Exponentiation#
- class sklearn.gaussian_process.kernels.Exponentiation(kernel, exponent)[source]#
The Exponentiation kernel takes one base kernel and a scalar parameter \(p\) and combines them via
\[k_{exp}(X, Y) = k(X, Y) ^p\]Note that the
__pow__
magic method is overridden, soExponentiation(RBF(), 2)
is equivalent to using the ** operator withRBF() ** 2
.Read more in the User Guide.
Added in version 0.18.
- Parameters:
- kernelKernel
The base kernel
- exponentfloat
The exponent for the base kernel
Examples
>>> from sklearn.datasets import make_friedman2 >>> from sklearn.gaussian_process import GaussianProcessRegressor >>> from sklearn.gaussian_process.kernels import (RationalQuadratic, ... Exponentiation) >>> X, y = make_friedman2(n_samples=500, noise=0, random_state=0) >>> kernel = Exponentiation(RationalQuadratic(), exponent=2) >>> gpr = GaussianProcessRegressor(kernel=kernel, alpha=5, ... random_state=0).fit(X, y) >>> gpr.score(X, y) 0.419... >>> gpr.predict(X[:1,:], return_std=True) (array([635.5...]), array([0.559...]))
- __call__(X, Y=None, eval_gradient=False)[source]#
Return the kernel k(X, Y) and optionally its gradient.
- Parameters:
- Xarray-like of shape (n_samples_X, n_features) or list of object
Left argument of the returned kernel k(X, Y)
- Yarray-like of shape (n_samples_Y, n_features) or list of object, default=None
Right argument of the returned kernel k(X, Y). If None, k(X, X) is evaluated instead.
- eval_gradientbool, default=False
Determines whether the gradient with respect to the log of the kernel hyperparameter is computed.
- Returns:
- Kndarray of shape (n_samples_X, n_samples_Y)
Kernel k(X, Y)
- K_gradientndarray of shape (n_samples_X, n_samples_X, n_dims), optional
The gradient of the kernel k(X, X) with respect to the log of the hyperparameter of the kernel. Only returned when
eval_gradient
is True.
- property bounds#
Returns the log-transformed bounds on the theta.
- Returns:
- boundsndarray of shape (n_dims, 2)
The log-transformed bounds on the kernel’s hyperparameters theta
- clone_with_theta(theta)[source]#
Returns a clone of self with given hyperparameters theta.
- Parameters:
- thetandarray of shape (n_dims,)
The hyperparameters
- diag(X)[source]#
Returns the diagonal of the kernel k(X, X).
The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated.
- Parameters:
- Xarray-like of shape (n_samples_X, n_features) or list of object
Argument to the kernel.
- Returns:
- K_diagndarray of shape (n_samples_X,)
Diagonal of kernel k(X, X)
- get_params(deep=True)[source]#
Get parameters of this kernel.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- property hyperparameters#
Returns a list of all hyperparameter.
- property n_dims#
Returns the number of non-fixed hyperparameters of the kernel.
- property requires_vector_input#
Returns whether the kernel is defined on discrete structures.
- set_params(**params)[source]#
Set the parameters of this kernel.
The method works on simple kernels as well as on nested kernels. The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.- Returns:
- self
- property theta#
Returns the (flattened, log-transformed) non-fixed hyperparameters.
Note that theta are typically the log-transformed values of the kernel’s hyperparameters as this representation of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales naturally live on a log-scale.
- Returns:
- thetandarray of shape (n_dims,)
The non-fixed, log-transformed hyperparameters of the kernel