Eliott Rosenberg

Eliott Rosenberg

Eliott is a research scientist focusing on near-term applications of quantum processors. He completed his PhD in Physics at Cornell University in 2023, and now works closely with Pedram Roushan and student researchers, implementing physics experiments using our quantum hardware.

Research Areas

Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Stable quantum-correlated many-body states through engineered dissipation
    Xiao Mi
    Alexios Michailidis
    Sara Shabani
    Jerome Lloyd
    Rajeev Acharya
    Igor Aleiner
    Trond Andersen
    Markus Ansmann
    Frank Arute
    Kunal Arya
    Juan Atalaya
    Gina Bortoli
    Alexandre Bourassa
    Leon Brill
    Michael Broughton
    Bob Buckley
    Tim Burger
    Nicholas Bushnell
    Jimmy Chen
    Benjamin Chiaro
    Desmond Chik
    Charina Chou
    Josh Cogan
    Roberto Collins
    Paul Conner
    William Courtney
    Alex Crook
    Ben Curtin
    Alejo Grajales Dau
    Dripto Debroy
    Alexander Del Toro Barba
    Sean Demura
    Agustin Di Paolo
    ILYA Drozdov
    Andrew Dunsworth
    Catherine Erickson
    Lara Faoro
    Edward Farhi
    Reza Fatemi
    Vinicius Ferreira
    Leslie Flores
    Ebrahim Forati
    Austin Fowler
    Brooks Foxen
    Élie Genois
    William Giang
    Craig Gidney
    Dar Gilboa
    Marissa Giustina
    Raja Gosula
    Jonathan Gross
    Steve Habegger
    Michael Hamilton
    Monica Hansen
    Matt Harrigan
    Sean Harrington
    Paula Heu
    Markus Hoffmann
    Sabrina Hong
    Trent Huang
    Ashley Huff
    Bill Huggins
    Lev Ioffe
    Sergei Isakov
    Justin Iveland
    Evan Jeffrey
    Zhang Jiang
    Cody Jones
    Pavol Juhas
    Dvir Kafri
    Kostyantyn Kechedzhi
    Tanuj Khattar
    Mostafa Khezri
    Marika Kieferova
    Seon Kim
    Alexei Kitaev
    Andrey Klots
    Alexander Korotkov
    Fedor Kostritsa
    John Mark Kreikebaum
    Dave Landhuis
    Pavel Laptev
    Kim Ming Lau
    Lily Laws
    Joonho Lee
    Kenny Lee
    Yuri Lensky
    Brian Lester
    Alexander Lill
    Wayne Liu
    Aditya Locharla
    Fionn Malone
    Orion Martin
    Jarrod McClean
    Matt McEwen
    Amanda Mieszala
    Shirin Montazeri
    Alexis Morvan
    Ramis Movassagh
    Wojtek Mruczkiewicz
    Matthew Neeley
    Charles Neill
    Ani Nersisyan
    Michael Newman
    JiunHow Ng
    Anthony Nguyen
    Murray Ich Nguyen
    Murphy Niu
    Tom O'Brien
    Alex Opremcak
    Andre Petukhov
    Rebecca Potter
    Leonid Pryadko
    Chris Quintana
    Charles Rocque
    Nicholas Rubin
    Negar Saei
    Daniel Sank
    Kannan Sankaragomathi
    Kevin Satzinger
    Henry Schurkus
    Christopher Schuster
    Mike Shearn
    Aaron Shorter
    Noah Shutty
    Vladimir Shvarts
    Jindra Skruzny
    Clarke Smith
    Rolando Somma
    George Sterling
    Doug Strain
    Marco Szalay
    Alfredo Torres
    Guifre Vidal
    Benjamin Villalonga
    Catherine Vollgraff Heidweiller
    Ted White
    Bryan Woo
    Cheng Xing
    Jamie Yao
    Ping Yeh
    Juhwan Yoo
    Grayson Young
    Adam Zalcman
    Yaxing Zhang
    Ningfeng Zhu
    Nicholas Zobrist
    Hartmut Neven
    Ryan Babbush
    Dave Bacon
    Sergio Boixo
    Jeremy Hilton
    Erik Lucero
    Anthony Megrant
    Julian Kelly
    Yu Chen
    Pedram Roushan
    Vadim Smelyanskiy
    Dmitry Abanin
    Science, 383(2024), pp. 1332-1337
    Preview abstract Engineered dissipative reservoirs have the potential to steer many-body quantum systems toward correlated steady states useful for quantum simulation of high-temperature superconductivity or quantum magnetism. Using up to 49 superconducting qubits, we prepared low-energy states of the transverse-field Ising model through coupling to dissipative auxiliary qubits. In one dimension, we observed long-range quantum correlations and a ground-state fidelity of 0.86 for 18 qubits at the critical point. In two dimensions, we found mutual information that extends beyond nearest neighbors. Lastly, by coupling the system to auxiliaries emulating reservoirs with different chemical potentials, we explored transport in the quantum Heisenberg model. Our results establish engineered dissipation as a scalable alternative to unitary evolution for preparing entangled many-body states on noisy quantum processors. View details
    Dynamics of magnetization at infinite temperature in a Heisenberg spin chain
    Eliott Rosenberg
    Trond Andersen
    Rhine Samajdar
    Andre Petukhov
    Jesse Hoke
    Dmitry Abanin
    Andreas Bengtsson
    ILYA Drozdov
    Catherine Erickson
    Paul Klimov
    Xiao Mi
    Alexis Morvan
    Matthew Neeley
    Charles Neill
    Rajeev Acharya
    Richard Ross Allen
    Kyle Anderson
    Markus Ansmann
    Frank Arute
    Kunal Arya
    Abe Asfaw
    Juan Atalaya
    Joe Bardin
    Alex Bilmes
    Gina Bortoli
    Alexandre Bourassa
    Jenna Bovaird
    Leon Brill
    Michael Broughton
    Bob Buckley
    David Buell
    Tim Burger
    Brian Burkett
    Nicholas Bushnell
    Juan Campero
    Hung-Shen Chang
    Jimmy Chen
    Benjamin Chiaro
    Desmond Chik
    Josh Cogan
    Roberto Collins
    Paul Conner
    William Courtney
    Alex Crook
    Ben Curtin
    Dripto Debroy
    Alexander Del Toro Barba
    Sean Demura
    Agustin Di Paolo
    Andrew Dunsworth
    Clint Earle
    Lara Faoro
    Edward Farhi
    Reza Fatemi
    Vinicius Ferreira
    Leslie Flores
    Ebrahim Forati
    Austin Fowler
    Brooks Foxen
    Gonzalo Garcia
    Élie Genois
    William Giang
    Craig Gidney
    Dar Gilboa
    Marissa Giustina
    Raja Gosula
    Alejo Grajales Dau
    Jonathan Gross
    Steve Habegger
    Michael Hamilton
    Monica Hansen
    Matt Harrigan
    Sean Harrington
    Paula Heu
    Gordon Hill
    Markus Hoffmann
    Sabrina Hong
    Trent Huang
    Ashley Huff
    Bill Huggins
    Lev Ioffe
    Sergei Isakov
    Justin Iveland
    Evan Jeffrey
    Zhang Jiang
    Cody Jones
    Pavol Juhas
    Dvir Kafri
    Tanuj Khattar
    Mostafa Khezri
    Marika Kieferova
    Seon Kim
    Alexei Kitaev
    Andrey Klots
    Alexander Korotkov
    Fedor Kostritsa
    John Mark Kreikebaum
    Dave Landhuis
    Pavel Laptev
    Kim Ming Lau
    Lily Laws
    Joonho Lee
    Kenny Lee
    Yuri Lensky
    Brian Lester
    Alexander Lill
    Wayne Liu
    Aditya Locharla
    Salvatore Mandra
    Orion Martin
    Steven Martin
    Jarrod McClean
    Matt McEwen
    Seneca Meeks
    Kevin Miao
    Amanda Mieszala
    Shirin Montazeri
    Ramis Movassagh
    Wojtek Mruczkiewicz
    Ani Nersisyan
    Michael Newman
    JiunHow Ng
    Anthony Nguyen
    Murray Ich Nguyen
    Murphy Niu
    Tom O'Brien
    Seun Omonije
    Alex Opremcak
    Rebecca Potter
    Leonid Pryadko
    Chris Quintana
    David Rhodes
    Charles Rocque
    Nicholas Rubin
    Negar Saei
    Daniel Sank
    Kannan Sankaragomathi
    Kevin Satzinger
    Henry Schurkus
    Christopher Schuster
    Mike Shearn
    Aaron Shorter
    Noah Shutty
    Vladimir Shvarts
    Vlad Sivak
    Jindra Skruzny
    Clarke Smith
    Rolando Somma
    George Sterling
    Doug Strain
    Marco Szalay
    Doug Thor
    Alfredo Torres
    Guifre Vidal
    Benjamin Villalonga
    Catherine Vollgraff Heidweiller
    Ted White
    Bryan Woo
    Cheng Xing
    Jamie Yao
    Ping Yeh
    Juhwan Yoo
    Grayson Young
    Adam Zalcman
    Yaxing Zhang
    Ningfeng Zhu
    Nicholas Zobrist
    Hartmut Neven
    Ryan Babbush
    Dave Bacon
    Sergio Boixo
    Jeremy Hilton
    Erik Lucero
    Anthony Megrant
    Julian Kelly
    Yu Chen
    Vadim Smelyanskiy
    Vedika Khemani
    Sarang Gopalakrishnan
    Tomaž Prosen
    Pedram Roushan
    Science, 384(2024), pp. 48-53
    Preview abstract Understanding universal aspects of quantum dynamics is an unresolved problem in statistical mechanics. In particular, the spin dynamics of the one-dimensional Heisenberg model were conjectured as to belong to the Kardar-Parisi-Zhang (KPZ) universality class based on the scaling of the infinite-temperature spin-spin correlation function. In a chain of 46 superconducting qubits, we studied the probability distribution of the magnetization transferred across the chain’s center, P(M). The first two moments of P(M) show superdiffusive behavior, a hallmark of KPZ universality. However, the third and fourth moments ruled out the KPZ conjecture and allow for evaluating other theories. Our results highlight the importance of studying higher moments in determining dynamic universality classes and provide insights into universal behavior in quantum systems. View details
    Measurement-induced entanglement and teleportation on a noisy quantum processor
    Jesse Hoke
    Matteo Ippoliti
    Eliott Rosenberg
    Dmitry Abanin
    Rajeev Acharya
    Trond Andersen
    Markus Ansmann
    Frank Arute
    Kunal Arya
    Abe Asfaw
    Juan Atalaya
    Joe Bardin
    Andreas Bengtsson
    Gina Bortoli
    Alexandre Bourassa
    Jenna Bovaird
    Leon Brill
    Michael Broughton
    Bob Buckley
    David Buell
    Tim Burger
    Brian Burkett
    Nicholas Bushnell
    Jimmy Chen
    Benjamin Chiaro
    Desmond Chik
    Josh Cogan
    Roberto Collins
    Paul Conner
    William Courtney
    Alex Crook
    Ben Curtin
    Alejo Grajales Dau
    Dripto Debroy
    Alexander Del Toro Barba
    Sean Demura
    Agustin Di Paolo
    ILYA Drozdov
    Andrew Dunsworth
    Daniel Eppens
    Catherine Erickson
    Edward Farhi
    Reza Fatemi
    Vinicius Ferreira
    Leslie Flores
    Ebrahim Forati
    Austin Fowler
    Brooks Foxen
    William Giang
    Craig Gidney
    Dar Gilboa
    Marissa Giustina
    Raja Gosula
    Jonathan Gross
    Steve Habegger
    Michael Hamilton
    Monica Hansen
    Matt Harrigan
    Paula Heu
    Markus Hoffmann
    Sabrina Hong
    Trent Huang
    Ashley Huff
    Bill Huggins
    Sergei Isakov
    Justin Iveland
    Evan Jeffrey
    Zhang Jiang
    Cody Jones
    Pavol Juhas
    Dvir Kafri
    Kostyantyn Kechedzhi
    Tanuj Khattar
    Mostafa Khezri
    Marika Kieferova
    Seon Kim
    Alexei Kitaev
    Paul Klimov
    Andrey Klots
    Alexander Korotkov
    Fedor Kostritsa
    John Mark Kreikebaum
    Dave Landhuis
    Pavel Laptev
    Kim Ming Lau
    Lily Laws
    Joonho Lee
    Kenny Lee
    Yuri Lensky
    Brian Lester
    Alexander Lill
    Wayne Liu
    Aditya Locharla
    Orion Martin
    Jarrod McClean
    Matt McEwen
    Kevin Miao
    Amanda Mieszala
    Shirin Montazeri
    Alexis Morvan
    Ramis Movassagh
    Wojtek Mruczkiewicz
    Matthew Neeley
    Charles Neill
    Ani Nersisyan
    Michael Newman
    JiunHow Ng
    Anthony Nguyen
    Murray Ich Nguyen
    Murphy Niu
    Tom O'Brien
    Seun Omonije
    Alex Opremcak
    Andre Petukhov
    Rebecca Potter
    Leonid Pryadko
    Chris Quintana
    Charles Rocque
    Nicholas Rubin
    Negar Saei
    Daniel Sank
    Kannan Sankaragomathi
    Kevin Satzinger
    Henry Schurkus
    Christopher Schuster
    Mike Shearn
    Aaron Shorter
    Noah Shutty
    Vladimir Shvarts
    Jindra Skruzny
    Clarke Smith
    Rolando Somma
    George Sterling
    Doug Strain
    Marco Szalay
    Alfredo Torres
    Guifre Vidal
    Benjamin Villalonga
    Catherine Vollgraff Heidweiller
    Ted White
    Bryan Woo
    Cheng Xing
    Jamie Yao
    Ping Yeh
    Juhwan Yoo
    Grayson Young
    Adam Zalcman
    Yaxing Zhang
    Ningfeng Zhu
    Nicholas Zobrist
    Hartmut Neven
    Ryan Babbush
    Dave Bacon
    Sergio Boixo
    Jeremy Hilton
    Erik Lucero
    Anthony Megrant
    Julian Kelly
    Yu Chen
    Vadim Smelyanskiy
    Xiao Mi
    Vedika Khemani
    Pedram Roushan
    Nature, 622(2023), 481–486
    Preview abstract Measurement has a special role in quantum theory: by collapsing the wavefunction, it can enable phenomena such as teleportation and thereby alter the ‘arrow of time’ that constrains unitary evolution. When integrated in many-body dynamics, measurements can lead to emergent patterns of quantum information in space–time that go beyond the established paradigms for characterizing phases, either in or out of equilibrium. For present-day noisy intermediate-scale quantum (NISQ) processors, the experimental realization of such physics can be problematic because of hardware limitations and the stochastic nature of quantum measurement. Here we address these experimental challenges and study measurement-induced quantum information phases on up to 70 superconducting qubits. By leveraging the interchangeability of space and time, we use a duality mapping to avoid mid-circuit measurement and access different manifestations of the underlying phases, from entanglement scaling to measurement-induced teleportation. We obtain finite-sized signatures of a phase transition with a decoding protocol that correlates the experimental measurement with classical simulation data. The phases display remarkably different sensitivity to noise, and we use this disparity to turn an inherent hardware limitation into a useful diagnostic. Our work demonstrates an approach to realizing measurement-induced physics at scales that are at the limits of current NISQ processors. View details