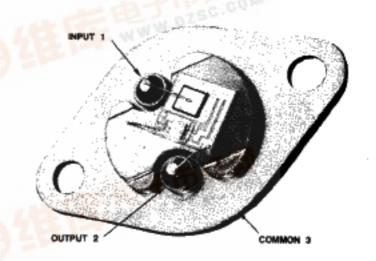


μΑ78H05 • μΑ78H05A 5-Volt 5-Amp Voltage Regulators

Hybrid Products

Description

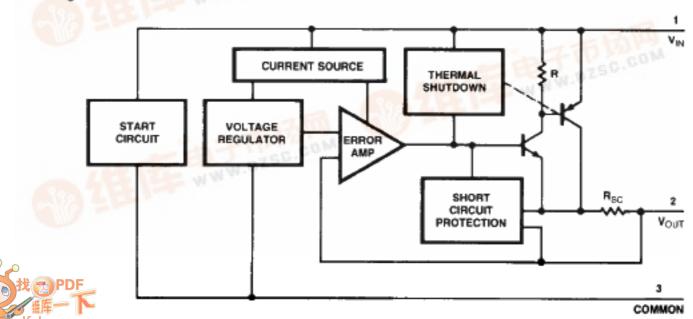

The µA78H05 and µA78H05A are hybrid regulators with 5.0 V fixed outputs and 5.0 A output capabilities. They have the inherent characteristics of the monolithic 3-terminal regulators, i.e., full thermal overload, short-circuit and safe-area protection. All devices are packaged in hermetically sealed TO-3s providing 50 W power dissipation. If the safe operating area is exceeded, the device shuts down rather than failing or damaging other system components (Note 1). This feature eliminates costly output circuitry and overly conservative heat sinks typical of high-current regulators built from discrete components.

- 5.0 A OUTPUT CURRENT
- INTERNAL CURRENT AND THERMAL OVERLOAD PROTECTION
- INTERNAL SHORT CIRCUIT PROTECTION
- LOW DROPOUT VOLTAGE (TYPICALLY 2.3 V @ 5.0 A)
- 50 W POWER DISSIPATION
- STEEL TO-3 PACKAGE
- ALL PIN-FOR-PIN COMPATIBLE WITH THE SH323

Note

 These voltage regulators offer output transistor safe-area protection. However, to maintain full protection, the devices must be operated within the maximum input-to-output voltage differential ratings, as listed on this data sheet under "Absolute Maximum Ratings." For applications violating these limits, devices will not be fully protected.

Connection Diagram TO-3 Metal Package



(Top View)

Order Information

Package ==	Code	Part No.
Metal	GN	µA78H05SC
Metal	GN	µA78H05ASC
Metal	GN	μA78H05SM
Metal	GN	µA78H05ASM
	Metal Metal Metal	Metal GN Metal GN Metal GN

Block Diagram

Absolute Maximum Ratings

Input Voltage

Input-to-Output Voltage

Differential, Output Short Circuited

Internal Power Dissipation

Operating Junction

Temperature Military Temperature Range

µA78H05SM

μA78H05ASM

40 V

35 V

150°C

50 W @ 25°C Case

-55°C to +150°C

-55°C to +150°C

Commercial Temperature

Range

μΑ78H05SC μΑ78H05ASC

Storage Temperature Range

Pin Temperature

(Soldering, 60 s)

0°C to +150°C

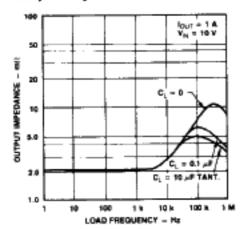
0°C to +150°C

-55°C to +150°C

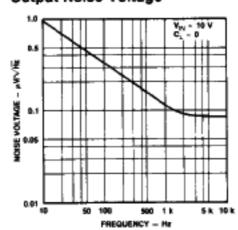
300°C

μΑ78H05 • μΑ78H05A

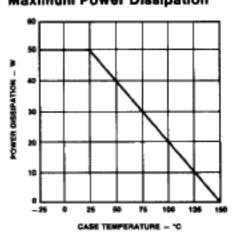
Electrical Characteristics T_J = 25°C, V_{IN} = 10 V, I_{OUT} = 2.0 A unless otherwise specified.


		Condition		Limits			
Symbol	Characteristic			Min	Тур	Max	Unit
Vout	Output Voltage	I _{OUT} = 2.0 A		4.85	5.0	5.25	V
A14	Line Deculation (Note 1)	V _{IN} = 8.5 to 25 V (μΑ78H05)			10	50	mV
ΔV _{OUT} Line Regulation (Note 2)	V _{IN} = 7.5 to 25 V (μΑ78H05A)			10	50	m∨	
ΔVουτ	Load Regulation (Note 2)	10 mA ≤ I _{OUT} ≤ 5.0 A			10	50	mV
lo	Quiescent Current	I _{OUT} = 0			3.0	10	mA
RR	Ripple Rejection	I _{OUT} = 1.0 A, f = 120 Hz, 5.0 V _{pk-pk}		60			dB
V _n	Output Noise	10 Hz ≤ f ≤ 100 kHz			40		μVRMS
V _{DD}	Dropout Voltage (Note 3)	μA78H05	I _{OUT} = 5.0 A	[2.3		V
			I _{OUT} = 3.0 A		2.0		٧
		µА78Н05A	I _{OUT} = 5.0 A		2.3	2.5	V
			I _{OUT} = 3.0 A		2.0	2.3	v
los	Short-Circuit Current Limit		1		7.0	12.0	Apk

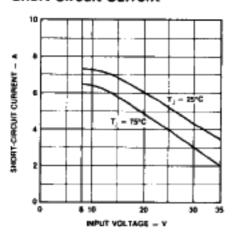
Notes

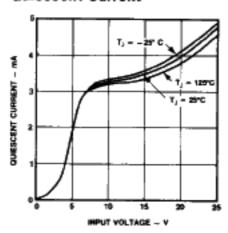

- Load and line regulation are specified at constant junction temperature. Pulse testing is required with a pulse width ≤ 1 ms and a duty cycle of ≤ 5%. Full Kelvin connection methods must be used to measure these parameters.
- Dropout Voltage is the input-output voltage differential that causes the output voltage to decrease by 5% of its initial value.

Typical Performance Curves

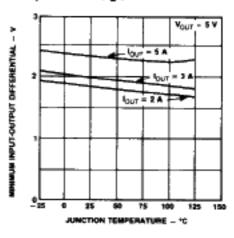

Output Impedance

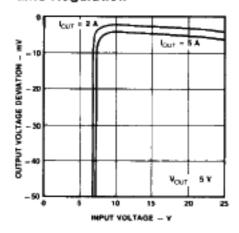
Output Noise Voltage

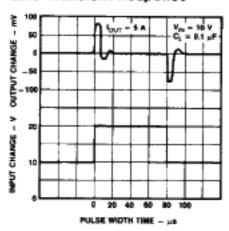

Maximum Power Dissipation

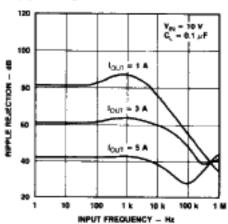

3

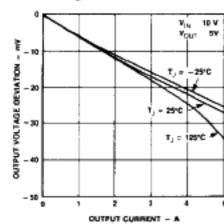
Typical Performance Curves (Cont.)

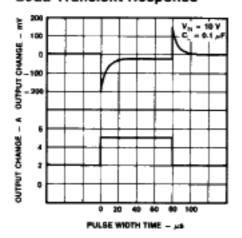

Short Circuit Current

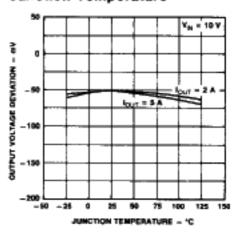

Quiescent Current


Dropout Voltage

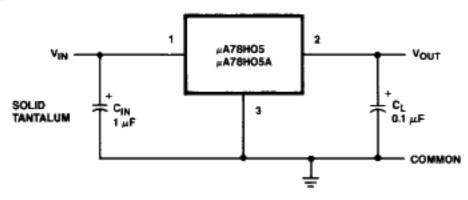

Line Regulation


Line Transient Response


Ripple Rejection


Load Regulation

Load Transient Response



Output Voltage Deviation vs Junction Temperature

Test Circuit

Fixed Output Voltage

Design Considerations

These devices have thermal-overload protection from excessive power and internal short-circuit protection which limits the circuit's maximum current. Thus, the devices are protected from overload abnormalities. Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature (150°C). It is recommended by the manufacturer that the maximum junction temperature be kept as low as possible for increased reliability. To calculate the maximum junction temperature or heat sink required, the following thermal resistance values should be used:

Package	Typ θ _{JC}	Max θ _{JC}
TO-3	1.8	2.5

$$P_{D(max)} = \frac{T_{J(max)} - T_{A}}{\theta_{JC} + \theta_{CA}}$$
$$\theta_{CA} = \theta_{CS} + \theta_{SA}$$

Solving for T_J:

$$T_J = T_A + P_D (\theta_{JC} + \theta_{CA})$$

Where:

T_J = Junction Temperature T_A = Ambient Temperature P_D = Power Dissipation

 θ_{JC} = Junction-to-case thermal resistance θ_{CA} = Case-to-ambient thermal resistance θ_{CS} = Case-to-heat sink thermal resistance θ_{SA} = Heat sink-to-ambient thermal resistance

The devices are designed to operate without external compensation components. However, the amount of external filtering of these voltage regulators depends upon the circuit layout. If in a specific application the regulator is more than four inches from the filter capacitor, a 1 μ F solid tantalum capacitor should be used at the input. A 0.1 μ F capacitor should be used at the output to reduce transients created by fast switching loads, as seen in the basic test circuit. These filter capacitors must be located as close to the regulator as possible.

Caution: Permanent damage can result from forcing the output voltage higher than the input voltage. A protection diode from output to input should be used if this condition exists.