For example:

Unset
export OAUTH_TOKEN=<oauth-access-token>

curl -X GET --header "Authorization: Bearer SOAUTH_TOKEN" \
"https://accounts.cloud.databricks.com/api/2.0/accounts/<accountId>/<endpoi

nt>

Run the following command (if you need an OAuth client-secret you need confidential to be set to
true, otherwise false) to register the OAuth application. You need to add scope “sql’ (required scope
for DBSQL API) and “offline_access” (required scope for getting refresh token) to the “scopes” field in
the request payload (see example below).

Unset
curl -X POST -d '{ "redirect_urls" : ["<Redirect URL>"], "confidential"
true|false, "name" : "<Name>", "scopes": ["<scopes for the app>"] }'

https://accounts.cloud.databricks.com/api/2.08/accounts/<AccountID>/oauth2/c
ustom-app-integrations --header "Authorization: Bearer $SOAUTH_TOKEN"

Example:

https://docs.databricks.com/dev-tools/authentication-oauth.html
https://docs.databricks.com/dev-tools/authentication-oauth.html
https://accounts.cloud.databricks.com/api/2.0/accounts/

< databricks

Unset

curl -XPOST-d '{"redirect_urls" : [
"https://example-partner.com/redirecturli”,
"https://example-partner.com/redirecturl2"], "confidential" : true, "name" :
"example-partner", "scopes" :["sql", "offline_access"] }'
https://accounts.cloud.databricks.com/api/2.06/accounts/123e4567-e89b-12d3-a
456-426614174000/0auth2/custom-app-integrations --header "Authorization:
Bearer SOAUTH_TOKEN"

The execution of this will register the oauth-app and generate a unique OAuth client-id and in case
you used ‘confidential=true an OAuthclient secret will be generated for you.
Sample output:

Unset

,"client_id":"<Client
<Client secret>"}

{"integration_id":"<Integration ID>

ID>", "client_secret":

You should collect the OAuth client id and OAuth client-secret as you won't be able to see it later

Configuration and endpoints for U2M

A cloud-based partner application will need to implement the OAuth U2M flow to acquire an access
token, that can then be used with the DBSQL driver (JDBC/ODBC.) If the partner application is a SaaS
application, it would also need to handle multi-tenancy, such as introducing a different callback
endpoint or passing in the state parameter to the OAuth flow.

https://example-partner.com/redirecturl1
https://example-partner.com/redirecturl1

< databricks

User Cloud-Based Partner Application Databricks QIOC Auth Endpoint DBSQL Driver (JDBC/ODEC) Databricks DBSQL Endpoint

interaction

Browser Pop-up

client-id, (optinoal client-secret), redirect-url, scopes, PKCE SHA256 code-challenge

Redirect To SSO IDP inside Browser Pop-up

User logs in S5O IDP inside Browser Pop-up

AUTH code

client-id, code, PKCE SHA256 code_verfier

access-token, refresh-token

Cloud-Based Partner Application persists refresh-token linked to (databricks host, user)

set access-token

SQL Query + access-token
if access-token expires the following process will be performed

client-id, refresh-token

access-token, refresh-token

reset a new access-token

User Cloud-Based Partner Application Databricks QIDC Auth Endpoint DBSQL Driver (JOBC/ODBC) Databricks DBSQL Endpoint

To help implement the OAuth Code flow, follow the sample implementation:
https:/www.stefaanlippens.net/oauth-code-flow-pkce.html#Connect-to-authentication-provider
(if you optionally have client-secret, that will be the additional parameter you need to manage)

With PKCE, even if a malicious attacker intercepts the Authorization Code, they cannot exchange it for
a token without possessing the Code Verifier.

Description Partner Application must do

code_challenge_method PKCE option S256 or plain (Default is plain if it is not
specified)

code_challenge PKCE option Generate based on PKCE S256 method

code_verifier PKCE option Generate based on PKCE S256 method

OAuth U2M QOIDC endpoints:

https://www.stefaanlippens.net/oauth-code-flow-pkce.html#Connect-to-authentication-provider

< databricks

You can use the .well-known endpoint,
https://{databricks-host}/oidc/.well-known/openid-configuration, to get the OAuth endpoints or
alternatively use the following table:

Description Databricks in AWS Databricks in Azure

Databricks OIDC https://{databricks-host}/oidc https://{databricks-host}/oidc
Endpoint Prefix

Token URL {OIDC-ENDPOINT}/v1/token {OIDC-ENDPOINT}/oauth2/v2.0/token

Authorize URL {OIDC-ENDPOINT}/v1/authorize {OIDC-ENDPOINT}/0oauth2/v2.0/authorize

Scopes for Request

Description Databricks in AWS Databricks in Azure

scopes “sql offline_access” “2ff814a6-3304-4ab8-85ch-cd0e6f879c1d/user_impe
rsonation offline_access”

JDBC/0ODBC Driver Integration

After the completion of the OAuth code flow, you will acquire an OAuth access-token, pass that to the
JDBC/ODBC driver as following:

NOTE: JDBC and ODBC drivers are already integrated with Databricks OAuth for AWS. Partner
applications are encouraged to use them.

JDBC driver (2.6.22 version or above):

< databricks

Unset

jdbc:

databricks
://example.cloud.databricks.com:443/yourDatabricksHttpPath;AuthMech=11;Auth_Flo
w=0;Auth_AccessToken=YOUR_OAUTH_ACCESS_TOKEN

ODBC driver:

Unset
Host=<server-hostname>;Port=443;HTTPPath=<http-path>;AuthMech=11;Auth_Flow=0;

Auth_AccessToken=YOUR_OAUTH_ACCESS_TOKEN

Refreshing Token

OAuth Access tokens are valid for a limited time (by default, 1 hour). For running new queries or for
handling long running queries, the cloud based partner application must refresh the token in their
business logic and set the new refreshed access token in the JOBC/ODBC driver.

The partner business logic must refresh the OAuth token and invoke the following JOBC driver API to
set the new token in the JDBC driver:

Unset
Connection.setClientInfo("Auth_AccessToken", "YOUR_NEW_ACCESS_TOKEN")

Please note that as JOBC driver APIs are blocking you may need to invoke the
connection#setClientinfo() APl on a different thread. If the token is expected to be valid for the time t,
you can use a different thread which at time t/2 sets the refreshed OAuth access token to the JOBC

driver.

For the ODBC side, call SQLSetConnectAttr functions twice. The first one is to update the
Auth_AccessToken, and the second one is to refresh the current connection.

10

< databricks

Unset

char *credentials = "Auth_AccessToken=$(new token)

SQLSetConnectAttr(dbc, 122, credentials, SQL_NTS); // 122 is Custom ODBC property:
SQL_ATTR_CREDENTIALS

__int32 refreshMode =-1; // Refreshnow

SQLSetConnectAttr(dbc, 123, reinterpret_cast<SQLPOINTER>(refreshMode),
SQL_IS_SMALLINT); // 123 is customODBC property: SQL_ATTR_REFRESH_CONNECTION

Persistence/caching of the Tokens

The OAuth refresh token is long-lived. The user's OAuth refresh token should be persisted/cached in
the business logic of the cloud-based partner application to ensure the user does not need to repeat
the OAuth U2M re-login.

Cloud-based applications are typically used by multiple users at the same time. Hence the application
should be able to persist OAuth refresh tokens for multiple users. For example the OAuth tokens for

the user can be persisted on the cloud-based service side linked to their session.

One proposed persistence is to scope tokens such that for each (Databricks-workspace-host, user)
tuple we store tokens independently.

Machine-to-Machine OAuth in Cloud-based partner applications

Registering an OAuth application for M2M in Databricks Account
Creating a Service Principal for Azure Databricks

You need an Azure Databricks account with access to its corresponding AAD tenant for creating a SP
application and assigning it to your Azure Databricks workspace. Follow these steps:

11

< databricks

1. "Add a service principal to your Azure Databricks account” as explained here
https://learn.microsoft.com/en-us/azure/databricks/administration-quide/users-groups/ser
vice-principals#—add-a-service-principal-to-your-azure-databricks-account

2. "Add service principals to your account using the account console” as explained here
https://learn.microsoft.com/en-us/azure/databricks/administration-quide/users-groups/ser
vice-principals#add-service-principals-to-your-account-using-the-account-console

3. "Assign a service principal to a workspace using the account console” as explained here
https://learn.microsoft.com/en-us/azure/databricks/administration-guide/users-groups/ser
vice-principals#assign-a-service-principal-to-a-workspace-using-the-account-console

Creating a Service Principal for Databricks in AWS

Create a Service Principal in your Databricks account in AWS using this guide

Databricks Service Principal OAuth Token feature supports the OAuth 2.0 Client Credentials Grant and
allows you to securely generate OAuth access tokens on behalf of your Databricks service principals.

You can use Databricks service principal OAuth access tokens in your backend jobs to talk to
Databricks Accounts and Workspaces APIs. Those OAuth access tokens carry the identities of their
respective service principals. Their access to Databricks APIs and resources is subject to service
principal permission checks.

Prerequisites
e This public preview only supports Databricks on AWS.

Login to your Databricks account
e Loginto your Databricks account
https://accounts.cloud.databricks.com/login?account_id=<YOUR_ACCOUNT_ID> .

12

https://learn.microsoft.com/en-us/azure/databricks/administration-guide/users-groups/service-principals#--add-a-service-principal-to-your-azure-databricks-account
https://learn.microsoft.com/en-us/azure/databricks/administration-guide/users-groups/service-principals#--add-a-service-principal-to-your-azure-databricks-account
https://learn.microsoft.com/en-us/azure/databricks/administration-guide/users-groups/service-principals#add-service-principals-to-your-account-using-the-account-console
https://learn.microsoft.com/en-us/azure/databricks/administration-guide/users-groups/service-principals#add-service-principals-to-your-account-using-the-account-console
https://learn.microsoft.com/en-us/azure/databricks/administration-guide/users-groups/service-principals#assign-a-service-principal-to-a-workspace-using-the-account-console
https://learn.microsoft.com/en-us/azure/databricks/administration-guide/users-groups/service-principals#assign-a-service-principal-to-a-workspace-using-the-account-console
https://www.rfc-editor.org/rfc/rfc6749#section-4.4
https://accounts.cloud.databricks.com/login?account_id=

< databricks

e If you have multiple accounts, use Log in to another account and select the right one for the

private preview.

< databricks

Choose a workspace

Prod Workspace >

Not seeing your workspaces? Log in to another account
Sign out of Data
Account ID: 12345678-0000-1111-2222-abcdef123456

Account ID: abcd1234-3333-4444-5555-1234567890ab Ol

Create a service principal
e From the Account Console, select User Management from the leftnav.

User management

Users Service principals Groups

Migrated users and service principals froi

To improve manageability, this page now st

Service principals are identities for use with a

Q

?y| User management
Name

e From the Service Principals tab, click on Add service principal.

13

< databricks

User management

Users Service principals Groups

Migrated users and service principals from all workspaces to the account

To improve manageability, this page now shows all of the users and service
principals that are assigned to the workspaces in this account. This does not
change these users' workspace access or account admin access. Learn more

Service principals are identities for use with automated tools, running jobs, and
applications. Learn more.

Q Search Add service principal

Name Application ID Roles

e Enteraname for the service principal and click on Add.

Service principals > Add service principal >

Add service principal

Add service principal

Add a service principal for use with automated t¢

* Name

oauth-testing

Add Cancel

14

< databricks

Create a service principal secret

e Select the service principal you just created

S

a> Bl

=

User management

Users Service principals Groups

Migrated users and service principals from all workspaces to the account

To improve manageability, this page now shows all of the users and service principals tl
does not change these users' workspace access or account admin access. Learn more

Service principals are identities for use with automated tools, running jobs, and applicatio

Q Search
Name Application ID
oauth-testing aabbccdd-9999-8888-7777-0123456789%ef

e C(lick on Generate secret

Service principals > oauth-testing >
oauth-testing

Principal information Roles

General information
UuiD

aabbccdd-9999-8888-7777-0123456789ef

* Name
oauth-testing
Cancel

Oauth secrets

Oauth secrets can be used to secure authentication to the Databricks API. Learn more

ID Created at

Generate secret

15

< databricks

e Copy the Client ID and Secret from the pop-up window. The secret will only be revealed once

Generate secret X

Oauth secret has been generated. You can now use the secret and client ID to secure
authentication to the Databricks API. Learn more

Secret

this-is-a-secret-value B

A Make sure to copy the secret now. You won't be able to see it again.

Client ID

aabbccdd-9999-8888-7777-0123456789ef ®

Same as the service principal UUID

during creation.

Assign the service Principal to the workspace

e You may need to first assign the service principal to a workspace, grant permissions or
assign admin roles.

Native Support for Service Principal in JOBC/ODBC drivers

The native support for Service Principal in JOBC/ODBC drivers is expected to land in 2023. This is the
recommended path.

The new JDBC/ODBC drivers config for supporting Service Principal is expected to be as following

Unset

Host=<server-hostname>;HTTPPath=<http-path>;Auth_Client_ID=<SP-clientId>;
Auth_Client_Secret=<SP-ClientSecret>;Auth_Type=0Auth_2.0

Please note that with the native support for Service Principal in JOBC/ODBC drivers, the partner
application can rely on the native support in JOBC/ODBC and only pass Service-Principal ClientID and
ClientSecret to the JDBC/ODBC Driver.

16

https://docs.databricks.com/administration-guide/users-groups/service-principals.html#add-service-principals-to-a-workspace
https://docs.databricks.com/administration-guide/users-groups/service-principals.html#manage-entitlements-for-a-service-principal
https://docs.databricks.com/administration-guide/users-groups/service-principals.html#assign-account-admin-rights-to-a-service-principal

< databricks

Service Principal support without relying on Native support in JOBC/ODBC

The native support for Service Principal in JDBC/ODBC drivers is expected to land in 2023, and ideally
the partner application should rely on the native support.

However if you intend to integrate immediately or not rely on the native support for Service Principal
in JDBC/0DBC driver you can implement M2M flow inside your partner-application and pass the
OAuth access-token to the DBSQL Driver.

Partner Application DBSQL Driver (JOBC/ODBC) Databricks OIDC Endpoint Databricks SqlWarehouse

client-id, client-secret, scopes

v

access-token

set access-token in DBSQL Driver (JDBC/OQDBC)

A

SQL Query + access-token

Partner Application renews access-token before it expires

reset a new access-token

Partner Application DBSQL Driver (JOBC/ODBC) Databricks OIDC Endpoint Databricks SqlWarehouse

Implementation

Identify Databricks is in which cloud

Rely on the databricks hostname to identify if it is in the AWS cloud or Azure cloud or elsewhere. If the
hostis notin Azure or AWS and SP is used, throw an error.

“Service Principal not supported for Databricks in this Cloud”

Azure endpoint AWS endpoint

17

< databricks

".azuredatabricks.net", “.cloud.databricks.com”
".databricks.azure.cn”,
".databricks.azure.us”

Use ServicePrincipal credentials to get a token

Token generation is slightly different for Databricks in different clouds.

Token Generation for Databricks in AWS

ODBC/JDBC driver should invoke the following Https POST to get an OAuth token for Databricks in
AWS cloud:

Unset

POST https://<databricks-host>/0oidc/v1/token

headers:

‘accept: application/json’

"authorization: Basic encodeBase64 (SCLIENT_ID:SCLIENT_SECRET)
'cache-control: no-cache'

‘content-type: application/x-www-form-urlencoded’

data: 'grant_type=client_credentials&scope=all-apis'

Sample output:

Unset
{"token_type":"Bearer", "expires_in":3600, "access_token":"ey.....

, "scope":"all-apis"}

Sample CURL equivalent for on Mac for testing

Unset
CLIENT_ID="REPLACEME"
CLIENT_SECRET="REPLACEME"

18

< databricks

curl --request POST \
--urlhttps://REPLACEME.cloud.databricks.com/oidc/v1/token \
--header '"accept: application/json' \

--header "authorization: Basic $(echo-n SCLIENT_ID:SCLIENT_SECRET |
base64)" \

--header 'cache-control: no-cache' \

--header 'content-type: application/x-www-form-urlencoded' \
--data 'grant_type=client_credentials&scope=all-apis'

Token Generation for Databricks in Azure

The token generation request for Azure slightly differs from the token generation request for AWS.

ODBC/JDBC driver should invoke the following Https POST to get a token.

Unset

POST https://<databricks-host>/oidc/oauth2/v2.0/token
headers:'Content-Type: application/x-www-form-urlencoded’

data:

"client_id=SCLIENT_ID"

‘grant_type=client_credentials'
'scope=2ff814a6-3304-4ab8-85cb-cdBe6f879c1d%2F .default’
"client_secret=SCLIENT_SECRET"

Sample output:

19

< databricks

Unset
{"token_type" :"Bearer", "expires_in":3599, "ext_expires_in":3599, "a
ccess_token":"eyJoe..... "}

Sample CURL equivalent on Mac for testing:

Unset
CLIENT_SECRET="REPLACEME"
CLIENT_ID="REPLACEME"

curl -XPOST -H 'Content-Type: application/x-www-form-urlencoded' \
https://REPLACEME.azuredatabricks.net/oidc/oauth2/v2.6/token\
-d "client_id=SCLIENT_ID" \

-d 'grant_type=client_credentials' \

-d 'scope=2ff814a6-3304-4ab8-85cb-cdBe6f879c1d%2F .default' \
-d"client_secret=8CLIENT_SECRET"

Use the generated token

Pass the generated token to the JDBC/ODBC driver in the connection string:

Unset
Host=<server-hostname>;Port=443;HTTPPath=<http-path>;AuthMech=11;Auth_Flow=0;

Auth_AccessToken=YOUR_OAUTH_ACCESS_TOKEN

Refreshing the Token

The generated token has a expiration time specified in the response payload to the token generation
request:

20

< databricks

Unset
{"token_type":"Bearer", "expires_in":3600, "access_token":"ey.....
, "scope":"all-apis"}

Prior to token expiration, the partner application must generate a new token (scheduled task on a
different thread) and reset the new token in JDBC/ODBC driver.

The new token generation can happen on a parallel thread and must be invoked prior to the expiry
time which was specified in the token generation response.

Resetting token in JDBC driver:

Unset

Connection.setClientInfo("Auth_AccessToken", "YOUR_NEW_ACCESS_TOKEN")

Resetting token in ODBC driver:

Unset

char *credentials = "Auth_AccessToken=$(new token)"

SQLSetConnectAttr(dbc, 122, credentials, SQL_NTS); // 122 is Custom ODBC property:
SQL_ATTR_CREDENTIALS

__int32 refreshMode =-1; // Refreshnow

SQLSetConnectAttr(dbc, 123, reinterpret_cast<SQLPOINTER>(refreshMode),
SQL_IS_SMALLINT); // 123 is customODBC property: SQL_ATTR_REFRESH_CONNECTION

Appendix : OAuth Support in DBBSQL Drivers for Cloud Partners.

Note that for cloud partners, native OAuth support for interactive applications will not really be used.
Cloud partners will do their heavy lifting to acquire and refresh OAuth token and pass on to the drivers
to connect. The following table summarizes the status as of June 2023.

21

< databricks

Driver Ready for Cloud Note
Integration

ODBC Yes Follow installation and configuration guide.
AuthMech=11;Auth_Flow=0;Auth_AccessToken=<token>.

JDBC Yes Follow installation and configuration guide.
AuthMech=11;Auth_Flow=0;Auth_AccessToken=<token>.

Python Driver Yes Provide a credential provider like this example:
https://github.com/databricks/databricks-sql-python/b
lob/main/examples/custom_cred_provider.py

Golang Driver Yes Implement Authenticator interface.
https://github.com/databricks/databricks-sql-go/blob/
main/auth/auth.go

NodedsS Driver Yes Implement [Authentication interface.

Jlib/connection/contracts/IAuthentication.ts

22

