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Context: Software vulnerabilities allow the attackers to harm the computer systems. Timely detection and 

removal of vulnerabilities help to improve the security of computer systems and avoid the losses from 

exploiting the vulnerabilities. 

Objective: Various methods have been proposed to detect the vulnerabilities in the past decades. How- 

ever, most of these methods are suggested for detecting one or a limited number of vulnerability classes 

and require fundamental changes to be able to detect other vulnerabilities. 

In this paper, we present a first step towards designing an extendable vulnerability detection method that 

is independent from the characteristics of specific vulnerabilities. 

Method: To do so, we first propose a general model for specifying software vulnerabilities. Based on this 

model, a general specification method and an extendable algorithm is then presented for detecting the 

specified vulnerabilities in executable codes. 

As the first step, single-instruction vulnerabilities–the vulnerabilities that appear in one instruction–

are specified and detected. We present a formal definition for single-instruction vulnerabilities. In our 

method, detection of the specified vulnerabilities is considered as solving a satisfaction problem. The 

suggested method is implemented as a plug-in for Valgrind binary instrumentation framework and the 

vulnerabilities are specified by the use of Valgrind intermediate language, called Vex. 

Results: Three classes of single-instruction vulnerabilities are specified in this paper, i. e. division by zero, 

integer bugs and NULL pointer dereference. The experiments demonstrate that the presented specification 

for these vulnerabilities are accurate and the implemented method can detect all the specified vulnera- 

bilities. 

Conclusion: As we employ a general model for specifying the vulnerabilities and the structure of our 

vulnerability detection method does not depend on a specific vulnerability, our method can be extended 

to detect other specified vulnerabilities. 

© 2016 Elsevier B.V. All rights reserved. 

1

 

t  

t  

f  

d  

a  

o

T  

n

 

b  

n  

p  

s  

a  

h

0

. Introduction 

Detecting software vulnerabilities has been studied widely in

he past decades. As a result various methods are presented to de-

ect vulnerabilities more accurately, with less false positives and

alse negatives. However, most of these methods are suggested for

etecting one or a limited number of vulnerabilities. Thus, their

lgorithms should be changed to detect new vulnerabilities [1] .
� This work is supported in part by APA Research Center of Amirkabir University 

f Technology (Tehran Polytechnic). 
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herefore, the enhanced techniques applied in one algorithm are

ot usable for detecting other vulnerabilities. 

As an example, many advances have occurred in detecting the

uffer overflow vulnerability during the past years. Different tech-

iques have been suggested to detect this vulnerability, such as

attern matching [2] , program annotation [3,4] , constraint analy-

is [5] and taint analysis [6,7] . If we call the algorithm that an-

lyzes the program and searches for a vulnerability in it as vul-

erability seeking algorithm, most of vulnerability seeking algo-

ithms in these works are designed based on the mechanism of the

uffer overflow vulnerability. For example, the vulnerability seek-

ng algorithm presented in [5] considers the strings in a C program

s an abstract data type with pre-defined functions, such as str-
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Fig. 1. A sample VCG for CVE-2003-0161 [22] . 
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cpy(), strcat() , etc. The state of each string is also summarized with

two integer values, i. e. its allocated size and its current length.

Thus, the content of the strings is not important for this algorithm.

For each string buffer, the algorithm examines string manipulation

statements to check whether the maximum length of a string ex-

ceeds its allocated size. If such condition is detected, a buffer over-

flow vulnerability would be reported. This algorithm requires fun-

damental changes to be able to detect another vulnerability, such

as format string, command injection or dangling pointers. 

It is worth mentioning how we differentiate a vulnerability de-

tection technique from a vulnerability seeking algorithm. A vul-

nerability detection technique is the general instruction for find-

ing vulnerabilities in the programs and is not usually specific to a

particular vulnerability. For example, taint analysis is a detection

technique that has been used for detecting various vulnerabilities,

e. g. SQL injection [8,9] , XSS [8,10] , buffer overflow [6,7] and for-

mat string [11] . A vulnerability seeking algorithm is an accurately

defined instruction for analyzing particular programs and seeking

specific vulnerabilities based on one or a combination of vulnera-

bility detection techniques. For example, the vulnerability seeking

algorithm in [5] is designed based on the constraint analysis tech-

nique to detect buffer overflow in C programs. The design of most

of the vulnerability seeking algorithms depends on the mechanism

of the intended vulnerabilities. For example, a successful buffer

overflow seeking algorithm may not be easily used to detect other

types of vulnerabilities. 

We believe that an extendable vulnerability seeking algorithm

could be a solution for this limitation. By an ”extendable vulnera-

bility seeking algorithm”, we mean an algorithm that is able to de-

tect the specified vulnerability classes in the target program, even

the vulnerabilities that are specified in the future. Vulnerabilities

have some common characteristics and can be defined in a gen-

eral structure. Also, there are vulnerability detection techniques

that have been used separately for detecting various vulnerabili-

ties, such as taint analysis or symbolic execution [12–14] . Thus, an

extendable vulnerability seeking algorithm that is designed based

on such techniques may be able to detect different vulnerabilities

at the same time. 

To be extendable, the vulnerability seeking algorithm should be

independent from the specification of the vulnerabilities as much

as possible. In this way, the vulnerability seeking algorithm can

be improved separately and get benefit from the enhancements

in other detection techniques. In this paper, we present a first

step towards designing a general extendable vulnerability detec-

tion method. This method consists of a general specification model

for specifying vulnerabilities in a way that is understandable by

the vulnerability seeking algorithm. It also contains an extendable

vulnerability seeking algorithm that searches for any specified vul-

nerabilities in the program automatically. 

There are a limited number of extendable vulnerability seeking

algorithms and vulnerability specification methods presented by

now, that will be reviewed in Section 2 . However, there is no ex-

tendable vulnerability detection method for executable codes. The

advantages of analyzing executable codes, instead of source codes,

in detecting software vulnerability have propelled us to take steps

in designing an extendable vulnerability detection method for exe-

cutable codes. Reflection of the exact behavior of the program, op-

timizations and bugs in the compilers, unavailability of the source

codes and platform-specific details are some reasons that make an-

alyzing executable codes more preferable [15] . Moreover, analyzing

the executable codes for detecting the vulnerabilities makes the

method independent from the development language and thus the

method would cover more programs. 

In this paper, we consider the vulnerabilities that appear in

a single instruction. Therefore, the paper is regarded as a first

step towards designing an extendable detection method. Single-
nstruction vulnerabilities can be specified based on the arguments

f one instruction, such as division by zero [16] and some inte-

er bugs [17–19] . Other vulnerabilities that appear in a scenario,

n more than one instruction, are not considered in this paper and

ill be studied in our future works. 

We present a general model for specifying the vulnerabilities.

ased on this model, vulnerabilities are specified by the use of Vex

anguage. Vex is an intermediate representation for the executable

odes that is used in Valgrind binary instrumentation framework

20] . The vulnerability seeking algorithm is implemented as a plug-

n for Valgrind. It automatically searches in executable codes for

ny specified single-instruction vulnerability. The ease of extend-

ng the method to other single-instruction vulnerabilities will be

emonstrated. 

Hence, the followings can be considered as the contributions of

his paper: 

• Presenting a general model for specifying software vulnerabili-

ties. 

• Presenting a method for specifying the single-instruction vul-

nerabilities to be detected in the executable codes. 

• Presenting an extendable vulnerability detection method for ex-

ecutable codes based on the proposed specification model. 

• Specification and detection of vulnerability classes division by

zero [16] , NULL pointer dereference [21] , integer overflow [17] ,

integer underflow [18] and incorrect width conversion in nu-

meric type (for integer type) [19] using the proposed extend-

able detection method. 

This paper is organized as following: Section 2 reviews the re-

ated works. The general model for specifying software vulnerabil-

ties is presented in Section 3 . Based on this model, a general ex-

endable vulnerability seeking algorithm is presented in Section 4 .

ection 5 presents the details of designing and implementing an

xtendable vulnerability detection method for executable codes.

he implemented method is evaluated in Section 6 . We conclude

he paper and suggest some future works in Section 7 . 

. Related works 

One of the well-known vulnerability specification methods is

alled Vulnerability Cause Graph (VCG). A VCG is a directed non-

yclic graph that illustrates how and why a vulnerability appears in

 program [22] . It has one leaf node that defines a specific vulner-

bility. The other nodes are causes that explain the conditions and

vents during the development process that make software vulner-

ble. Fig. 1 illustrates an example VCG. This graph explains how the

ulnerability CVE-2003-0161 is created in Sendmail mail server. Al-

hough these graphs help the developers learn about different vul-

erabilities, the narrative specification of causes prevents them to

e automatically understandable. Thus, this specification method is

ot usable in an extendable vulnerability detection method. 

Mallouli et al. specify vulnerabilities formally in [23] based

n Vulnerability Detection Conditions (VDCs). A VDC characterizes
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ulnerabilities with three elements: pre-conditions, actions and

ost-conditions. In fact, a VDC determines that under the speci-

ed pre-conditions, if a specific action results in the specified post-

onditions, there is a vulnerability in the program. The vulnerabil-

ty seeking algorithm in this method searches for specified vulner-

bilities by monitoring the program execution. For each instruc-

ion, the current state, the instruction and the resulted state after

xecution of the instruction are compared with the specified VDCs.

f there is a match, a vulnerability would be reported. This method

s designed for detecting specific vulnerabilities in programs writ-

en in C, such as the ones reported in CVE database [24] . There

re a huge number of specific vulnerabilities recorded in the CVE

atabase. Thus, the vulnerability seeking algorithm has to compare

ach operation in the program with many VDCs. Since the vulnera-

ility seeking algorithm utilizes a monitoring technique, it imposes

 high overhead on the execution of the program. We specify the

ulnerability classes, such as the ones defined in CWE [25] , instead

f the specific ones to make the vulnerability seeking algorithm

ore efficient. Also, our method is proposed for detecting the vul-

erabilities in the executable codes. Thus, it is not limited to a spe-

ific programming language and covers a wide range of programs. 

A language, called PQL, is applied in [26] to specify vulnerabil-

ties in web-based programs written in Java. It specifies vulnera-

ilities as a trace of events for the defined objects in a program.

he vulnerability seeking algorithm searches statically and dynam-

cally in the program for specified vulnerabilities. To be simple, the

anguage does not support some data types, e. g. integer, float and

haracter. Therefore, certain operations, such as mathematical op-

rations or comparison of the characters, cannot be expressed in

he vulnerability specification. This is not a limitation for specify-

ng vulnerabilities in object-oriented programs. Because they en-

apsulate these operations in certain methods for each data type.

t is, however, a limitation for specifying vulnerabilities in other

anguages like C. For example, it is not possible to specify the in-

eger overflow vulnerability in C language by the use of PQL. 

Software vulnerabilities are specified in [1] with the help of

 descriptive language called OCL. OCL is a descriptive language

ased on first-order logic and set theory [27] . In [1] an object-

riented program, including the program components, inputs, out-

uts, classes, loops, conditional statements, etc. is modeled with

CL. Each object in the model has specific attributes, such as name,

ype and accessibility. Vulnerabilities are specified based on the

efined objects and their attributes. The vulnerability seeking al-

orithm parses the code statically and extracts its Abstract Syntax

ree (AST). The AST is then translated into an intermediate repre-

entation to be comparable with vulnerability specifications. This

ethod is implemented for analyzing programs written in C, C#,

++ and VB.NET. 

Our proposed specification method specifies the vulnerabilities

ormally so the detection algorithm parses them and learns how to

etect them in the executable codes. We also present a vulnerabil-

ty seeking algorithm that detects automatically any specified vul-

erabilities in the executable codes. The suggested algorithm does

ot use a monitoring technique, thus it does not impose an over-

ead on the program when it is executed by the end user. 

Since the proposed method is for specifying the vulnerabilities

n executable codes, it can be used to detect vulnerabilities in the

rograms written by different programming languages. Also, the

pecification method is not limited to specific data types. Thus, it

overs a wide range of software vulnerabilities. 

. A general model 

We propose a general model for specifying software vulnerabil-

ties based on our understanding of how a program becomes vul-

erable. In an abstract level, the program consists of instructions
nd data. The instructions perform pre-defined operations on dif-

erent data. In fact, various behavior of an instruction is the result

f manipulating different data. The employed data in that instruc-

ion can be controlled by other instructions. For example, one may

heck the value of data before it is used as the divisor of a divi-

ion instruction. If the value of data is equal to zero, it would not

e used in the division instruction. When a program allows execut-

ng the instructions on inappropriate data, it means that there is a

ault in the program. If the faults allow compromising the security

olicy, the program is vulnerable. 

For each vulnerability, specific data are concerned. For example,

or stack overflow vulnerability the return address, local variables,

unction arguments and the previous stack pointer are considered.

f these data change inappropriately, the program becomes vulner-

ble. The inappropriate change is defined based on the definition

f the vulnerability class. Hence, we model vulnerabilities with a

wo-element structure of {Container(s), Rule}. Containers are the

ata holding entities which are related to the vulnerability. A con-

ainer may be a variable, a register, a memory area or even a flag.

he rule defines inappropriate data assignment to the containers

hat makes the program vulnerable. 

At the first step in designing an extendable detection method,

e consider vulnerabilities that appear in a single instruction, such

s division by zero, NULL pointer dereference [21] and some inte-

er bugs. These vulnerabilities can be specified based on one in-

truction, and their containers and the rule are defined according

o the elements of that instruction. For example, the division by

ero vulnerability may exist in a division instruction, or an integer

verflow may occur in an addition instruction. Other vulnerabili-

ies that appear in a scenario, with more than one instruction, will

e considered in our future works. 

We define a single-instruction vulnerability Vul x formally as:

 ul x = { C ONT , f (C ONT ) } . In this definition, CONT is a set of vari-

bles in first-order logic and f ( CONT ) is a first-order logic formula

n CONT . The formula expresses predicates on the containers that

an be true or false. A single-instruction vulnerability appears in an

nstruction when the data arguments of that instruction hold in-

ppropriate data values. Thus, the vulnerability can be specified by

efining the relevant data arguments as the containers, and hold-

ng of inappropriate values as a first-order logic formula. In this

ay, every single-instruction vulnerability can be represented in

his general model. 

With this definition, a program contains Vul x if

 C ONT , f (C ONT ) = T rue . Therefore, detecting a vulnerability

ul x in a program means finding appropriate data values for the

ontainers that make f (CONT ) = T rue . This is equivalent to deter-

ining the satisfiability of f ( CONT ). In fact, f ( CONT ) is satisfiable

f ∃ C ONT , f (C ONT ) = T rue . Thus, detecting a vulnerability in a

rogram can be considered as solving a satisfaction problem. In

his way, detecting a vulnerability in a program means finding

ppropriate data values for the containers in that program that

atisfy the rule of the vulnerability. 

Table 1 , shows the specification of these vulnerabilities in our

wo-element model. The formula column presents our formal rep-

esentation of the rules for each vulnerability. For the vulnerabili-

ies in the last three rows, a number of possible formulas are pre-

ented in this table because of lack of space. The complete set

f rules for these vulnerabilities are presented and described in

ection 4.1.2 . 

To detect the specified vulnerabilities, the detection algorithm

ocates the containers in the target program. For each located con-

ainer, it checks the satisfiability of the vulnerability rule. If the

etection algorithm finds possible values for the containers that

atisfy the vulnerability rule, there might be a vulnerability in the

rogram. 
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Table 1 

Informal specification of sample vulnerabilities in the two-element model. 

Vulnerability Description Container(s) Rule Formula 

Division by zero The product divides a value 

by zero [16] . 

The divisor argument of a 

division operator. 

The container is equal to 

zero. 

{x = 0} 

NULL pointer 

dereference 

The application dereferences 

a pointer that it expects to 

be valid, but is NULL [21] . 

The pointers. The container is equal to 

NULL. 

{x = NULL} 

Integer overflow An integer value is 

incremented to a value 

that is too large to store in 

the associated 

representation [17] . 

Integer arguments of 

arithmetic operations, 

such as unsigned 

Add32, Mul32 or signed 

Add32. 

The arithmetic operation 

on the containers 

results in value larger 

than the associated 

representation. 

{x+y > 0 ×0 0 0 0 0 0 0 0ffffffff} (for 

containers of unsigned Add32) 

{x × y > 0 ×0 0 0 0 0 0 0 0ffffffff} 

(for containers of unsigned 

Mul32) {x < 0 AND y < 0 AND 

x+y > 0} (for containers of 

signed Add32) 

Integer underflow The product subtracts one 

value from another, such 

that the result is less than 

the minimum allowable 

integer value, which 

produces a value that is 

not equal to the correct 

result. [18] 

Integer arguments of 

arithmetic operations, 

such as signed Add32 

or signed Mul32. 

The arithmetic operation 

on the containers 

results in value smaller 

than the associated 

representation. 

{x > 0 AND y > 0 AND x+y < 0} (for 

containers of signed Add32) 

{x > 0 AND y > 0 AND x × y < 0} 

(for containers of signed 

Mul32) 

Incorrect conversion 

between numeric 

types 

When converting from one 

data type to another, such 

as long to integer, data can 

be omitted or translated in 

a way that produces 

unexpected values. [19] 

Numeric argument of 

width conversion 

operations, such as 32 

to 8 or 32 to 16 width 

conversions. 

The width conversion on 

the container causes 

unexpected data 

omission or translation. 

{x > 0 ×0 0 0 0 0 0ff} (for containers 

of 32 to 8 width conversion) 

{x > 0 ×0 0 0 0ffff } (for 

containers of 32 to 16 width 

conversion) 
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1 By ”activating a vulnerability” we mean making the specified vulnerability ac- 

tive in the intended statement and causing a security error in the executed path. 
The containers of vulnerabilities are specified based on the

analysis level of the target program. For example, if the detection

algorithm analyzes the C++ source code of the target program to

detect vulnerabilities in it, the containers are specified according

to the syntax of C++ language. For instance, to specify the integer

overflow vulnerability in C++ source codes, the containers are de-

fined as integer variables that are used in arithmetic operations.

The detection algorithm searches in the source code for such vari-

ables. It then checks the satisfiability of the vulnerability rule for

the located variables. In the next section we present a general vul-

nerability seeking algorithm for detecting the vulnerabilities that

are represented in this model. Then, in Section 5 , we present a

method for specifying the single-instruction vulnerabilities to be

detected in the executable codes and the details of employing the

general vulnerability seeking algorithm for detecting the specified

vulnerabilities in the executable codes. The presented vulnerability

seeking algorithm analyzes the executable codes, locates the spec-

ified containers and check the satisfiablity of the relevant vulnera-

bility rules for those containers. 

Our general model can be enhanced to cover multi-instruction

vulnerabilities too. Since multi-instruction vulnerabilities appear

through a sequence of instructions in the program, they are speci-

fiable through a sequence of pairs of Container(s), Rule. So the

model should be enhanced to specify these vulnerabilities through

a sequence of pairs of Container(s), Rule. A more detailed study of

the issue is beyond the scope of this paper, as the main purpose of

the paper is introducing the basic idea and suitability of Container,

Rule model for describing and detecting software vulnerabilities.

We have extended our vulnerability detection mechanism to detect

heap-based and stack-based buffer overflow vulnerabilities, which

are multi-instruction software vulnerabilities, and it achieved ac-

ceptable results in the experiments reported in [28,29] . Since these

works are more technical, we have not included the related mate-

rial in this paper. 

4. A general extendable vulnerability seeking algorithm 

Generally, our proposed vulnerability seeking algorithm

searches for the containers of specified vulnerabilities in the
rogram code. It compares each statement of the program code

ith the containers of the specified vulnerabilities. If there is

 match, the algorithm checks the satisfiability of the relevant

ulnerability rule for that statement. In other words, it searches

or data values in that containers which make the vulnerability

ule true. 

Our proposed vulnerability seeking algorithm uses concolic

concrete + symbolic) execution technique to analyze the target

rogram and detect the specified vulnerabilities in it. In this tech-

ique, the program code is instrumented and executed with con-

rete input data. During the execution, the constraints on input

ata in the executed path are calculated symbolically. These con-

traints, called the path constraints, determine the characteristics

f input data that traverse the executed path in the program. After

he execution with concrete input data, one of the calculated path

onstraints is negated and the satisfiability of the resulted set of

onstraints is queried from a SMT solver. SMT solvers receive a set

f variables and a set of predicates on these variables and find val-

es for the variables that satisfy the predicates or inform that the

redicates are not satisfiable. If the SMT solver returns a solution

hat satisfies the new constraints, the solution is used to generate

ew concrete input data that traverse a different execution path in

he program. Negating the calculated path constraints and gener-

ting new input data are repeated to analyze as many execution

aths in the program as possible. 

We consider generation of appropriate test data for detecting

 vulnerability in a statement as solving a satisfaction problem.

ue to the similarity between our view point and the concolic

xecution technique, our vulnerability seeking algorithm uses this

echnique to generate appropriate test data to detect the specified

ulnerabilities in each execution paths of the program. Our algo-

ithm calculates symbolic vulnerability constraints, in addition to

he symbolic path constraints, for each execution path in the pro-

ram. Symbolic vulnerability constraints determine the character-

stics of input data that activate a specific vulnerability in the in-

ended instruction of an execution path. 1 The vulnerability con-
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Fig. 2. Steps of the proposed vulnerability seeking algorithm. 
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Listing. 1. Pseudo code of calculation of path and vulnerability constraints in the 

proposed algorithm. 
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traints are calculated for any statement that matches with the

ontainer of a specified vulnerability based on the relevant vulner-

bility rule. 

The concolic execution technique, that was proposed by Gode-

roid in [31] , has been used in various vulnerability seeking al-

orithms to increase their coverage on the target program code,

uch as [32] and [33] . For example, Dowser [33] is proposed to

etect buffer overflows in executable codes. It uses the concolic

xecution technique to calculate the path constraints and gener-

te appropriate test data that traverse new execution paths in the

rogram. It also analyzes the executable code statically to locate

he loops in the program. This information is used to explore the

xecution paths with complex loops with more priority. Consider-

ng vulnerability detection as a satisfaction problem and calculat-

ng the vulnerability constraints in addition to the path constraints

uring the concolic execution, has also been performed previously

n some smart fuzzers. For example, Sage [34] and CATCHCONV

14] are two smart fuzzers that detect integer vulnerabilities in the

xecutable codes by proving the satisfiability of the vulnerability

onstraints in the program. Also, EXE [13] and Klee [12] use the

ame method to detect buffer overflow in C and C++ codes. These

uzzers, however, do not formally model and specify the vulnera-

ilities and only detect one or a limited number of software vul-

erabilities. On the contrary, our vulnerability seeking algorithm

alculates the vulnerability constraints based on the rules of the

pecified vulnerabilities. In fact, our vulnerability seeking algorithm

etects automatically the specified vulnerabilities by finding appro-

riate data that satisfy the rule of the vulnerabilities for the rele-

ant statements of the program code. 

.1. The algorithm 

Fig. 2 illustrates the main steps of our vulnerability seeking

lgorithm, i. e. generating the path and vulnerability constraints,

esting for vulnerability existence and expanding the program exe-

ution. Each step is described in the following sections. 

.1.1. Generating the path and vulnerability constraints 

In the first step, the program is executed with some random

oncrete input data. The program code is instrumented to moni-

or the flow of untrusted input data–tainted data– and calculate

ymbolic path and vulnerability constraints during the execution.

isting 1 presents the pseudo code of how the path and vulnera-

ility constraints are calculated in our algorithm. 

As shown in Listing 1 , our algorithm checks whether each exe-

uted Vex statement is a jump instruction or matches with any of
he security error might not be handled appropriately and result in compromising 

he security policy [30] . 

l  

i  

o  

o

he containers of specified vulnerabilities. If it is a jump statement,

unction generate_path_const() is called to calculate a new path

onstraint based on that statement. This function extracts the con-

ition of the jump instruction and generates a new path constraint

ccordingly. Since the goal of calculating the path constraints is to

enerate new input data that traverse other execution paths in the

rogram, the path constraints are calculated for the jump instruc-

ions that depend on tainted data. In other words, only the condi-

ions of the jump instructions that are affected by input data are

alculated. 

For the statements that match with the container of a specific

ulnerability, a function that calculates the relevant symbolic vul-

erability constraints for that statements is called. The vulnerabil-

ty constraints are calculated according to the specified rule for

hat vulnerability. 

Since the vulnerabilities are usually exploited by malicious in-

ut data, we generate symbolic vulnerability constraints for the

tatements that have tainted containers. Actually, it is possible to

alculate the vulnerability constraints for all the containers regard-

ess of being tainted or not. However, in this way, we need to mon-

tor all the data flows in the program and generate a large number

f vulnerability constraints for various statements while only a few

f them are exploitable. 
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Listing. 2. Combining the path and vulnerability constraints. 
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4.1.2. Testing for vulnerability existence 

At the second step, each vulnerability constraint is combined

with its previous path constraints. The combined constraints de-

termine the characteristics of input data that traverse the same ex-

ecution path, reach the intended statement and activate a specific

vulnerability in that statement. Combining the path and vulnerabil-

ity constraints is performed by ANDing these constraints. Listing 2

presents the pseudo code of this step. 

The combined constraints are queried from a SMT solver, called

STP. 

4.1.3. Expanding the execution 

At the third step, the algorithm generates new input data to ex-

pand the execution into new paths. We use the same method as in

[14,32] and [34] to generate new input data that traverse other ex-

ecution paths. In this step, the calculated path constraints for the

executed path are negated one by one, from the last to the first. Af-

ter each negation, the new set of constraints are queried from STP.

If STP returns a solution that satisfies the constraints, it is used

to generate new concrete input data. The generated data are used

to restart the algorithm from the first step to traverse other exe-

cution paths in the test program and detect the vulnerabilities in

those paths. 

4.2. Extending the algorithm 

As Fig. 2 shows, the general steps of our vulnerability seeking

algorithm do not depend on a specific vulnerability. At the first

step, the algorithm calculates the vulnerability constraint for the

statements that match with the containers of the specified vulner-

abilities. These constraints are calculated based on the rule of the

relevant vulnerability. Satisfiability of the calculated constraints is

decided at the second step and appropriate test data are generated

to detect specific vulnerabilities. The algorithm can be extended to

detect a new vulnerability with inserting the containers of the vul-

nerability to the set of vulnerability containers and adding the rel-

evant vulnerability constraint calculation routines to the function

generate_vul_const() . 

5. An extendable vulnerability detection method for executable 

codes 

As mentioned before, an extendable vulnerability detection

method requires a general vulnerability specification method and

a vulnerability seeking algorithm that understands specified vul-

nerabilities. In this section, we present such an extendable method

for detecting the vulnerabilities in executable codes. 

When analyzing the executable codes, it is helpful to trans-

late the assembly instructions into an intermediate representation.

Such translation presents more information about the instructions

and their side effects. It also helps to access each instruction and

its arguments programmatically. This benefit inclined us to use
uch an intermediate representation in specifying the vulnerabil-

ties and designing the detection method. We designed and imple-

ented our method using Valgrind. Valgrind is a framework for

nstrumenting executable codes and implementing dynamic anal-

sis solutions [20] . We specify vulnerabilities based on the inter-

ediate language presented in Valgrind, called Vex [35] . Also, the

ulnerability seeking algorithm is implemented as a plug-in for

algrind. The specification method and vulnerability seeking algo-

ithm are described in the following sections. 

.1. Vulnerability specification method 

As vulnerabilities are specified based on the intermediate lan-

uage Vex, it is necessary to have a short introduction on it. This

elps the reader to understand the suggested method better. An

nterested reader is referred to [35] for more information. 

.1.1. The Vex language 

Valgrind translates each assembly instruction into one or more

tatements in Vex language. As an example, consider the following

ssembly instruction: 

addl %eax, %ebx

Translating the above instruction into Vex results in the follow-

ng statements: 

t3 = GET:I32(0)

# get %eax, a 32-bit integer

t2 = GET:I32(12)

# get %ebx, a 32-bit integer

t1 = Add32(t3,t2)

# addl

PUT(0) = t1

# put %eax

An assembly code that is translated into Vex consists of a set of

ode blocks. Each code block contains around one to fifty instruc-

ions. An instruction is defined in a data structure called statement.

tatements have different types, e. g. WrTmp, Put, Store, etc. The

ollowing is an example WrTmp statement and its equal assembly

ode. This statement means that the value of EBX register is writ-

en into a temporary variable. 

t2 = GET:I32(12)

# get %ebx, a 32-bit integer

The data structure of WrTmp statement is defined as follows in

ex. 

Struct{

IRTemp tmp;

/* Temporary (LHS of assignment) */

IRExpr* data;

/* Expression (RHS of assignment) */

} WrTmp;

As you see this statement consists of two entities: one is a tem-

orary value that defines where to write, which is t2 in this exam-

le. The other one is an expression that defines what to write in

he temporary value. 

The statements may contain one or more expressions. Expres-

ions are defined in a different data structure. Like the statements,

xpressions have different types. For example, the statement in

he previous example has an expression with type Get. Also, the

ype of the expression in the following WrTmp statement is binary

dd32. 

t1 = Add32(t3,t2)

Fig. 3 presents the structure of some of statements and ex-

ressions in Vex. We mentioned the common statements and ex-

ressions in this figure and refer the interested reader to [35] for

he structure of other statements and expressions. As shown in

his figure, the statements might contain one or more expressions.
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Fig. 3. The structure of statements and expressions in Vex. Part (a) shows the structure of some of the statements in Vex. Part (b) shows the structure of some of the 

expressions in Vex. 
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Fig. 4. The structure that defines two containers for integer overflow. 

C

C

C

C

C

C

 

p  
he expressions also might consist of different expressions. Vari-

us data types are defined in Vex for the elements of statements

nd expressions. For example, IRType in Get statement defines the

ype of the value that is read from the register. IREndness in the

tore statement defines the endian-ness of the store operation.

lso, IROp in the BinOp expression defines the type of binary op-

ration. 

.1.2. Specification based on Vex 

We use the structure of the statements in Vex for specifying

he containers of single-instruction vulnerabilities. The contain-

rs define the data entities in specific instructions that should be

hecked against the vulnerability rule. Thus, the containers are de-

ned as the data elements of a specific statement in Vex. For ex-

mple, integer overflow may occur in an Add32 operation. This

peration is represented in Vex with the following example state-

ent: 

ti=Add32:I32(tx,ty)

In this statement, tx and ty are the containers for integer over-

ow vulnerability. Fig. 4 shows the structure that defines these

ontainers. The Not_Important value in this figure is assigned to

he parts of the statement that are not important in the specific

ulnerability. 

As mentioned before, the rule is defined as a first-order formula

n the containers. Using this method, the sample vulnerabilities

ivision by zero, NULL pointer dereference and integer bugs are

pecified as follows. 

Division by zero 

Division operation exists in WrTmp statements with expres-

ions like DivS32, DivU32, etc. If in such statements the divisor ar-

ument is equal to zero, the program may be vulnerable. Thus, the

ontainer for this vulnerability is defined as the divisor argument

f the division expression in a WrTmp statement. Using the data

tructure of statements, a container is defined as the following for

ivS32 expression. 
ontainer[DIV_BY_ZERO].tag = Ist_WrTmp;

ontainer[DIV_BY_ZERO].WrTmp.tmp = Not_Important;

ontainer[DIV_BY_ZERO].WrTmp.data->tag= Iex_Binop;

ontainer[DIV_BY_ZERO].WrTmp.data->Iex.Binop.op = Iop_DivS32;

ontainer[DIV_BY_ZERO].WrTmp.data->Iex.Binop.arg1=CONT;

ontainer[DIV_BY_ZERO].WrTmp.data->Iex.Binop.arg2 = NULL;

Note that Not_Important and NULL values are assigned to the

arts of the statement that are not important in this vulnerabil-
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5

ity. By assigning the constant value CONT to the first argument of

binary operation, the container is determined to be the first argu-

ment of this operation. If the value of the container is equal to

zero, the program may be vulnerable. To be consistent with speci-

fication of the containers, the rules are defined using the Vex lan-

guage too. In other words, the formula on the containers are rep-

resented using the expressions defined in Vex. For division by zero

vulnerability the rule is represented as follows: 

if (CmpEQ8(CONT,0x00:I8))

In this rule, the operator CmpEQ8 is one of the comparison op-

erators defined in Vex. 

NULL pointer dereference 

When a program dereferences a pointer with NULL value it

may be vulnerable to NULL pointer dereferences [21] . Pointers are

dereferenced with the store statements and the load expressions

in Vex. For example, in the below statements t21 and t25 are the

pointers for memory write and read operations respectively. If any

of them is equal to zero, the program may be vulnerable. 

STle(t21) = t5

t27 = LDle:I32(t25)

Thus, the container for this vulnerability is the address argu-

ment of the load expression and store statement. The following

containers are defined for this vulnerability. 

Container[NULL_D1].tag= Ist_WrTmp;

Container[NULL_D1].WrTmp.tmp =Not_Important;

Container[NULL_D1].WrTmp.data->tag= Iex_Load;

Container[NULL_D1].WrTmp.data->Iex.Load.addr= CONT;

Container[NULL_D1].WrTmp.data->Iex.Load.end= Not_Important;

Container[NULL_D1].WrTmp.data->Iex.Load.ty=Not_Important;

The above container is defined for a Load expression in a

WrTmp statement. The container for a store statement is defined

as follows: 

Container[NULL_D2].tag= Ist_Store;

Container[NULL_D2].Store.addr= CONT;

Container[NULL_D2].Store.data= NULL;

Container[NULL_D2].Store.end=Not_Important;

The rule here is similar to the rule of division by zero. If any

of the containers is equal to zero the program may be vulnerable.

Thus, the rule is defined as follows; 

if (CmpEQ8(CONT,0x00:I8))

Integer bugs 

Integer vulnerabilities were studied by Molnar et al. in

[14] in 2009. They classified integer vulnerabilities into three

classes: integer overflow/underflow, width conversion errors and

signed/unsigned conversion errors. A number of vulnerability con-

straints were also suggested for each class. We have used the

same classification, but redefined the vulnerability constraints and

added new constraints to specify the rule of integer vulnerabilities.

Since the focus of this paper is on single-instruction vulnerabili-

ties, signed/unsigned conversion errors that appear in more than

one instruction are not covered here. Table 2 presents our specifi-

cations of the covered integer bugs. 

To prepare the specifications of Table 2 , we first collected pos-

sible containers for these vulnerabilities based on their definitions

in CWE. The arguments of 32-bit arithmetic operations, e.g. Add32

or Sub32, are considered as the containers of the 32-bit integer

bugs. 2 We then analyzed each arithmetic operation to find out
2 We only consider these bugs for the 32-bit integer type. 

 

t  

s  
hich container(s) can cause a specific integer bug in that oper-

tion. Based on this analysis, the rules are generated for the con-

ainers. By applying such a systematic approach in specifying these

nteger bugs, a more comprehensive specification is presented in

his paper. Also, as it will be explained in Section 6 , our specifica-

ions are more efficient than the ones presented in [14] in detect-

ng the vulnerabilities in the benchmark programs. 

The containers for these integer bugs are generally the argu-

ents of a WrTmp statement. The operator in this statement may

e a binary operation or a unary one. For example, the containers

or Add32 binary operation are as follows: 

Container[INT_OVF].tag = Ist_WrTmp;

Container[INT_OVF].WrTmp.tmp = Not_Important;

Container[INT_OVF].WrTmp.data->tag= Iex_Binop;
ontainer[INT_OVF].WrTmp.data->Iex.Binop.op = Iop_Add32;

ontainer[INT_OVF].WrTmp.data->Iex.Binop.arg1= CONT1;

ontainer[INT_OVF].WrTmp.data->Iex.Binop.arg2 = CONT2;

Also, the container for a WrTmp statement with Iop_32to8

nary operation is defined as follows: 

ontainer[Width-Conv].tag = Ist_WrTmp;

ontainer[Width-Conv].WrTmp.tmp = Not_Important;

ontainer[Width-Conv].WrTmp.data->tag= Iex_Unop;

ontainer[Width-Conv].WrTmp.data->Iex.Binop.op = Iop_32to8;

ontainer[Width-Conv].WrTmp.data->Iex.Unop.arg= CONT;

In Table 2 , the column Container Operator presents only the op-

rator of the WrTmp statement because of lack of space. The de-

cription column in this table presents a short description for the

rst order formula in each specification. 

We explain some of the specifications in more details here for

 better understanding. For example, an integer overflow happens

or a Signed Add32 operator when addition of two negative inte-

er data results in a positive value. Thus, the rule first checks if the

ontainers can be negative. This is done by using a signed compar-

son operator, i. e. CmpLT32S. If the first two constraints are true,

he third constraint is checked. In the third constraint it is checked

hether the result of Add32 is positive or not. This is done by

omparing the unsigned value of the result with 0 ×80 0 0 0 0 0 0 us-

ng an unsigned comparison operator, i. e. CmpLT32U. If the un-

igned result is less than 0 ×80 0 0 0 0 0 0, it means that the left-most

it of the result is 0 and therefore it is positive. 

Also, an underflow occurs in Signed Add32 when addition of

wo positive integer data results in a negative value. Thus, the rule

rst checks if the containers are positive and the unsigned value

f the result is greater than 0 ×7fffffff. When the left-most bit in

he result is equal to 1, its unsigned value would be greater than

 ×7fffffff. In other words, when the result is negative, it would be

reater than 0 ×7fffffff in an unsigned comparison. 

The containers related to the operators Unsigned Mul32 and

nsigned Add32 contain unsigned values. Thus, it is not possible to

etect the bug by checking the sign of the result. Therefore, the re-

ult is compared with the 64-bit value of 0 ×0 0 0 0 0 0 0 0ffffffff. If the

esult of Unsigned Add32 or Unsigned Mul32 is greater than this

alue, an overflow has occurred. In order to prevent from getting

rap-around, the containers are first extended into 64 bits and the

ddition and multiplication is performed using Add64 and Mul64.

n this way, the overflowed bit appears in the 32nd left-most bit

f the 64-bit result. 

.2. The vulnerability seeking algorithm 

Section 4 presented the general vulnerability seeking algorithm

hat detects the specified vulnerabilities in the program. In this

ection, we describe the design and implementation details of
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Table 2 

Integer bugs specification. 

Vulnerability Container operator Rule Description 

Integer overflow Unsigned Add32 if CmpLT64U(0 ×0 0 0 0 0 0 0 0ffffffff:I64 ,Add64(32Uto64(CONT1), 

32Uto64(CONT2)))) 

X1+X2 > 0 ×0 0 0 0 0 0 0 0ffffffff

Unsigned Mul32 If (cmpLT64U(0 ×0 0 0 0 0 0 0 0ffffffff:I64, MulU64(32Uto64(CONT1), 

32Uto64(CONT2))) 

X1 ∗X2 > 0 ×0 0 0 0 0 0 0 0ffffffff

Signed Add32 if CmpLT32S(CONT1,0 ×00:I32)) AND if (CmpLT32S(CONT2,0 ×00:I32)) AND 

if CmpLT32U(Add32(CONT1,CONT2), 0 ×80 0 0 0 0 0 0:I32)) 

X1 < 0, X2 < 0, X1+X2 > 0 

Signed Mul32 if CmpLT32S(CONT1,0 ×00:I32)) AND if (CmpLT32S(0 ×00:I32,CONT2)) AND 

if (CmpLT32U(Mul32(CONT2,CONT1), 0 ×80 0 0 0 0 0 0:I32)) 

X1 < 0, X2 > 0, X1 ∗X2 > 0 

if (CmpLT32S(0 ×00:I32,CONT1)) AND if (CmpLT32S(CONT2,0 ×00:I32)) AND 

if (CmpLT32U(Mul32(CONT2,CONT1), 0 ×80 0 0 0 0 0 0:I32)) 

X1 > 0, X2 < 0, X1 ∗X2 > 0 

Sub 32 if (CmpLT32S(CONT1,0 ×00:I32)) AND if (CmpLT32S(0 ×00:I32,CONT2)) AND 

if (CmpLT32U(Sub32(CONT1,CONT2), 0 ×80 0 0 0 0 0 0:I32)) 

X1 < 0 , X2 > 0, X1-X2 > 0 

Integer underflow Signed Add32 if CmpLT32S(0 ×00:I32,CONT1)) AND if (CmpLT32S(0 ×00:I32,CONT2)) AND 

if (CmpLT32U(0 ×7fffffff:I32, Add32(CONT1,CONT2))) 

X1 > 0, X2 > 0, X1+X2 < 0 

Signed Mul32 if (CmpLT32S(0 ×00:I32,CONT1)) AND if (CmpLT32S(0 ×00:I32,CONT2)) AND 

if (CmpLT32U(0 ×7fffffff:I32, Mul32(CONT2,CONT1))) 

X1 > 0, X2 > 0, X1 ∗X2 < 0 

Sub32 if (CmpLT32S(0 ×00:I32,CONT1)) AND if (CmpLT32S(CONT2,0 ×00:I32)) AND 

if (CmpLT32U(0 ×7fffffff:I32, Sub32(CONT1,CONT2))) 

X1 > 0, X2 < 0, X1-X2 < 0 

Width conversion Iop_32to8 if CmpLT32U(0 ×0 0 0 0 0 0ff:I32,CONT) X > 0 ×0 0 0 0 0 0ff

Iop_32to16 if CmpLT32U(0 ×0 0 0 0ffff:I32,CONT) X > 0 ×0 0 0 0ffff

Iop_Not32 if CmpNE32(CONT,0 ×80 0 0 0 0 0 0:I32)) X ! = 0 ×80 0 0 0 0 0 0 

Get8 if CmpLT32U(0 ×0 0 0 0 0 0ff:I32,GET:I32(CONT)) X > 0 ×0 0 0 0 0 0ff

Get16 if CmpLT32U(0 ×0 0 0 0ffff:I32,GET:I32(CONT))) X > 0 ×0 0 0 0ffff
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ur vulnerability seeking algorithm for executable codes. As men-

ioned before, we have implemented our algorithm as a plug-in for

algrind. Since Valgrind translates the executable codes into Vex

anguage, we use Vex to specify the vulnerabilities in the {Con-

ainer(s), Rule} structure. The implemented vulnerability seeking

lgorithm instruments the Vex statements of the program code to

erform taint analysis and calculate the path and vulnerability con-

traints at the first step of Fig. 4 . 

In order to calculate the path constraint, our vulnerability seek-

ng algorithm instruments the jump statements, that are called Exit

tatements in Vex, of the program code. If the condition of the

ump depends on tainted data, a new symbolic path constraint is

alculated by function generate_path_const() . For example, in the

ollowing C code, there are two if statements before the printf()

unction. Each if statements is translated into a jump instruction

n the equivalent executable codes. One of the jump instructions

epends on a tainted variable and thus one path constraint is gen-

rated for the execution path that contains the printf() function. 

void MySub( )
{

char inputBuf f e r [10 ]=”” , mychr ;
i n t pathTrue=1;
f g e t s ( inputBuf fe r , 10 , s td in ) ;
mychr= inputBuf f e r [ 0 ] ;
i f ( pathTrue==1)
{

i f (mychr==’a ’ )
p r i n t f (”The input s t a r t s with a ” ) ;

}
}
> Generated path con s t r a i n t : i f (CmpEQ8(32 to8 (8Uto32 (GET: I8 (PUT(8Uto32 (

LDle : I8 ( input ( 0 ) ) ) ) ) ) ) , 0 x61 : I8 ) )

Our algorithm monitors the flow of tainted data in the pro-

ram during the program execution and records the sequence of

xecuted operations on each tainted byte. Thus, when a new path

onstraint is calculated for a tainted byte in a jump instruction, we

now how the input data has changed from the beginning until

hat instruction. The above constraint shows what operations are

erformed on the tainted byte input(0) until it reaches the if state-

ent. As our algorithm instruments the equivalent Vex represen-

ation of the program, the operations shown in the constraint are

xpressed with the operators of Vex language. 

In order to calculate the vulnerability constraints, each Vex

tatement in the program code is compared with the containers
f the specified vulnerabilities. For the statements that matches

ith the containers of a specified vulnerability, a new sym-

olic vulnerability constraint is calculated by the relevant func-

ion. For example, Listing 3 presents the pseudo code of gener-

te_div_by_zero_vul_const function that generates the constraint for

he division by zero vulnerability. This function generates a new

ulnerability constraint to check whether the 8-bit tainted con-

ainer of a division operation can be zero. 

As the flow of tainted data is monitored during the program

xecution, we record the sequence of executed statements on each

yte of tainted data. Thus, we know what tainted byte is currently

n st.WrTmp.data- > Iex.Binop.arg1 and what operations have been

erformed on it from the beginning. 

After calculating the path and vulnerability constraints, accord-

ng to Fig. 4 , the constraints are combined and solved to gener-

te new test data that reach a specific Vex statement in the exe-

uted path and activate a specific vulnerability in that statement.

s Listing 2 shows, each vulnerability constraint is merged with its

revious path constraints at the second step of our algorithm. For

xample, the following shows part of a C program that contains

he division by zero vulnerability and the calculated vulnerability

onstraint by our algorithm. Since the equivalent Vex representa-

ion of this code is long, we just present the C code here: 

s can f (”%s ” , bu f f e r ) ;
i n t z=2/(( i n t ) bu f f e r [ 1 ]+( i n t ) bu f f e r [ 2 ] ) ;

enerated v u l n e r a b i l i t y c on s t r a i n t =>
i f (CmpEQ32(Add32( LDle : I32 ( STle (8 Sto32 (GET: I8 (PUT(8Uto32 ( LDle : I8 ( input ( 1 ) ) ) ) ) ) ) ) ,
LDle : I32 ( STle (8 Sto32 (GET: I8 (PUT(8Uto32 ( LDle : I8 ( input ( 2 ) ) ) ) ) ) ) ) ) , 0 x0 : I32 ) )

Our vulnerability seeking algorithm queries the combined con-

traints from STP. STP is a constraint solver that decides the satis-

ability of first-order logic formulas over bitvector and array terms.

 bitvector is an array of Boolean variables. The input of STP con-

ists of the definition of variables, a set of assertions on defined

ariables and a query about the status of some variables. STP de-

ermines if the query is satisfiable and presents a counter-example

therwise. As an example, the following shows a sample input to

TP that defines two 8-bit terms x and y , and makes a query about

hem to check whether x ∗y is equivalent to y ∗x and x is not less

han y. 
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Listing. 3. Pseudo code of func tion generate_div_by_zero_vul_const. 

Table 3 

Sample constraint translation into STP query. 

C code

i n t main ( i n t argc , char ∗argv [ ] ) {
i n t fd , r e s u l t ;
char bu f f e r [ 1 0 0 ] ;
fd = open ( argv [ 1 ] , O RDONLY) ;
read ( fd , bu f f e r , 1000 ) ;
r e s u l t =12/( i n t ) bu f f e r [ 1 ]+( i n t ) bu f f e r [ 2 ] ;

}

Generated
vulnerability
constraint

if (CmpEQ32(Add32(LDle:I32(STle(8Sto32(GET:I8(PUT(8Uto32
(LDle:I8(input(1)))))))),LDle:I32(STle(8Sto32(GET:I8(PUT(8Uto32
(LDle:I8(input(2))))))))),0x0:I32))

STP Query

x1 : BITVECTOR( 8 ) ;
x2 : BITVECTOR( 8 ) ;
QUERY ( ( (BVPLUS(32 ,BVSX(x1 , 3 2 ) ,
BVSX(x2 , 3 2 ) ) = 0h00000000 ) ) ) ;
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x , y : BITVECTOR( 8 ) ;
ASSERT(x=0hex05 ) ;
ASSERT(y = 0bin00000101 ) ;
QUERY(
BVMULT(8 , x , y)=BVMULT(8 , y , x )
AND
NOT(BVLT(x , y ) )
) ;

To be consistent with the syntax of STP queries, we first trans-

late the combined constraints into the appropriate language, i. e.

SMT-Lib2. The SMT-Lib2 language, that is used to express the STP

queries, contains equivalent operations for most of the logical and

arithmetic operations in the executable codes. For example, in the

above example, BVMULT represents the multiplication operation on

variables x and y . 

In order to represent the calculated constraints in SMT-Lib2 for-

mat, the Vex operators in the constraints are represented in their

equivalent SMT-Lib2 format. As an example, Table 3 presents a

sample C program that contains a division by zero vulnerability,

the calculated vulnerability constraint and its equivalent STP query.

In this translation, the load, store, get and put statements are ig-

nored as they are used by the intermediate statements and have

no effects on the final constraint. The 8Sto32 Vex operator in the

vulnerability constraint is translated into BVSX that is the signed

length extension operator in SMT-Lib2. The resulted STP query asks

if there are two 8-bit variables that their signed 32-bit addition re-

sults in zero. If possible, STP returns two 8-bit values, for x1 and

x2 , that satisfy the query. These values are used as the first and

second bytes of the new test input data to cause division by zero

in the intended instruction. The program is executed with the new

test data and if the data cause undefined or unacceptable behav-

ior in the program, a new vulnerability would be reported by the

algorithm. 

6. Experiments 

We have implemented our proposed method as a plug-in for

Valgrind. Since our vulnerability seeking algorithm uses the con-

colic execution technique, we have used a plug-in of Valgrind,

called Fuzzgrind, that performs concolic execution on Vex state-
ents and generates STP queries for the calculated path con-

traints [32] . In fact, we have implemented our vulnerability seek-

ng algorithm by extending Fuzzgrind so that it calculates the spec-

fied vulnerability constraints in addition to the path constraints

nd generates appropriate STP queries to detect vulnerabilities in

ach execution path. The implemented algorithm is tested in a

acktrack VMware with 1 GB RAM and 1.8 GHz CPU. 

The implemented vulnerability seeking algorithm is tested

n Juliet__Suite_v1.2_for_C_Cpp benchmark of NIST SAMATE test

ase collections. The goal of these experiments is to verify if

he specified vulnerabilities are accurate and if the implemented

ulnerability seeking algorithm is able to detect these vulner-

bilities. The chosen benchmark consists of different vulnera-

le programs for a number of vulnerabilities defined in CWE.

e have tested our algorithm on four groups of vulnerable

rograms: CWE190_Integer_Overflow, CWE191_Integer_Underflow,

WE369_Divide_by_Zero and CWE476 _NULL_Pointer_Dereference. 

The test programs contain one or more good functions and usu-

lly a bad function. Good functions avoid a vulnerability by check-

ng the (input) data value or changing it to a fix value before using

n critical operations. The bad function operates on input data di-

ectly with no previous checks. For example, a bad function in a

est program that is vulnerable to integer overflow is as follows: 

void CWE190 Integer Over f low char f scanf add 01 bad ( )
{

char data ;
data = ’ ’ ;
f s c a n f ( s td in , ”%c ” , &data ) ;
{
char r e s u l t = data + 1 ;
printHexCharLine ( r e s u l t ) ;

}

Some test programs read the input data from a network socket,

n input file or the keyboard. Some of them operate on fixed ran-

om values that are defined in the code. Since our implemented

aint analysis method considers only the input data from keyboard

nd input files as tainted, we did not test the programs that get

he input data from sockets. Moreover, since fixed data values are

ot usable in exploiting the program by malicious users, our tests

o not cover the programs that become vulnerable by manipulat-

ng such data. 

For each test program, our algorithm generates a number of

est-cases based on the calculated path and vulnerability con-

traints. For each path, the program is executed with the test-cases

hat are generated with solving the vulnerability constraints. If the

rogram crashes or shows any pre-defined bad behavior during the

xecution, our algorithm reports the related vulnerability. 

Tables 4–7 present the results of testing our algorithm

ith some of the programs in CWE190_Integer_Overflow and

WE191_Integer_Underflow groups. For the matter of space, only

 limited number of test results are presented in these tables. The

ther test programs are similar to the programs that are listed in

hese tables and testing them achieved similar results. 

The columns in Table 4 present, from left to right, the name

f test program, number of vulnerabilities in it, the number of

alculated vulnerability constraints for containers with width con-
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Table 4 

Integer overflow addition test results. Names of the test programs are shorten because of lack of space. The complete name of each test program is the result of 

appending its name in the table to ”CWE190_Integer_Overflow_char_fscanf”. 

Sample name # Vulns # Width- Conv # S Add32 # U Add32 # Test-cases # Vul test-cases # TP # FP # TN # FN Time (s) 

_add_01 1 2 2 2 6 4 1 0 2 0 2 .43 

_add_11 1 5 5 5 7 5 1 0 4 0 2 .89 

_add_21 1 5 5 5 3 2 1 0 3 0 2 .91 

_add_31 1 3 3 3 5 3 1 0 2 0 2 .68 

_add_41 1 3 3 3 4 3 1 0 2 0 2 .8 

_add_51 1 5 5 5 3 2 1 0 2 0 2 .95 

_add_61 1 3 3 3 4 3 1 0 2 0 2 .58 

Table 5 

Integer overflow multiply test results. Names of the test programs are shorten because of lack of space. The complete name 

of each test program is the result of appending its name in the table to ”CWE190_Integer_Overflow_int_fgets”. 

Sample name # Vulns # Mul32 # Test-cases # Vul test-cases # TP # FP # TN # FN Time (s) 

_multiply_01 1 8 7 2 1 0 2 0 8 .99 

_multiply_10 1 18 9 3 1 0 4 0 10 .2 

_multiply_21 1 10 7 2 1 0 3 0 9 .41 

_multiply_31 1 8 7 2 1 0 3 0 8 .38 

_multiply_41 1 6 7 2 1 0 2 0 8 .39 

_multiply_51 1 6 7 2 1 0 2 0 8 .43 

_multiply_61 1 6 11 3 1 0 2 0 10 .5 

Table 6 

Integer underflow subtraction test results. Names of the test programs are shorten because of lack of space. The complete name of each test 

program is the result of appending its name in the table to ”CWE191_Integer_Underflow__char_fscanf”. 

Sample name # Vulns #Width -conv # sub32 # Test-cases # Vul test-cases # TP # FP # TN # FN Time (s) 

_sub_01 1 3 3 4 3 1 0 2 0 2 .52 

_sub_10 1 3 4 2 1 1 0 4 0 2 .64 

_sub_21 1 3 4 4 1 1 0 3 0 2 .6 

_sub_31 1 3 3 4 3 1 0 2 0 2 .53 

_sub_41 1 3 3 4 3 1 0 2 0 2 .51 

_sub_51 1 3 3 4 3 1 0 2 0 2 .52 

_sub_61 1 3 3 4 3 1 0 2 0 2 .46 

Table 7 

Integer underflow multiply test results. Names of the test programs are shorten because of lack of space. The complete name 

of each test program is the result of appending its name in the table to ”CWE191_Integer_Underflow_int_fgets”. 

Sample name # Vulns # Mul32 # Test-cases # Vul test-cases # TP # FP # TN # FN Time (s) 

_multiply_01 1 6 7 2 1 0 2 0 9 .15 

_multiply_10 1 8 6 1 1 0 4 0 13 .1 

_multiply_21 1 8 6 1 1 0 3 0 10 .0 

_multiply_31 1 6 9 2 1 0 2 0 11 .8 

_multiply_41 1 6 7 2 1 0 2 0 9 .04 

_multiply_51 1 6 7 2 1 0 2 0 8 .94 

_multiply_61 1 6 9 2 1 0 2 0 11 .9 
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ersion, Signed Add32 and Unsigned Add32 operators, the number

f generated test-cases (that are generated with solving path and

ulnerability constraints), the number of generated test-cases with

olving vulnerability constraints, the number of TP (True Positive),

P (False Positive), TN (True Negative) and FN (False Negative) in

he test results and the duration of performing the test. Other ta-

les have similar columns except for the columns of the number of

alculated vulnerability constraints. These columns change depend-

ng on the test program to the number of calculated vulnerability

onstraints for the containers with Mul32 and Sub32 operators. 

Note that the number of constraints are calculated for the

hole testing process, that may include one or more execution

f the test program. The number of generated test-cases demon-

trates the number of solved path and vulnerability constraints. As

hown in these tables, our implemented algorithm is able to cal-

ulate the vulnerability constraints for specified vulnerabilities and

etect the specified vulnerabilities in the test programs. 
o  
We have also compared the accuracy of our specified vulner-

bilities with the specified vulnerabilities in CATCHCONV, that is

roposed by Molnar et al. [14] . CATCHCONV is a plug-in for Val-

rind that uses concolic execution to detect integer bugs in exe-

utable codes. In this test, we first tested our implemented vulner-

bility seeking algorithm with the vulnerability specifications pre-

ented in CATCHCONV. Then, we repeated the test with our im-

lemented algorithm using our vulnerability specifications. Figs. 5

nd 6 present the results of comparing the vulnerability specifi-

ations presented in CATCHCONV and our vulnerability specifica-

ions. The graph shown in Fig. 5 compares the precision of the

wo specifications in detecting vulnerabilities in different groups

f test programs. In each group of test programs, integer overflow

ccurs by manipulating an input value of a specific data type, such

s int, char, unsigned int. There are 81 programs in each group

hat have the same vulnerability in an execution path with differ-

nt complexities. The y axis in this graph represents the precision

f the reported vulnerabilities by each specification, that is calcu-
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Fig. 5. Comparing the precision of vulnerability specifications of CATCHCONV and our vulnerability specifications. 

Fig. 6. Comparing the duration of tesing the benchmark programs with vulnerability specifications of CATCHCONV and our vulnerability specifications. 
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lated as the number of true positives over the total number of true

positives and false positives [36] . Since each program contains one

vulnerability, reaching the 100% precision for a group of programs

means that the algorithm could detect correctly the vulnerabilities

in all the programs of that group. 

As shown in Fig. 5 , our specified vulnerability constraints

helped to detect the vulnerabilities in all these programs and

achieved 100% precision for all the groups. However, the vulner-

ability specifications presented in CATCHCONV could not help to

detect the vulnerability in the programs that manipulate the char

data type and achieved 0% precision on these groups. It is because

these test programs perform arithmetic operations on an 8-bit in-

put character. However, the compilers translate these addition and

subtraction operations to be performed with Add32 and Sub32 op-

erators. In other words, these programs widen the input character

implicitly to 32 bits and then add (or subtract) them with Add32

or Sub32 operators. Thus, the 8-bit character input can never make

such 32-bit operations to overflow or underflow. In fact, the vul-

nerability in these programs appears when the result of the arith-

metic operation is shortened into 8 bits in order to be stored in the

8-bit character variable. This is done by the use of GET8 expression

in Vex, that extracts 8 bits of a 32-bit register. Since we have the

last two vulnerability rules for width conversion in Table 2 of our

specifications, our implemented algorithm can detect the vulnera-

bilities in these programs. 
i  
The graph of Fig. 6 compares the duration of testing a specific

rogram in each group with our specifications and the specifica-

ions presented in CATCHCONV. As shown in this graph, the dura-

ions of testing the programs with the two specifications are rather

qual, except for the programs that manipulate the char data type.

his is because when we used our specifications, more vulnera-

ility constraints were calculated and queried from STP for these

rograms. As a result, more test data were generated and exe-

uted by these test programs. Therefore, it took more time to test

hese programs when we used our specification. When we used

he CATHCONV specifications, fewer vulnerability constraints were

alculated for these programs that were not satisfiable. Thus, the

esting process completed more quickly, albeit with false negative

eports. 

Table 8 illustrates the results of testing the algorithm on some

rograms in CWE369_Divide_by_Zero. In the bad function of these

rograms the input data is used as a divisor in a division or a

odulo operation. If the divisor argument in such statement be-

omes zero, the program would crash. As shown in this table,

ur implemented algorithm could calculate the vulnerability con-

traints based on the specification of the division by zero vulner-

bility and detect the vulnerabilities in these programs. Finally,

able 9 presents the results of testing the algorithm on some of

he programs in CWE476_NULL_Pointer_Dereference. In these test

rograms, a fix NULL value is explicitly assigned to a pointer and

t causes a crash. We changed it into a more difficult scenario and
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Table 8 

Division by zero test results. Names of the test programs are shorten because of lack of space. The complete name of each test 

program is the result of appending its name in the table to ”CWE369_Divide_by_Zero__int_fgets”. 

Sample name # Vulns # Div-by- zero # Test-cases # Vul test-cases # TP # FP # TN # FN Time (s) 

_divide_01 1 3 2 1 1 0 1 0 3 .91 

_divide_10 1 4 2 1 1 0 4 0 4 .29 

_divide_21 1 3 2 1 1 0 3 0 3 .8 

_divide_31 1 3 2 1 1 0 2 0 3 .78 

_divide_41 1 3 2 1 1 0 2 0 3 .8 

_divide_51 1 3 2 1 1 0 2 0 3 .87 

_modulo_01 1 3 2 1 1 0 2 0 3 .15 

_modulo_10 1 4 2 1 1 0 4 0 3 .3 

_modulo_21 1 4 2 1 1 0 3 0 3 .41 

_modulo_31 1 3 2 1 1 0 2 0 3 .11 

_modulo_41 1 3 2 1 1 0 2 0 3 .17 

_modulo_51 1 3 2 1 1 0 2 0 3 .75 

Table 9 

NULL pointer dereferences test results. 

Sample name # Vulns # Crashes # NULL # TP # FP # TN # FN Time (s) 

CWE476_NULL_Pointer_Dereference__char_01 1 1 1 1 0 1 0 2 .31 

CWE476_NULL_Pointer_Dereference__char_10 1 1 1 1 0 4 0 2 .86 

CWE476_NULL_Pointer_Dereference__char_21 1 1 1 1 0 3 0 2 .57 

CWE476_NULL_Pointer_Dereference__char_31 1 1 1 1 0 1 0 2 .38 

CWE476_NULL_Pointer_Dereference__char_41 1 1 1 1 0 1 0 2 .41 
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v  
ade the pointer dependent on the input data. The implemented

lgorithm could detect both scenarios. For the first scenario, the al-

orithm is changed so that it does not care about the performance

nd generates the constraints for all containers regardless of be-

ng tainted or not. For the second scenario, it creates vulnerability

onstraints only for tainted containers. Based on these constraints,

ew input data are generated that cause a NULL pointer derefer-

nce and make the program crash. Table 9 presents the result of

esting the second scenario. 

Although our implemented algorithm detected the vulnerabili-

ies in the test programs in a short time (less than 10 s on aver-

ge), the test duration would be more for real-world large applica-

ions. In large programs, there are a huge number of feasible exe-

ution paths and therefore a huge number of constraints would be

enerated. This problem is known as path explosion. Various tech-

iques are proposed against path explosion in concolic execution,

uch as parallelization [ 37 , 38 ]. Since our concern is on extendibil-

ty, we have not implemented these techniques in our vulnerability

eeking algorithm. We can revise the algorithm in the future based

n the recent enhances in concolic execution technique to increase

ts performance. 

. Conclusion 

In this paper, we presented a first step towards designing an ex-

endable vulnerability detection method for the executable codes.

o be extendable, the vulnerability seeking algorithm should be in-

ependent from the specified vulnerabilities. Thus, a general spec-

fication method is required that is semantically understandable

y the vulnerability seeking algorithm and covers all vulnerabil-

ty classes even the ones that will be discovered in the future.

n this paper, vulnerabilities are modeled in a two-element struc-

ure {Container(s), Rule}. We also presented a formal definition for

ingle-instruction vulnerabilities. We considered the detection of a

pecified vulnerability as solving a satisfaction problem. 

Based on the proposed model, vulnerabilities are specified using

he Vex language to be detected in the executable codes. The vul-

erability seeking algorithm searches through program instructions

or containers of vulnerabilities. When there is a match, the related

ule is translated into a set of constraints and is combined with
he constraints of the current execution path. These constraints are

ueried from STP and, if feasible, new input data are generated to

etect the vulnerability. 

The algorithm can be extended to detect a new vulnerability

ith inserting the containers of the vulnerability to the set of

ulnerability containers and adding the relevant vulnerability con-

traint calculation routines to it. As an evidence that the proposed

ethod is extendable, we adopted our {Container(s), Rule} model

or the specification of five single-instruction vulnerabilities. The

xperiments demonstrated that our proposed vulnerability detec-

ion method can detect all the specified vulnerabilities in the test

rograms. 

The general model helps in specifying vulnerabilities more sys-

ematically. Thus, we could present a more comprehensive speci-

cation for three classes of integer bugs that were more success-

ul than the previous work in our experiments. However, extract-

ng the containers and the rule for a specific vulnerability is still

euristic and it requires an algorithmic method for generating con-

ainers and the rules. 

In the future, we are going to extend the specification method

o cover more complicated vulnerability classes. According to our

bstract point of view, complicated vulnerabilities are again cre-

ted when improper data are assigned to specific containers. For

xtending the specification method to cover multi-instruction vul-

erabilities, our intuition is that multi-instruction vulnerabilities

ppear through a sequence of instructions in the program. There-

ore, they are specifiable through a sequence of pairs of {Con-

ainer(s), Rule}. So the model should be enhanced so that vul-

erabilities be specified through a sequence of one or more pairs

f {Container(s), Rule}. Also, the vulnerability seeking algorithm

hould be revised to generate appropriate vulnerability constraints

or the specified vulnerability rules. We have recently extended our

lgorithm to detect heap-based and stack-based buffer overflow

ulnerabilities in executable codes and it achieved acceptable re-

ults in the experiments [28,29] . It shows the possibility of extend-

ng the proposed vulnerability seeking algorithm to detect multi-

nstruction vulnerabilities. However, we postponed formal specifi-

ation of these vulnerabilities to our future works. 

One challenge in using the concolic execution method in our

ulnerability seeking algorithm is path explosion. In fact, the num-
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ber of feasible execution paths increases exponentially when ap-

plying concolic execution to test large programs. Various optimiza-

tion techniques have been proposed against the path explosion

[39] , which are not currently implemented in our vulnerability

seeking algorithm. In the future we are going to improve the per-

formance of our algorithm by applying appropriate optimization

techniques to tackle the path explosion challenge. 

We are also going to define more rules for the integer vulner-

abilities. Currently, we only specified the vulnerability for 32-bit

integer data types. Other data types, such as short or long, should

be considered in our future works. 
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